
3DSHU�SUHVHQWHG�DW�WKH�0RGHOLFD�:RUNVKRS�������2FW�����������������/XQG��6ZHGHQ�

$OO�SDSHUV�RI�WKLV�ZRUNVKRS�FDQ�EH�GRZQORDGHG�IURP
KWWS���ZZZ�0RGHOLFD�RUJ�PRGHOLFD�����SURFHHGLQJV�KWPO

:RUNVKRS�3URJUDP�&RPPLWWHH�
�� 3HWHU�)ULW]VRQ��3(/$%��'HSDUWPHQW�RI�&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFH��/LQN|SLQJ

8QLYHUVLW\��6ZHGHQ��FKDLUPDQ�RI�WKH�SURJUDP�FRPPLWWHH��
�� 0DUWLQ�2WWHU��*HUPDQ�$HURVSDFH�&HQWHU��,QVWLWXWH�RI�5RERWLFV�DQG�0HFKDWURQLFV�

2EHUSIDIIHQKRIHQ��*HUPDQ\�
�� +LOGLQJ�(OPTYLVW��'\QDVLP�$%��/XQG��6ZHGHQ�
�� +XEHUWXV�7XPPHVFKHLW��'HSDUWPHQW�RI�$XWRPDWLF�&RQWURO��/XQG�8QLYHUVLW\��6ZHGHQ�

:RUNVKRS�2UJDQL]LQJ�&RPPLWWHH�
�� +XEHUWXV�7XPPHVFKHLW��'HSDUWPHQW�RI�$XWRPDWLF�&RQWURO��/XQG�8QLYHUVLW\��6ZHGHQ�
�� 9DGLP�(QJHOVRQ��'HSDUWPHQW�RI�&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFH��/LQN|SLQJ

8QLYHUVLW\��6ZHGHQ�

+��7XPPHVFKHLW��-��(ERUQ��)�-��:DJQHU�
'HYHORSPHQW�RI�D�0RGHOLFD�%DVH�/LEUDU\�IRU
0RGHOLQJ�RI�7KHUPR�+\GUDXOLF�6\VWHPV�
0RGHOLFD�:RUNVKRS������3URFHHGLQJV��SS��������

Development of a Modelica Base Library
for Modeling of Thermo-Hydraulic Systems

Hubertus Tummescheit†, Jonas Eborn† and Falko Jens Wagner‡

†Department of Automatic Control
Lund University, Sweden

{hubertus,jonas}@control.lth.se

‡Department of Energy Engineering
Technical University of Denmark

falko@et.dtu.dk

Abstract

This paper presents current results of an ongo-
ing project to develop a Modelica base library
for thermo-hydraulic systems.

There are many different aspects to the devel-
opment of such a library, from the basic physics
of fluids and heat to the structuring of model
classes in the library and the actual implemen-
tation in the Modelica language. The structur-
ing should define interfaces and partial classes
that facilitate reuse to make the library gen-
eral and easy to use. Different choices of me-
dia, use of different state variables as well as
different levels of complexity in modeling is an-
ticipated in the library structure.

The basic entity in the library is the model of
a control volume. It is formed by multiple in-
heritance from three parts; the partial ther-
mal model, the partial hydraulic model and
the medium model. Flexibility is obtained by
parameterizing this control volume. It can be
either lumped or discretized in n sections. The
three parts are also parameterized with class
parameters. This means for example that you
can easily exchange medium in a control vol-
ume.

The aim of the project is to develop a model
library that contains all basic components
needed for thermo-hydraulic systems. Besides
control volumes and medium models this also

means models for simple machinery, e. g.,
pumps, valves and heat exchangers. Code ex-
amples are given in the paper.

1. Introduction

With the modeling language ModelicaTM, (3, 5),
it is possible to create model libraries for dif-
ferent application areas. In the current Model-
ica base library distribution there are libraries
for multi-body systems, electrical systems and
block diagrams. To further expand the range
of applications for Modelica a base library for
modeling and simulation of thermo-hydraulic
systems is also needed. A thermo-hydraulic
base library should cover the basic physics of
flows of fluids and heat. It also needs to cover
models for properties of fluids like water and
refrigerants. The library would then be useful
in several application areas, e. g., power gener-
ation plants, district heating and refrigeration
systems.

