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Company Overview

Overall

* 111 plants in 25 countries
» Over 300.000 employees
« $164 billion revenues

6.7 million vehicle units

R&A (Research)

« United States ==
* FRL - 900 employees

« Ford of Europe - 290 emp. | °..
* FFA -160 employees =

R&A location
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Causal vs. Acausal Modeling
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Matlab and Simuink are registered trademarks of The Mathworks Inc.
The Modelicalogo is property of the Modelica Associaion (www.modelica.org)
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Causal vs. Acausal Modeling

Acausal component model

« Acausal since for instance voltage is not the response of current
and vice versa

Conservation laws: sum of all currents / torques / heat flow /
etc... = zero in each connection point

connectors

A (across) »{ /
through through

<

VR Note sign convection
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Modelica - Fundamentals

/7‘)‘?

MODELICA www.modelica.org

« Modelica Association: a non-profit organization

« Multi-domain

Complex connector definitions

Expressive enough to handle domain-specific behavior
« Additional benefits

Non-proprietary

Causal AND acausal

Continuous and discrete

Object-oriented

Modeling by putting down text-book equations

Configuration management

Many free libraries already available (e.g. electrical, mechanical, multi-body,
thermal, vehicle dynamics, SPICEIlib, thermofluid, fuzzycontrol, etc...)

Erik Surewaard
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Modelica - Fundamentals

 (Connector definition

connector Pin “Electrical Pin”

Voltage v “Woltage at the pin”;

flow Current 1 “Woltage into the pin”;
end Pin;

« Component definition

model Resistor “Electrical Pin”
Pin p, n “two pins”; -
parameter Resistance R “Resistance”;
equation
p.i = (p.v-n.v) /R “Ohm’s Law”;
n.i + p.1 = 0;
end Pin;

Erik Surewaard
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Modelica - Fundamentals

 Different physical domains

connector Flange “Mechanical connection”
Position x “Location of the flange”;
flow Force F “Momentum entering at flange”;
end Flange;

connector Port “Hydraulic port”

Pressure P “Pressure at this port”;

flow MassFlowRate m_dot “Inward mass flow”;
end Port;

connector Thermal “Thermal node”
Temperature T “Temperature at this node”;
flow HeatFlowRate g “Inward heat flow”;
end Pin;

Erik Surewaard
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Modelica - Fundamentals

Mixing different domains

model EMF

parameter Real Kk;

Voltage v, 1i;

AngularVelocity w;

PositivePin pj;

NegativePin n;

Flange_b flange_b;
equation

V = p.vV — n.v;

p.1 + n.i1 = 0;

1 =p.1;

w = der (flange_b.phi);

k*w = v;

flange_b.tau = -k*i;
end EMF;
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Modelica - Dymola

Dymola is a commercial tool of Dynasim AB
Makes use of the Modelica language
Hardware-in-the-loop simulations (dSpace, xPC, RT-LAB)
Interface to Simulink (NO co-simulation but based on S-functions)
C-export (import models in other simulation packages e.g. AnSoft Simplorer etc.)
3D tool (for multibody modeling)
Pre- and postprocessing
Programming and ‘drag and drop’-modeling

Fiston
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= Dymola - Dynamic Modeling Laboratory - [Diagram]
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“What happens during engine cranking?”

« Cranking is defined by the motored state of the engine (no firing)
 Critical for the cranking device (startermotor) are:

(1) Engine break-away (static friction torque)

(2) Get the engine succesfully through the 1st/2"d compression

(3) Reach a motored speed from which the engine can start firing

UNFIRED
ENGINE:

CRANKING

=)
k]
k]
[
%5}
fuk]
=
=}
=
k]

Lower temperature means higher friction (lower tolerances and higher
viscosity) and therefore more difficulties with cranking the engine.
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ISG and Dual Storage System

Conventional situation

« Separate starter motor and alternator
Starter motor geared to engine flywheel
Alternator in FEAD (belt)

Proposal

» Alternator is enhanced (higher efficiency)
and given motoring capability

Integrated functionality of both starter
motor and alternator (ISG)

Connected in belt: belt-ISG

Erik Surewaard
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ISG and Dual Storage System

I CAUTION ! lternator

- e flywheel
Due to the ratio difference...

A different device inertia when lumped on
the crankshaft:
startermotor approx. 0.39 kg-m?
B-ISG approx. 0.0054 kg-m?

The B-ISG needs to deliver a much higher

torque than the startermotor. This is

especially difficult for Diesel engines (high

compression ratio): Dual Storage System. th starter

« (Connected in belt: belt-ISG
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ISG and Dual Storage System

Operation principle
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ISG and Dual Storage System

Operation principle
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ISG and Dual Storage System

Operation principle
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ISG and Dual Storage System

Operation principle
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ISG and Dual Storage System Prototype DCDC

Demonstrator vehicle converter

Absorbent Glass
Matt battery

Belt-driven ISG

Erik Surewaard
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Component Modeling - Battery
Model background

« Theory and parameterization:
Aachen University of Technology

« Based on impedance
spectroscopy measurements

« Battery is excitated with
AC currents

Different operating points
are taken: State of Charge
(SOC) and temperature

Usable for different battery
technologies: lead-acid
flooded / AGM
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Component Modeling - Battery
Model Background

-Im(Z) Increasing
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R

Component Modeling ... i
Model implementation g frequen

» |Impedance spectrum is
approximated with electric circuit
representation. Additional are:

* Open Circuit Voltage (OCV)

» Gassing reaction
(overcharging)

* Inductance can be omitted

« Cabling to/from battery more
dominant

Gassing

Erik Surewaard
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Component Modeling - Battery
Model Implementation Initial state of
charge (%)

2l x|

—Component
MName |BatteryMDdel1

7/
Comment | I/// &
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Fath ErikSurewaard Electrical Bayy £ Battentdodel
Comment
1/
y/4
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_— R
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» Hoppecke 36V AGM Replaceable models:

Z. ., and gassing
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Component Modeling - Supercapacitor
Model Background

Theory and parameterization:
Aachen University of Technology

Based on impedance spectroscopy
measurements

« Less complex as batteries

Different implementation forms:
» RC series / RC ladder

Parameterized as function of
« Temperature
» \oltage

. . . Erik Surewaard
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Component Modeling - Supercapacitor

Model Implementation

node
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MName |Super0apacit

Carmment I

/
/

[/
//

—Model
Path ErikSurewaard rical. SuperCa, or.SuperCapacitorPack
Comment
1/

Tix

Number of RC-
ciruits

L
u

—Farameters

] /A
MNumberCells / 7
InitislCellValtage [
numberBC 3
Parameters N j 3
SuperCapacitorCell j »

Cell model (series or

connect (RpoT

end if;

end for;

parallel representation)

Cancel |

Parameters:
Montena 1400F
Montena 2600F
NESS 5000F

WZZZ® Research & Advanced Engineering

D N, Rpore[i+l].p);

esurewal@ford.com



Component Modeling - Engine
Model Implementation

« Based on models developed by John Batteh, Michael Tiller, Charles
Newman and Paul Bowles (all Ford Motor Company).

Literature:
Batteh, J., Tiller, M. and Newman, C., “Simulation of Engine Systems in
Modelica”, pp. 139-148, 34 Modelica Conference, 2003

Bowles, P. and Batteh, J., “A Transient Multi-Cylinder Engine Model
using Modelica”, SAE paper 2003-01-3127, 2003
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Component Modeling - Engine
Model Implementation

Valvetrain Model Engine Head
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Component Modeling - Engine

Model Implementation

Motored Cylinder Model
A
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Component Modeling - Engine Losses
Model Implementation

Based on: Shayler, P., Leong, D.K.W. and Murphy, M., “Friction
Teardown Data from Motored Engine Tests on Light Duty Automotive
Diesel Engines at Low Temperatures and Speeds”, ASME paper,
ICEF2003-745, 2003

Correction of the “Patton, Nitschke, Heywood”-engine losses model to
make it suitable for low speeds and low temperatures

Separate functions for losses of (i) crankshaft, (ii) piston ring assembly,
(iii) valvetrain and (iv) auxiliary components
Function have fitting parameters to fit them to measured engine data

Shayler-paper describes loss data of a 1.8L Ford Diesel engine and the
fitting parameters for low enginespeeds and low temperature.

Erik Surewaard
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Component Modeling - Engine Losses
Model Implementation

Crankshaft

Piston ring
assembly

/
% Valvetrain

imil- | Auxiliaries: oilpump

P

- g e
Auxiliaries: rest
Oildata for oilmodel
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Cranking Simulation Model

@ZZZ® Research & Advanced Engineering
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Controller

MOSFET switch

Current drain

Environment

DCDC converter

Battery (12V,70Ah,flooded)
Supercapacitor (9x4000F,2.7V)
Throttle

Cable resistance

ISG

. Intake manifold

. Temperature input

. Engine head (1.8L Diesel)

. Engine losses (1.8L Diesel)
. Flywheel

. Front End Accessory Drive
. Chain drive

. Engine Block (1.8L Diesel)
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Cranking Simulation Model

Compilation of Modelica model to Simulink:
either by (i) C-function export or (ii) Simulink native S-function

In either case NO co-simulation! Only Simulink integration algorithms
are used to solve the system in that case!

System Layout
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Simulation Results

14V
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Simulation Results

Initial supercap voltage of 18V,
temperature = - 30°C !!!

Influence of add. inertia and initial
crankangle

ENERGY ENERGY

Engine cranks alwayS k- o T % ) F STORAGE STORAGE
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Simulation Results

12V flooded 70 Ah battery,
temperature = - 30°C !!!
Initial battery SOC = 70% !

Not always succesfull: add. inertia
needed! But no SCAP or DCDC!!!
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Simulation Results

12V flooded 70 Ah battery,
temperature = - 30°C !!!
Initial battery SOC = 70% !

Not always succesfull: add. inertia
needed! But no SCAP or DCDC!!!
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Summary

* Modelica is a great tool for both (a)causal modeling! It can not only be used as a
standalone tool but also complementary with Simulink! This will have great benefits
compared with a ‘Simulink only’ modeling environment.

There is no need to use a Dual Storage System (with a supercapacitor, DCDC
converter and a battery) to guarantee succesfull cranking a 1.8L Diesel engine with a
belt-driven ISG at —30°C!

By using a small additional inertial mass and initial crankangle positioning
next to a conventional powernet (12V flooded battery), succesfull cranking can 1.8L
Diesel engine with a belt-driven ISG at —30°C be guaranteed! And the conventional
startermotor can be omitted in this case!
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