
 1

Modelica – A Strongly Typed System Specification
Language for Safe Engineering Practices

Peter Fritzson, Vadim Engelson, Andreas Idebrant†, Peter Aronsson,
Håkan Lundvall, Peter Bunus, Kaj Nyström

Department of Computer and Information Science
Linköping University, SE-581 83 Linköping, Sweden

Email: petfr@ida.liu.se
†MathCore Engineering AB, Teknikringen 1B, SE-583 30 Linköping, Sweden

www.mathcore.com

1 Abstract
Recent years have witnessed a significant growth of interest in modeling and simulation of
engineering application systems. A key factor in this growth has been the development of
efficient equation-based simulation languages, with Modelica as one of the prime examples.
Such languages have been designed to allow automatic generation of efficient simulation code
from declarative specifications. A major objective is to facilitate reuse and exchange of
models, model libraries, and simulation specifications.

The Modelica language and its associated support technologies have achieved considerable
success through the development of domain libraries in a number of technical areas. By using
domain-libraries complex simulation models can be built by aggregating and combining sub-
models and components from various physical domains.

The concept of safe engineering practices has been one of the most important guidelines
when designing Modelica. This made it natural to make Modelica a statically strongly typed
language, which allows the compiler to check the consistency of a design before it is executed,
in contrast to dynamically typed languages such as Matlab.

The ability of static checking has also influenced the design of conditional equations and
the ongoing the design of variant handling features in Modelica. Moreover, the language
allows support for standardized physical units, thus enabling tools for unit checking of
relationships and connections between interfaces. A third possible level of checking is through
design rules within application-specific libraries, which can be enforced via assert statements.
These properties taken together gives a good foundation for safe engineering practices, even
though more work is needed to further increase the safety quality level.

2 Background on the Modelica Language
In the fall 1996, work started towards standardization and unification of multi-domain (multi-
physics) modeling based on object oriented mathematical modeling techniques by defining a
model description language Modelica for modeling dynamic behavior of engineering systems,
intended to become a de facto standard. In November 2003, version 2.1 of the Modelica
language was released, which was presented together with a large number of industrial
applications during the 3rd International Modelica Conference arranged by PELAB,
Linköping University, Sweden. Modelica is superior to current technology mainly for the
following reasons:

 2

• Acausal modeling. Modeling is based on equations instead of assignment statements as
in traditional input/output block abstractions. Direct use of equations significantly
increases re-usability of model components, since components adapt to the data flow
context in connection structure in which they are used.

• Object-oriented physical modeling of multiple domains. This technique makes it
possible to create model components that correspond to physical objects in the real
world, in contrast to established techniques that require conversion to signal blocks. For
application engineers, such ”physical” components are particularly easy to combine into
simulation models using a graphical editor. The object-oriented methodology is
employed to support hierarchical structuring, reuse, and evolution of large and complex
models.

• The Modelica approach to multi-physics simulation enables real-time simulation with
short deadlines not possible using loosely coupled approaches to multi-physics through
connection of present simulation applications for different application domains.

The following figure shows hierarchical component-based modeling using the Modelica
technology, with hierarchical decomposition of a design, and strongly typed checkable
connections between system components.

Figure 1. Hierarchical model of an industry robot, including components such as motors, bearings, control
software, etc. At the lowest (class) level, equations are typically found.

3 Safe Engineering Practices and Checkable Models
What do we mean by the term safe engineering practices? When constructing a system such as
a car, a train, or a nuclear power plant, we would like the design to be safe in the sense that it
should exhibit unexpected behavior that can cause accidents. One way to increase the safety of
a design is to have well specified components, interfaces, and system architecture, and to be
able to verify the properties of the design against formal requirements. We have two groups of
verification techniques:

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6

r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

l

qd

tn

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

Srel = n*transpose(n)+(identity(3)-
n*transpose(n))*cos(q)- skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*transpose(Srel);
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab Srel*aa

 3

• Formal verification techniques allows the consistency of the design to be checked
before it is used. Here we include static checking of type constraints for strongly typed
languages, unit checking of relationships in physical systems models, and checking
domain-specific design guidelines by analyzing the application model code, as in the
model checking approach mentioned briefly below. If an inconsistency is found, static
model debugging [2] can be used for finding the probable causes of the problem.