The general goal of the library is to provide a
framework and basic building blocks for mod-
eling thermo-hydraulic systems in Modelica.
For obvious reasons it is impossible to provide
components for every application, so one of the
main goals is extensibility. For the same rea-
son, much more emphasis will be put on the
basic parts of the library, such as medium mod-

els and essential control volumes, than on an
exhaustive application library. The focus of the
library is on models of homogeneous one- and
two-phase flows, non-homogeneous and multi-
phase flows are not taken into account yet. It
is necessary to support bidirectional flow, be-
cause flow directions can change during simu-
lation or are not known initially in networks.

To make the library general and extensible,
the structuring must accommodate for exam-
ple different choices of media, single/multi-
component flow and one- or two-phase flows.
For numerical efficiency reasons it may also
be interesting to use different pairs of state
variables, e. g., {p, h}, {p, T} or {ρ , T}. This is
anticipated in the library structure. The ba-
sic entity in the library, the control volume,
is built up by multiple inheritance from three
parts. The partial thermal model contain dy-
namic state equations derived from conserva-
tion laws of mass and energy. The partial hy-
draulic model contain the mass flow equation
that is formed from either a static or a dynamic
momentum balance. The third part in the con-
trol volume is the medium model that calls the
appropriate medium property functions.

The models in the library are designed for sys-
tem level simulation, not for detailed simula-
tion of flows, which are usually done in CFD
packages. The models are thus discretized in
one dimension or even lumped parameter ap-
proximations.

It has to be emphasized that especially in the
area of fluid flow different assumptions about
the importance of terms in the general equa-
tions can lead to models which are very dif-
ferent mathematically. The library offers only
a choice of assumptions, which nonetheless
should cover a broad range of applications.

Some of the ideas for the thermo-hydraulic
base library have previously been presented
in (2, 8, 9, 10) as well as object-oriented
component based modeling has been presented
in (11, 12).

2. Basic ideas

The basic design principles of the library are:

• one unified library both for lumped and
distributed parameter models,

• both bi- and unidirectional flows are sup-
ported,

• separation of the medium submodels,
which can be selected through class pa-
rameters,

• assumptions (e. g., gravity influence yes
or no) can be selected by the user from
the user interface.

The first guideline puts a constraint on the dis-
cretization method used in the distributed pa-
rameter models: only the “staggered grid” or
finite volume method (see Figure 1), where all
fluxes are calculated on the border of a con-
trol volume and the intensive quantities are
calculated in the center of a control volume,
reduces to a useful model in the lumped pa-
rameter case. The finite volume method (6)
is common for systems modeling with one-
dimensional discretizations, but has the draw-
back that spatial derivatives are only first or-
der accurate.

The ability to handle reversing flows requires
extra information in the connectors between
models. Transported properties, e. g., enthalpy
and composition, would need to be included
twice, upstream and downstream. This has
instead been solved by including convective
heat flow and component mass flows in the
connectors. Thus the information needed for
the balance equations (see Section 3.1) is
contained in variables depending on the flow
direction, i. e., mass flow and convective heat

momentum

mass and energy

ip
h

i+1

h
pm

i+1
m

i-1

q.
.
.

hi

i-1

.

outletinlet

p
q

i i+1

c,i c,i+1

Fig. 1 Discretized Flow Grid

flow. In contrast the transported properties
in the connector are always taken from the
closest control volume.

The connector for single medium flow without
dynamic momentum balance then contains the
variables:

{p, h, ṁ, q̇c, ρ , T , s, κ }
where ṁ is mass flow, q̇c is convective heat flow
and κ is the ratio of specific heats.

3. Control volume equations

The basic thermo-dynamic equations govern-
ing a fluid system are partial differential equa-
tions. In our discretized setting these are inte-
grated over a fixed control volume to obtain
ordinary differential equations.

For a complete model description of a control
volume, three parts are needed:

• Balance equations (mass, energy and mo-
mentum)

• Constitutive equations (pressure drop,
heat flow)

• Medium property routines

3.1 Balance equations

With the staggered grid approximation de-
scribed in Section 2 the balance equations are
split up. The control volume model holds the
equations for total mass and internal energy.
If there are n flow connections to other control
volumes and l heat transfer areas these are
written as (positive flow into the CV):

d
dt

(
M

U

)
=
(∑n

i ṁi∑n
i q̇conv,i+

∑l
j q̇transf er, j

)
(3.1)

Between the control volumes there must be
a flow model, which holds the momentum
balance. Currently two types of flow models are
implemented in the library:

• Stationary pressure drop model
• Dynamic momentum balance for pipes

with constant cross-sectional area.

