
3DSHU�SUHVHQWHG�DW�WKH�0RGHOLFD�:RUNVKRS�������2FW�����������������/XQG��6ZHGHQ�

$OO�SDSHUV�RI�WKLV�ZRUNVKRS�FDQ�EH�GRZQORDGHG�IURP
KWWS���ZZZ�0RGHOLFD�RUJ�PRGHOLFD�����SURFHHGLQJV�KWPO

:RUNVKRS�3URJUDP�&RPPLWWHH�
�� 3HWHU�)ULW]VRQ��3(/$%��'HSDUWPHQW�RI�&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFH��/LQN|SLQJ

8QLYHUVLW\��6ZHGHQ��FKDLUPDQ�RI�WKH�SURJUDP�FRPPLWWHH��
�� 0DUWLQ�2WWHU��*HUPDQ�$HURVSDFH�&HQWHU��,QVWLWXWH�RI�5RERWLFV�DQG�0HFKDWURQLFV�

2EHUSIDIIHQKRIHQ��*HUPDQ\�
�� +LOGLQJ�(OPTYLVW��'\QDVLP�$%��/XQG��6ZHGHQ�
�� +XEHUWXV�7XPPHVFKHLW��'HSDUWPHQW�RI�$XWRPDWLF�&RQWURO��/XQG�8QLYHUVLW\��6ZHGHQ�

:RUNVKRS�2UJDQL]LQJ�&RPPLWWHH�
�� +XEHUWXV�7XPPHVFKHLW��'HSDUWPHQW�RI�$XWRPDWLF�&RQWURO��/XQG�8QLYHUVLW\��6ZHGHQ�
�� 9DGLP�(QJHOVRQ��'HSDUWPHQW�RI�&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFH��/LQN|SLQJ

8QLYHUVLW\��6ZHGHQ�

0��7LOOHU�
0RGHOLFD�7KHUPDO�/LEUDU\�
0RGHOLFD�:RUNVKRS������3URFHHGLQJV��SS����������

Modelica Thermal Library

Michael Tiller
Modelica Association

October 13, 2000

Abstract

This paper presents a new library of thermal components to be incorporated into the Mod-
elica Standard Library. The goal for this package is to provide a reasonably simple set of basic
models and connectors that can be used as the basis for further development in the thermal
domain.

1 Introduction

The Modelica Standard Library is an excellent example of how a common set of connector
definitions, interfaces and basic models can be used not just as building blocks for complex
models but also as a mechanism for collaboration between model developers and users. The
key to the Modelica Standard Library’s success is the fact common connector definitions are,
for the most part, sufficient to allow models developed by different people or organizations to
be used together. A great deal has been accomplished using the connector definitions in the
current version1 of the Modelica Standard Library.

However, the current version of the Modelica Standard Library does not provide the ba-
sic set of objects needed to allow collaboration in some common engineering domains. In
particular, connector definitions for both thermal and hydraulic systems have not yet been
incorporated into the Modelica Standard Library. This is not to say these domains have
been overlooked. An extensive library of Modelica models is being developed for complex
thermo-hydraulic systems[7] and a commercial Modelica library already exists for hydraulic
components[3]. Nevertheless, the basic connector definitions required for simple thermal and
hydraulic systems are not yet part of the Modelica Standard Library.

The focus of the library is a connector definition for thermal systems. Such a connector
needs to include temperature as an across variable and power as a through variable. Several
names were considered for this library. A similar library, called the HeatFlow library, was
developed as part of the ModelicaAdditions library[2]. The name HeatFlow did not
convey the scope of this new library very well. Another consideration was HeatTransfer
which seemed very appropriate. However, the name HeatTransfer implies the scope of
the library is limited to the three modes of heat transfer: conduction, convection and radiation.
This seemed too constraining. The name Thermalwas decided upon because it captured the
essence of the library and left room for many models beyond the scope of simple heat transfer
(see Section 6).

2 Interfaces

2.1 Connector definition

The connector definition is the foundation of any library in Modelica. Care needs to be taken
when designing a library to make sure that the appropriate level of detail is present in a con-
nector. To little detail will limit the applicability of the connector while too much detail might
make the library overly complex for many purposes.