• Dynamic verification techniques, i.e. a kind of systematic testing, will systematically
test the design by executing it for many combinations of design parameters that
hopefully well represents the design space of the implemented system.

A third technique is to make multiple independent and redundant designs, let them execute in
parallel, and use a majority vote mechanism if there are differences.

In practice, both formal verification and dynamic verification techniques are typically
employed to ensure maximum safety for critical systems.

4 Graphic Model Configuration
Another aspect of safe engineering practices is reusing well-tested simulation model
components through an easy-to-use graphical user interface, as depicted in Figure 2, where the
tool checks that connected ports are type compatible.

Figure 2. The MathModelica graphic model editor showing a simple electro-mechanical DC-motor model.

The MathModelica graphic model editor allows picking components from the library windows
to the left, dragging these components icons into the drawing area in the middle, and
connecting these by lines that represent communication or attachment between the
components.

5 Wheel Loader Application
A somewhat larger application is a wheel loader, where we would like to model the lifting
mechanism together with a control system, for investigation of the dynamics to ensure safe
operations. The 3D design of the wheel loader mechanism was created using the SolidWorks
CAD system, Figure 3 left, automatically translated to Modelica code using a CAD to
Modelica translator [2], and connected to a controller modeled in Modelica.

A special library of wheel loader components was created, with model components in
Modelica. The mapping from icons and connections to Modelica code is standardized and part
of the Modelica language design. Connected components from this library, forming a wheel-
loader mechanism, is shown in Figure 3 right.

 4

Figure 3. Left: 3D view of wheel loader mechanism created in a 3D mechanical CAD system. Right:
Connected components from the wheel-loader library, forming a model of a wheel-loader mechanism.

The obtained simulation and visualization of the wheel loader mechanism can be run and
controlled in real-time, e.g. to let an operator trainee interact with the wheel loader.

6 Flight Dynamics Library with Applications to Fighter Aircrafts
The Aircraft library is a versatile Modelica library for modeling and simulating aircraft
dynamics, e.g. to test different kinds of controllers and other components in an aircraft. It has
been developed in cooperation between MathCore Engineering AB and FOI – the Swedish
Research Institute. The project was financed by FMV (Swedish Defence Material
Administration) and conducted by FOI. The library is a property of FOI.

 The library is structured into a number of sublibraries which contain models for describing
the aerodynamics, atmosphere aerodynamic impact on aircraft, bodies, engine models,
coordinate transformation models, etc. The library is easy to use, and automatically computes
up-to-date center-of-mass and moment of inertia depending on the mass and position of
components included in the application model. External components written in C can be
included, e.g. external controller models.

The Aircraft library has successfully been used to model the flight dynamics of a generic
aircraft, whose visual appearance has superficial similarities with the Swedish JAS Gripen
aircraft, using the MathModelica tool for modeling, simulation, and 3D visualization. Below is
an aircraft icon in the library.

Figure 4. Aircraft with variable center of gravity and mass moment of inertia.

 5

The Aircraft library currently consists of the following subpackages: Aerodynamics (see
Figure 5 below), Atmosphere – for aerodynamic impact on aircraft, Bodies – aircraft bodies
without aerodynamic influence, Examples – Example models, Functions, Icons,
Interfaces – connector interfaces, Propulsion – engine models, Test – Test models to
verify behavior, Transformations – transformation models for frames, Types, and finally
Utilities.

Figure 5. Aerodynamics subpackage of the AirCraft library.

7 Formal Verification
Formal program verification is a technique that aims at proving that programs meet certain
specifications, i.e. that the actual program behavior fulfils certain specified properties. Model
checking is a specific approach to verification of temporal properties of reactive and
concurrent systems. Formal verification is usually carried out by using model checking
algorithms to demonstrate the satisfiability of certain properties formalized as logical formulae
over the model of the system.

Modeling with components specified in modeling and simulation languages is sometimes
difficult because many semantic properties that should be obeyed during the design are not
formalized in the modeling language. There exist rules that users of the components should
follow in order to create semantically, mathematically, and physically correct models.

The model checking approach has however proven successful for models based on finite-
state automata and is based on state space inspection. In our current research we aim at a
general automated model checking framework for hybrid models specified in a non-trivial
subset of Modelica, see [10].