Static flow models are much used in system
simulation where the thermal behavior is the
main concern. The dynamic momentum bal-
ance is useful for pressure wave propagation
studies in a system which is mainly modeled
with distributed parameter models. Keep in
mind that it is possible to add other types of
flow models to the existing structure, e. g., a
momentum balance for variable cross-sectional
area along the flow channel.

The dynamic momentum balance is used to
calculate the mass flow rate,

∆z
dṁ
dt

= dI
dt
= İ1 − İ2 + (p1 − p2)A− Fwall

where I = ṁ∆z is the momentum and the fric-
tional force, Fwall, is given by some constitutive
equation.

This alternating structure of one control vol-
ume and one flow model, see Figure 2, guaran-
tees that the simulation problem is well spec-
ified and that there are no unnecessary alge-
braic loops. The models can be used in either
lumped, compound models or distributed, vec-
torized models, giving the user a possibility to
change the complexity of the system model.

3.2 Constitutive equations

The constitutive equations are empirical rela-
tions for heat flow, pressure drop and charac-
teristics of machinery. They are typically for-
mulated as characteristic equations for indi-
vidual components, often algebraic equations
but they could also be formulated as differ-
ential equations. For example in a pump,
there exist many different relationships be-
tween mass flow rate, pressure increase, an-
gular speed and consumed power. The fluid
flow literature also holds many different ex-
pressions for the relationship between flow and
pressure drop.

Atomic model types

ControlVolume FlowModel

Compound or Discretized Models

Fig. 2 Atomic, Compound and Discretized Models

These constitutive equations should be re-
placeable, in order to have a general model for
a component that can be used in different sit-
uations by exchanging the model for the char-
acteristics, see Section 4.1 for an example.

3.3 Medium property routines

For simulation of thermo-hydraulic systems,
it is necessary to have accurate models for
the thermodynamic properties of the fluid that
is flowing in the system. For the purpose
of dynamic system simulation, the following
criteria have to be met:

• Accuracy
• Speed
• Robustness

In some areas there exist recommended for-
mulations (IAPWS/IF97 for water (13)) or de-
facto standards (NIST-REFPROP routines for

refrigerants, (4)) that have to be taken into ac-
count. External function call interfaces in Mod-
elica make it possible to use these standards
directly. Available routines and most medium
property models in the literature (see, e. g.,
(7)) are designed with stationary calculations
in mind, therefore they have to be extended to
include some needed extra derivatives for dy-
namic calculations.

In dynamic simulations the speed of the
medium property functions is very important
for the performance of the simulations. When-
ever possible the medium properties should be
non-iterative, which is the case when they are
explicit in the dynamic states. This is easy to
achieve for the steam tables, where the indus-
trial standard formulation, IAPWS-IF97, has
explicit routines for a variety of input vari-
ables (pressure and temperature, enthalpy or
entropy). The complete industrial steam tables
are implemented in the library.

For other properties, e.g. R134a, such inverse
formulations are not available. However, it is
still possible to save a huge amount of compu-
tation time by precomputing the phase bound-
aries off-line and use an auxiliary equation for
it. These vapor-liquid equilibrium calculations
(VLE) for cubic and other medium models have
to be performed iteratively and numerically,
either by using Maxwell’s criterium or calcu-
lating that Gibbs’ free enthalpy is equal for
both phases. The numerical calculations are
too inefficient to be performed at each time
step during dynamic simulation. In order to
calculate medium properties inside the two-
phase region, it is sufficient to know the prop-
erties on the phase boundaries and interpolate
with the vapor mass fraction x. An efficient
implementation of medium properties for pure
components requires that VLE are calculated
before the simulation and that VLE data is
approximated either with a suitable function
or with smooth spline interpolation. For the
above listed media, high accuracy approxima-
tions are either available in the standard for-
mulation (e. g., partially for water and CO2) or
provided in the base library.