1The current version of the Modelica Standard Library is version 1.3.1

For the most part, the connector definition for the Thermal library was straightforward
to arrive at. As previously mentioned, the across variable at the connector (i.e., the non-flow
quantity) is temperature. The only real issue was what to make the through (or flow) quantity.
The choice was between a scalar representation for heat flow or a vector representation of
heat flow. The latter was decided upon because it does not increase the complexity much
(the Modelica.Blocks library is a precedent for such an approach) and it leaves open the
possibility to develop two and three dimensional components.

The one remaining issue was what to call the connector. The convention for the Modelica
Standard Library has been to name connectors after their physical counterparts. For example,
in the case of the rotational mechanics library the connector is called a flange. Unfortunately,
naming a thermal connector is difficult because there is no clear physical counterpart to name
it after. Instead, conventions in other computational disciplines were considered. For heat
transfer equations in multiple dimensions, the term node is often used[5, 6, 4]. Because of
this precedent, the name Node was settled on. After all this consideration, the following
connector definition was adopted:

connector Node "Temperature nexus"
package SIunits=Modelica.SIunits;
parameter Integer ndim=1 "Spatial dimensions";
SIunits.Temperature T(start=300);
flow SIunits.HeatFlowRate q[ndim];

end Node;

Note the fact that a start value is provided for the temperature. This is important since
the units are Kelvin and the default value is normally zero. The start attribute was changed
because very few practical applications in the thermal domain have temperatures near absolute
zero.

The Node definition does not include any graphical annotations. However, graphical
annotations are useful in diagrams for distinguishing different connectors. For this reason,
three additional connectors, with different graphical representations, are derived from Node.

2.2 Simple One-Dimensional Models

Because one-dimensional heat transfer is likely to be quite common, the following partial
model was developed:

partial model Element1D
Node_a a(final ndim=1);
Node_b b(final ndim=1);

protected
Modelica.SIunits.HeatFlowRate q "Flow from a->b";
Modelica.SIunits.Temperature dT "a.T-b.T";

equation
dT = a.T - b.T;
a.q[1] = q;
b.q[1] = -q;

end Element1D;

where dT is the temperature difference across the component and q is a scalar representing
heat flow through the component. By using this model, the fact that a.q and b.q are arrays
does not complicate the writing simple models.

3 Linear Components

A set of basic one-dimensional, linear models was developed to describe energy storage and
each of the three modes of heat transfer.

3.1 Capacitance

The constitutive equation for the thermal capacitance model is:

Vcpρ
dT
dt

� q (1)

where V is the volume, cp is the specific heat, ρ is the density, T is the uniform temperature
of the mass and q is the heat flow. This relationship can be expressed in Modelica as:

model Capacitance
parameter Modelica.SIunits.SpecificHeatCapacity cp(start=1.0);
parameter Modelica.SIunits.Density rho(start=1.0);
parameter Modelica.SIunits.Volume V(start=1.0);

Modelica.Thermal.Interfaces.Node_c n(final ndim=1);
equation
V*cp*rho*der(n.T) = n.q[1];

end Capacitance;

3.2 Conduction

The constitutive equation for conduction is:

q � Ak
dT
dx

(2)

where A is the area and k is the thermal conductivity. Since we do not have a convenient way
of expressing spatial derivatives in Modelica, the spatial derivative must be approximated as:

dT
dx

� ∆T
L

(3)

where ∆T is the temperature across the conducting element and L is the length of the conduct-
ing element. The Modelica code for this model can be written as follows:

model Conduction
extends Modelica.Thermal.Interfaces.Element1D;
parameter Modelica.SIunits.ThermalConductivity k(start=1.0);
parameter Modelica.SIunits.Length L(start=1.0);
parameter Modelica.SIunits.Area A(start=1.0);

equation
q = A*k*dT/L;

end Conduction;

3.3 Convection

The constitutive equation for convection is:

q � Ah∆T (4)

where h is the coefficient of heat transfer. This model is then expressed in Modelica as:

model Convection
extends Modelica.Thermal.Interfaces.Element1D;
package SI=Modelica.SIunits;
parameter SI.CoefficientOfHeatTransfer h(start=1.0);
parameter SI.Area A(start=1.0);

equation
q = A*h*dT;

end Convection;

3.4 Radiation

Finally, the model for black body radiation is based on the equation:

q � FσA
�
T 4

a � T 4
b � (5)

where F is the view factor and σ is the Stefan-Boltzmann constant. From this equation, we
construct the following model:

model BlackBodyRadiation
extends Modelica.Thermal.Interfaces.Element1D;
parameter Real F "View factor";
parameter Modelica.SIunits.Area A(start=1.0);

equation
q = F*Modelica.Constants.sigma*A*(a.Tˆ4 - b.Tˆ4);

end BlackBodyRadiation;

4 Boundary Conditions

Once we have the basic mechanisms for describing the flow of energy through a thermal
system, we require models to specific boundary conditions. The models in this package are
general enough to function for any number of spatial dimensions.