8 Connections to HLA and GRID Technology
The HLA – High Level Architecture is a framework standard originated by the American
Department of Defense [9] for supporting reusability and interoperability of simulation models
and model components, especially on distributed heterogeneous computing platforms, often
with real-time operation.

In comparison, the Modelica standard also supports reusability and interoperability, but to a
greater extent, with easier-to-use graphic component composition, and also in a much stricter
way by automatically ensuring tightly-coupled interoperability even for hard real-time
deadlines; safer interconnectivity through a uniform strongly typed language; a higher degree
of reusability through acausal equation-based classes that fit into any data-flow context; and a
higher level of specifications since equations can be directly specified instead of manual
coding in languages like C++ or similar.

One issue emphasized by HLA is operation on distributed platforms. Such mechanisms are
currently being developed for Modelica in the context of the GRIDModelica project, to

 6

support efficient model configuration and simulation on multiprocessors or distributed systems
of processors connected into a GRID, which also is relevant for HLA.

9 Conclusions
Modelica is a strongly typed equation-based modeling language, with a high potential for
supporting safe engineering practises through properties such as being declarative, strongly
typed, amenable to formal processing such as verification, providing architectural support for
complex system modeling, etc.

The language has proven itself in complex industrial applications such as wheel-loader
models, aircraft dynamics models, industry robots, etc. A generalization of the language and
its run-time mechanisms called GRIDModelica, is showing promising results in providing
interoperability and interfacing of model components also in a distributed parallel multi-
processor computational HLA-like context.

10 References
[1] Peter Bunus. Debugging Techniques for Equation-Based Languages, Ph.D. Thesis No. 873, June 2, 2004,

Dept. of Computer and Information Science, Linköping University, Sweden..
[2] Vadim Engelson, Peter Bunus, Lucian Popescu, and Peter Fritzson. Mechanical CAD with Multibody

Dynamic Analysis Based on Modelica Simulation. In Proceedings of the 44th Scandinavian Conference on
Simulation and Modeling (SIMS’2003), available at www.scan-sims.org. Västerås, Sweden. September 18-
19, 2003.

[3] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. 940 pp. Wiley-
IEEE Press, Dec 2003. (Book web page: www.mathcore.com/DrModelica)

[4] Andreas Idebrant, Peter Fritzson, Martin Hagström. AirCraft – A Modelica Library for Aircraft Dynamics
Simulation. In Proceedings of the 5th EuroSim Congress on Modeling and Simulation, Paris, Sept 6-10,
2004.

[5] IEEE P1526.1. M&S HLA – Federate I/F Spec, Draft. July 1998.
[6] Håkan Lundvall, Peter Bunus and Peter Fritzson. Automatic Generation of Model Checkable Code from

Modelica. In Proceedings of the 45th Scandinavian Conference on Simulation and Modeling (SIMS’2003),
soon available at www.scan-sims.org. Copenhagen, Denmark. September 23-24, 2004.

[7] MathCore Engineering AB. MathModelica User’s Guide. www.mathcore.com. 2003.
[8] MathCore Engineering AB. MathModelica CAD Users Guide. Internal draft. www.mathcore.com. 2003.
[9] Modelica Association. www.modelica.org.
[10] Kaj Nyström, Peter Aronsson, and Peter Fritzson. GridModelica – A Modeling and Simulation Framework

for the GRID. In Proceedings of the 45th Scandinavian Conference on Simulation and Modeling
(SIMS’2003), soon available at www.scan-sims.org. Copenhagen, Denmark. September 23-24, 2004.

[11] PELAB. Modelica Research web page, Linköping University, www.ida.liu.se/labs/pelab/modelica.
[12] Pnueli, M. Siegel, and O. Shtrichman. The Code Validation Tool (CVT)- Automatic Verification of a

compilation process. In Software Tools for Technology Transfer, Volume 2, 1999.
[13] Michael Tiller. Introduction to Physical Modeling with Modelica. 360 pp. Kluwer, Dec 2001.
[14] L. Zuck, A. Pnueli, Y.Fang, B. Goldberg, and Y.Hu. Translation and Run-Time Validation for Optimized

Code. In Proc. of Workshop on Run-Time Verification (RV), July 2002.