The phase boundaries require special atten-
tion: the derivatives of most properties are
discontinuous across the phase transition and
therefore this has to be implemented as a dis-
crete change which restarts the integration
routine if a control volume changes its phase.
This is a robustness requirement for most nor-
mal cases, but it can lead to unexpected “slid-
ing mode” behavior, if e. g., heat transfer co-
efficients also change discontinuously at the
phase boundary.

Currently we have implemented high-accuracy
medium models for the whole fluid region
for water, carbon dioxide and R134a. More
refrigerant properties will be available soon.
It is relatively easy to add your own medium
model to the existing ones and it is even
simpler to exchange the medium model in
existing models against another one.

Summarizing this means that the medium
properties that are provided with this library:

• are adapted for use with dynamic simu-
lations.

• use non-iterative, auxiliary equations for
the calculation of VLE.

• are highly accurate for water, CO2 and
R134a.

• include ideal gas properties for a wide
variety of gases.

3.4 State variable transformations

There is an interdependence between the
choice of the medium model and the selection
of state variables. Many details of the medium
model depend on the choice of the state equa-
tions. Most medium models are available for
all of the choices of state variables in the li-
brary, but the numerical efficiency can be very
different. The common choice {p, h} is very ef-
ficient for water in the two-phase region where
the medium model is explicit in these states,
while it is slower at super-critical pressures,
since the medium model is explicit in {ρ , T}
and thus iterations are needed.

The balance equations for mass and internal
energy (3.1) can be rewritten into differential
equations for ρ and u. A differentiation of
M = ρ V and U = uM for a constant volume
yields: 

V
dρ
dt

= dM
dt

M
du
dt

= dU
dt

− u
dM
dt

(3.2)

These primary equations are then transformed
into secondary forms to give differential equa-
tions in the states suitable with the medium
model. For example, if pressure and enthalpy
are chosen as states,

d
dt

(
ρ
u

)
=


Vρ
V p

∣∣∣∣
h

Vρ
Vh

∣∣∣∣
p

Vu
V p

∣∣∣∣
h

Vu
Vh

∣∣∣∣
p


︸ ︷︷ ︸

Jacobian, J

d
dt

(
p

h

)

(3.3)
To obtain differential equations for pressure
and enthalpy eq. (3.3) must be solved for the
derivative of (p, h)

d
dt

(
p

h

)
= J−1 d

dt

(
ρ
u

)
(3.4)

The partial derivatives of ρ are calculated in
the medium model, while the partial deriva-
tives of u can be reduced to those of ρ . From
u = h− p/ρ we obtain

Vu
Vh

∣∣∣∣
p
= 1+ p

ρ 2
Vρ
Vh

∣∣∣∣
p

Vu
V p

∣∣∣∣
h
= −1

ρ
+ p

ρ 2
Vρ
V p

∣∣∣∣
h

This gives the inverse Jacobian as

J−1 = a2

ρ


ρ + p

ρ
Vρ
Vh

∣∣∣∣
p
−ρ Vρ

Vh

∣∣∣∣
p

1− p
ρ
Vρ
V p

∣∣∣∣
h

ρ
Vρ
V p

∣∣∣∣
h


where a is the velocity of sound. By combining
(3.4) and (3.2), multiplying with M = ρ V and

Fig. 3 Basic Package Structure of the ThermoFlow Library

noting that h = u+ p/ρ we obtain


V

ρ
a2

dp
dt

=
(

ρ + h
Vρ
Vh

∣∣∣∣
p

)
dM
dt

− Vρ
Vh

∣∣∣∣
p

dU
dt

V
ρ
a2

dh
dt

=
(

1− h
Vρ
V p

∣∣∣∣
h

)
dM
dt

+ Vρ
V p

∣∣∣∣
h

dU
dt

which are the differential equations for p, h
used in ThermoFlow. Similar expressions has
also been derived for other pairs of state
variables, for example {p, T}, {p, s} or {ρ , T}.

3.5 Library structure

The main idea of the ThermoFlow library
is to provide an extensible basis for a ro-
bust thermo-hydraulic component library. The
structure of the library is divided into three
parts, see Figure 3.

Base classes are the central part of models,
the basic physical equations for a con-
trol volume and the connector types for
flowing media; either single or multi-
component, with a static or dynamic flow
description.