4.1 Prescribed Temperature

There are two types of prescribed temperature boundary conditions. One assumes the pre-
scribed temperature is a constant and is represented as:

model FixedTemperature
parameter Modelica.SIunits.Temperature T;
Interfaces.Node_c n;

equation
n.T = T;

end FixedTemperature;

The other type assumes that a temperature will be provided by a block from the Model-
ica.Blocks package. For this latter case the boundary condition is represented as:

model VariableTemperature
Modelica.Blocks.Interfaces.InPort T(final n=1);
Interfaces.Node_c n;

equation
n.T = T.signal[1];

end VariableTemperature;

4.2 Prescribed Heat Flux

The other simple boundary condition provided is a prescribed heat flux which can be repre-
sented by the following code:

model PrescribedHeatFlux
parameter Integer ndim=1;
Modelica.Blocks.Interfaces.InPort q(final n=ndim);
Modelica.SIunits.Area A(start=1.0);
Interfaces.Node_c n(final ndim=ndim);

equation
n.q = A*q.signal;

end PrescribedHeatFlux;

5 Sensors

5.1 Temperature

There are really two temperature sensors available in the Modelica.Thermal package.
The first is an ideal temperature sensor (i.e., it senses temperature changes instantly without
any heat transfer). This model can be expressed simply as:

model TemperatureSensor
Modelica.Blocks.Interfaces.OutPort T;
Modelica.Thermal.Interfaces.Node_c n;

equation
T.signal[1] = n.T;

end TemperatureSensor;

Another temperature sensor that is available is the Thermocouple model. Strictly
speaking, this model should probably have been discussed in Section 6 because it actually
mixes two physical domains (i.e., thermal and electrical). However, since the Thermocou-
ple model is primarily a sensor the model is included here.

One way used by instrumentation manufacturers[1] to describe the behavior of a thermo-
couple is to use the following general equation:

E � n

∑
j � 0

C jT
j (6)

where E is the potential across the thermocouple (in the absence of any current flowing), C
is the vector of calibration coefficients for the thermocouple and T is the temperature of the
thermocouple. This behavior can be represented in Modelica using the following code:

model Thermocouple
extends Modelica.Electrical.Analog.Interfaces.OnePort;
parameter Real C[:] "Calibration coefficients";
Modelica.Thermal.Interfaces.Node_c node_c;

equation
v = polyval(C, node_c.T);
node_c.q = zeros(node_c.ndim);

end Thermocouple;

5.2 Heat Flow

The last basic sensor model included is the HeatFlow sensor which is written as follows:

model HeatFlow
extends Modelica.Icons.RotationalSensor;
Modelica.Thermal.Interfaces.Node_a a;
Modelica.Thermal.Interfaces.Node_b b;
Modelica.Blocks.Interfaces.OutPort heat(n=size(1, a.q))

"Heat flowing from a->b";
equation
a.q + b.q = 0;
heat.signal = a.q;
a.T = b.T;

end HeatFlow;

6 Mixed Domain

As mentioned in Section 1, one of the reasons the name Modelica.Thermal was chosen
was that the scope of the library goes beyond simple heat transfer. In particular, many models
span more than one physical domain.