Partial components contain common ex-
pressions for component models, this
allows code sharing and simplifies main-
tenance.

Components are the user part of the library,
models that can be used to build a system
for simulation.

4. Object-oriented modeling

Modelica is an object-oriented modeling lan-
guage, designed for modeling physical systems.
Many of the object-oriented features defined by
(1) are found in the Modelica language:

• (Multiple) Inheritance
• Class parameterization
• Generalization

The concept of inheritance lets one object in-
herit methods and properties (i. e., the behav-
ior) from other objects. This allows code shar-
ing and calls for applying generalization.

Class parameterization gives the possibility to
implement generic classes that can be used
for specialization later. With this, a parameter
can be passed to a class during instantiation,
giving the class the desired behavior, see Sec-
tion 4.1.

In a way, the concept of object-orientation,
in relation to component based modeling, in-
spires the user to generalize the system he/she
is about to model. This can lead to a better
understanding of the system being modeled.
Through generalization, the user is forced to
decompose the system into subproblems. Each
subproblem can then be modeled and imple-
mented in meaningful classes. These classes
tend to represent the essential parts (i. e.,
subproblems) of the system, and aggregation
(through multiple inheritance) collects these
parts again to form a complete model of the
system.

4.1 Object-oriented constructs in Modelica

In the following subsections we will give ex-
amples of how the object-oriented features de-
scribed above are handled in Modelica.

Aggregation through multiple inheritance is
used to build up basic models. A control volume
formulation of a pipe can be decomposed in the
following individual subproblems:

• Balance equations
• Flow model
• An empty shell with connectors

These subproblems are modeled individually
in the following classes:
partial model Balances

... some equations;
end Balances;

partial model FlowModel
... some equations;

end FlowModel;

partial model TwoPort
FlowConnector a,b;

end TwoPort;

and aggregation of these base classes leads to
a general description of a control volume, e. g.,
a pipe

model Pipe
extends TwoPort;
extends Balances;
extends FlowModel;

end Pipe;

By the Modelica keyword extends the new
model Pipe inherits all attributes of the base
classes. Common parts of the base classes are
only inherited once.

Class parameterization is used to add re-
placeable objects to a class. This object can
then be replaced by passing a specific class as
a parameter during instantiation.

As an example we take the FlowModel from
above. Any flow model needs some sort of
pressure loss model. In order to make the class

FlowModel as general as possible, we only
specify a generic flow model during base class
implementation.

partial model FlowModel
replaceable class

Ploss = GenericPressureLossModel;
extends Ploss;

end FlowModel;

The GenericPressureLossModel does not have
to contain anything, but for practical reasons
(and as a base class for inheritance in special-
ized pressure loss models) it contains the most
necessary variables.

During specialization in later classes, this
generic pressure loss model is then replaced
by a more meaningful model, containing not
only the variables, but also some equations for
calculating the actual pressure loss.

model SpecialPipe
extends TwoPort;
extends Balances;
extends FlowModel(redeclare

Ploss = SpecialPressureLossModel);
end SpecialPipe;

Generalization is the key element in object-
orientation. It is closely related to the notion
of classes. A class describes some general be-
havior of objects that have some properties in
common. Exactly these common properties call
for a general description - a class. The purpose
is obviously code sharing, but an often quite
appreciated side effect of this is a better un-
derstanding of the problem being modeled.

Generalization is in this library used to specify
behavior of components, which for some reason
is common to all components of that particular
type. For flow equipment a general feature is
the convective heat transport, which can be
expressed as

partial model FlowModelBase
extends FlowVariables;
extends TwoPort;

equation

a.q_conv = if a_upstr
then mdot*a.h
else mdot*b.h;

end FlowModelBase;

where the specification of the flow direction,
a_upstr , and the mass flow, mdot , is postponed
until later.

Since the calculation of the mass flow depends
on the type of flow equipment used, this ad-
ditional information has to be provided in a
specialized class. For example a valve with a
linear expression for pressure losses

model LinearValve
extends FlowModelBase;

equation
a_upstr = a.p > b.p;
mdot = mdot0/dp0*(a.p-b.p);

end LinearValve;

where the mass flow depends on the param-
eters mdot0, dp0 and the pressure difference
over the valve.

4.2 Summary

Some examples have shown how important
object-oriented constructs are implemented in
the Modelica language. These constructs are
used throughout the library structure (see
Section 3.5) to facilitate wide spread use of
generalization and code sharing and make the
library more flexible.

5. Component models

As mentioned earlier, the aim of this project
was not extensive component modeling, but to
create a base structure for future development
of component models. For demonstration pur-
poses a few component models have been im-
plemented. This section presents some of them.

5.1 Pumps

For modeling a pump, e. g., feed water pump,
it is necessary to have a relationship between

the volume flow rate, the pressure increase and
the speed of the pump. This is called the pump
characteristic or pump profile. One example of
an expression for this relationship is

∆pn = R1nn + 2R2nnVn − R3 eVneVn (5.1)

here, pn, nn and Vn are the normalized pres-
sure p, speed of the pump n and volume flow
rate V . The design point is (pn, nn, Vn) =
(1, 1, 1) and represents the pump in normal op-
eration.

In terms of the ThermoFlow library structure,
the pump can be modeled by using a lumped
control volume and a lumped flow model ac-
cording to Figure 2. The lumped flow model
then represents the pump characteristic (5.1),
whereas the lumped control volume in front
of the pump is used according to the library
structure. This control volume represents the
volume of the pump, which should not be ne-
glected.

5.2 Heat exchangers

A heat exchanger is modeled using base com-
ponents from the library. Basically, it consists
of two pipes connected by a heat conducting
wall. Figure 4 shows the principle of modeling
a heat exchanger and a sample system.

Heat exchangers can either be lumped or
distributed. In the distributed case the heat
transfer model uses a simple temperature dif-
ference between the individual elements of the
distributed pipes. The lumped case is either
based on this simple model or uses the loga-
rithmic mean temperature. Furthermore, tube
and shell heat exchangers are implemented us-
ing a circular wall geometry with an inner and
an outer pipe.

5.3 Turbines

Analogous to pumps, a turbine is modeled
as a lumped control volume with a following
lumped flow model. The flow model introduces
the turbine characteristic or turbine profile.

Fig. 4 Example system using a heat exchanger
consisting of two pipes, a wall and 4 connectors

Currently two models are implemented in the
base library. One model is according to Stodola,
the other after Linnecken. The Stodola model
is an idealized turbine with an infinite number
of stages. The Linnecken model considers the
maximum mass flow rate through the turbine
stage and can be parameterized according to
the type of the turbine and the number of
stages.

5.4 Reservoirs

Some thermo-hydraulic systems are closed
systems, e. g., power plants or refrigeration
systems. But for general modeling purposes,

sources and sinks are required. These are
used to add "boundary" conditions to other
components or systems of components. Typi-
cal sources are temperature, pressure or heat
sources. They can either be fixed or depend on
some input signal. The sample system in Fig-
ure 4 contains 2 controlled sources and 2 sinks.

For flow sources, the model consists of a con-
trol volume, giving thermodynamic properties
to the supplied flow, and a flow model at the
outlet of the source. The control volume is
a so called "infinite reservoir", i. e., the ther-
modynamic conditions do not vary over time
as mass leaves the control volume. The flow
model is used to make the sources more real-
istic (and numerically less stiff), e. g., by mod-
eling a pressure drop over the outlet.

Heat sources can either be fixed in tempera-
ture or fixed in heat flux, i. e., they can also be
controlled by an external signal. A sink is usu-
ally just a fixed pressure control volume, and
the assumption about the "infinite reservoir"
holds as well.

6. Examples

A system with a parallel flow plate heat ex-
changer (see Figure 4) is simulated with a
temperature increase on the hot side, followed
by a pressure increase on the cold side with
according mass flow rate increase. The result
is shown in Figure 5.

What can be seen from the results is that an in-
crease in the temperature on the hot side also
increases the temperature on the cold side.
Since this is a parallel flow heat exchanger, the
temperature difference between the hot and
the cold side also increases. The following flow
increase on the cold side causes the tempera-
ture difference between the hot and the cold
side to increase, and the temperature on the
hot side drops accordingly due to the increase
in the heat flow to the cold side.

Using the components implemented in the
library, it is possible to build also more complex
systems, e. g., power plants, see Figure 6.