One example of a mixed domain model is the HeaterElementmodel which extends the
Resistor model provided in Modelica.Electrical package. The HeaterEle-
ment model functions as a resistor but also contributes the energy dissipated by the resistor
to a thermal node as shown in the following model:

model HeaterElement
extends Modelica.Electrical.Analog.Basic.Resistor;
parameter Real efficiency(start=.90);
Modelica.Thermal.Interfaces.Node_c thermal;

equation
thermal.q[1] = -iˆ2*R*efficiency;

end HeaterElement;

Another example of a mixed domain model is a rotational spring that changes shape in
response to temperature changes:

model RotationalSpring
extends Modelica.Mechanics.Rotational.Interfaces.Compliant;
parameter Real c(final unit="N.m/rad", final min=0,

start=1.0) "Spring stiffness";
parameter Modelica.SIunits.Temperature T_nom(start=273.15)
"Nominal temperature";

parameter Real dudT(final unit="rad/L", start=1.0)
"Angular expansion coefficient";

parameter Modelica.SIunits.Angle unstretched_nom
"Nominal unstretched length (at T_nom)";

Modelica.SIunits.Angle phi_rel0(start=0)
"Unstretched spring angle";

Modelica.SIunits.Angle dphi "Delta phi";
Modelica.Thermal.Interfaces.Node_c node_c;

protected
Modelica.SIunits.Energy P;

equation
dphi = (phi_rel - phi_rel0);
P = c*dphiˆ2;
der(P) = node_c.q[1];
phi_rel0 = unstretched_nom + dudT*(node_c.T - T_nom);
tau = c*dphi;

end RotationalSpring;

There are numerous other examples of mixed domain models (e.g., temperature sensitive
resistors) that could be included as well.

7 Examples

A complex example which exercises many of these components is to consider a control system
regulating the temperature inside of a single story house. Figure 1 shows a sample problem
consisting of two houses, two furnaces and two thermostats. The houses and the furnaces are
identical but the thermostats are different.

One thermostat, shown on the left in Figure 2, is a mechanical thermostat. The furnace is
controlled my a mercury switch mounted on mechanism which moves as a result of thermal
expansion. The other thermostat, shown on the right in Figure 2, is an electronic thermostat.
The integrated circuit shown in Figure 2 represents the logic of the controller. The circuit uses
the voltage drop across two of its pins to compute the temperature in the house (by inverting
the temperature relationship in Equation 6). Based on this temperature and the logic of the
controller the two pins leading to the furnace are shorted to turn on the furnace.

Figure 3 shows the diagram of the single story house. The model includes conduction of
heat into the ground, convection of heat through the walls to the ambient air and heat transfer
due to radiation from the roof.

�

amb_temp

period={24*60*60}

�

��

�

295K

	

Figure 1: An example to exercise the Modelica.Thermal library

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

�

� � � � � � � �

�

p

n

mechanism

J=1e-5

rotation=setting

damper

d=100

p

n

Tn

Fp

Fn

Tp

g

ground

Figure 2: Mechanical thermostat (left) and digital thermostat (right)

������������������
���������� ����������

��
���������������������������

������������������������������

T

Tamb

sun_position

period={day}

������������������������������������

T

Conduction to Ground

Heat Loss
Through Walls

Thermal Inertia of the House

Solar Heating

��

Figure 3: Diagram of heat transfer within the house

8 Conclusion

This paper serves several purposes. First, the paper shows how the thermal library con-
nector was defined and also shows how numerous simple models were built from common
constitutive relations. Another useful function of this paper is to demonstrate how model
libraries are created. Note that the structure of the paper mimics the structure of the Model-
ica.Thermal package. Last, but not least, the paper discusses the current status of the
thermal library. This is just a first draft of the library and should be considered a request for
comments on how the library may be improved or expanded.

9 References

References

[1] Omega’s Temperature Handbook, chapter Z, pages Z–201. Omega Engineering, Inc.,
”http://www.omega.com”, 2000.

[2] Modelica Association. ModelicaAdditions.HeatFlow,
http://www.modelica.org/library/library.html, 2000.

[3] P. Beater. Modeling and simulation of hydraulic systems in design and engineering
education using Modelica and HyLib. In Proceedings of the Modelica 2000 Workshop,
Lund, Sweden, October 2000. Modelica Association.

[4] Robert D. Cook, David S. Malkus, and Michael E. Plesha. Concepts and Applications of
Finite Element Analysis. John Wiley and Sons, third edition, 1989.

[5] Claes Johnson. Numerical Solution of Partial Differential Equations by the Finite
Element Method. Cambridge University Press, 1992.

[6] J. N. Reddy. An Introduction to the Finite Element Method. McGraw-Hill, 1984.

[7] H. Tummescheit, J. Eborn, and F. Wagner. Development of a Modelica base library for
modeling of thermo-hydraulic systems. In Proceedings of the Modelica 2000 Workshop,
Lund, Sweden, October 2000. Modelica Association.