Fig. 5 Resulting temperatures from simulating the
system in Figure 4

Fig. 6 Example system

7. Conclusion

In the design of the base library, the concepts
of object-oriented modeling have been used
to make the library flexible and easy to use.
The generalization splits a complex problem
into subproblems, which are modeled individu-
ally (e. g., balance equations, momentum equa-
tions, heat transfer) and aggregated to build
component models. This separation simplifies
library maintenance and makes building many
model variants easier.

The Modelica language offers standard object-
oriented features, such as composition and in-
heritance as well as more advanced features
like class parameterization. Using these, ba-
sic constraints from thermo-hydraulic model-
ing are inherent in the library models, but
they can still be made flexible and extensible
through specialization and class parameteri-
zation. Although the decomposition of models
sometimes makes it difficult to get an overview

of what one model contains, the advantages
with a more maintainable structure are big-
ger.

Some further conclusions:

• Ease of use: Taking the user perspective
early in the library design process is
important for the final result.

• Nomenclature of research field: Use
of known symbols and nomenclature is
very important for the usefulness of the
library.

• No overkill: There is a risk of over-
structuring using object-oriented meth-
ods.

We have also seen, that it is possible to model
complex systems with the components imple-
mented in the library. The modeling and simu-
lation tool DymolaTM has been used in the de-
sign of the library. Dymola has a graphical user
interface that allows drag and drop model edit-
ing, making the modeling process easier.

Please note, because of the structure of the
library only verification of the base models is
possible. Real model validation is only possible
in a system context, which has been done for
a few examples. Also, the library is meant
as a basis for further development, the basic
control volume and flow models are complete,
but there is a need for many more components
for different application areas.

7.1 Further information

For the interested reader, further information
about the ThermoFlow project can be obtained
at www.control.lth.se/˜ hubertus/ThermoFlow
or by contacting the authors.

8. References

[1] M. Abadi and L. Cardelli. A Theory of
Objects. Springer, New York, Berlin, 1996.

[2] J. Eborn, H. Tummescheit, and K. J.
Åström. “Physical system modeling with

Modelica.” In 14th World Congress of
IFAC, vol. N. IFAC, July 1999.

[3] H. Elmqvist, S. E. Mattsson, and M. Otter.
“Modelica - a Language for Physical Sys-
tem Modeling, Visualization and Interac-
tion.” In Proceedings of Symposium on
Computer-Aided Control System Design,
CACSD’99, Hawaii, August 1999. IEEE.
Plenary paper.

[4] M. O. McLinden, S. A. Klein, E. W.
Lemmon, and A. P. Peskin. NIST Ther-
modynamic and Transport Properties of
Refrigerants and Refrigerant Mixtures—
REFPROP. U. S. Department of Com-
merce, version 6.0 edition, January 1998.

[5] Modelica Design Group. “The Model-
ica Language Specification.” Version 1.3,
http://www.modelica.org/, 1999.

[6] S. V. Patankar. Numerical Heat Transfer
and Fluid Flow. Hemisphere Publishing
Corporation, 1980.

[7] R. C. Reid, J. M. Prausnitz, and B. E. Pol-
ing. The Properties of Gases and Liquids.
Mc Graw Hill, Boston, Massachusetts,
1987.

[8] H. Tummescheit. “Object-oriented model-
ing of physical systems, part 11.” Automa-
tisierungstechnik, 48:2, 2000. In german.

[9] H. Tummescheit. “Object-oriented model-
ing of physical systems, part 12.” Automa-
tisierungstechnik, 48:4, 2000. In german.

[10] H. Tummescheit and J. Eborn. “Design
of a thermo-hydraulic model library in
Modelica.” In Zobel and Moeller, Eds.,
Proc. of the 12th European Simulation
Multiconference, ESM’98, pp. 132–136,
Manchester, UK, June 1998. SCS.

[11] F. J. Wagner and M. Z. Poulsen. “C++
toolbox for object oriented modeling and
dynamic simulation of physical systems.”
SIMS Conference, Linkoeping, 1999.

[12] F. J. Wagner, M. Z. Poulsen, P. G. Thom-
sen, and N. Houbaok. “Object oriented

toolbox for modeling and simulation of dy-
namical systems.” SIAM Workshop, 1998.

[13] W. Wagner and A. Kruse. Properties of
water and steam. Springer, Berlin, 1998.

