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ABSTRACT
The new possibilities of multi-domain hierarchical modelling often lead to models with both fast and
slow parts. In this paper a new approach to simulate such systems is discussed that is especially useful
in real-time applications. Mixed-mode integration represents a middle course between implicit and
explicit integration. The main idea is to split up the system into a fast and a slow part and to apply
implicit discretization only to the fast part. The partitioning of the system can be performed offline
using a newly developed automatic selection routine, before real-time simulation starts. Mixed-mode
integration was applied to several Modelica models from different fields, e.g. models of a diesel engine
and an industrial robot and tested using Dymola. Speedup factors from about 4-16 were recorded. In
this paper, mixed-mode integration is introduced, the selection routine is described and numerical
results are presented.

Introduction

Real-time simulation is a growing field of applications
for simulation software. One goal is to be able to
simulate more and more complex models in real-time
with fast sampling rates. Many of those models are
multi-domain models, which means, that they contain
components from more than one physical domain.
Mechanic, electric, hydraulic or thermodynamic
components are often coupled together in one model.
This leads to a large span of time-constants in the
model.

In many classical integration methods the fastest time-
constant determines the computational effort for the
simulation, which is too high in many cases. Mixed-
mode integration is one way to simulate such systems
efficiently.

Problems in real-time simulation

The task of real-time simulation is different from the
classical offline simulation and therefore poses
different problems.

Special requirements

Compared to the classical problem of offline
simulation, real-time simulation demands
fundamentally different properties of the underlying
integration routines, to solve an ordinary differential
equation:

)(xfx =�

Offline integrators try to minimise the overall
integration time at a given (high) accuracy, using

highly sophisticated step size- and order control
mechanisms and high-order methods.

In real-time simulation the computer typically
communicates with peripheral hardware components
during the simulation. This communication takes
place using a fixed small sampling interval e.g. 1ms.
The simulation must perform the time-step and
provide its results before this interval ends.
Exceeding this “deadline” would be an error. So the
aim of real-time simulation is not to reduce the
average computational cost, but to make sure, that
the calculation time for one step never exceeds this
time limit. This leads to a different choice of
integration methods. To minimise the computational
cost for one time-step usually a very simple
discretization scheme is chosen as for example the
explicit Euler-method.

Stiffness

Special problems are caused by stiff systems. These
are systems with dynamically very fast and highly
damped components. If an explicit method is used to
integrate such systems, step size is limited due to
stability problems of the integration method. If step
size is too large, then the computed trajectory starts
to oscillate and diverges. The simplest example for
an explicit method is explicit Euler:

)(1 nnn xhfxx +=+

The standard cure for unstable behaviour is to use
implicit methods. Implicit methods evaluate the
right-hand side at future time points. This leads to a
non-linear equation system that has to be solved at
each step. The simplest example for an implicit
method is implicit Euler:



)( 11 ++ += nnn xhfxx

At each time-step this equation has to be solved for

1+nx .

For real-time integration both methods have their own
severe drawbacks, which limit drastically the size of
stiff systems that can be simulated in real-time.
Explicit methods used for stiff systems usually
demand step sizes that are much lower than the given
real-time step size. As stiffness increases, the step size
tends to zero. The basic problem of implicit methods
is the non-linear equation system to solve at each time
step. In conventional methods, the dimension of this
system is at least the number of states. The solution
process is iterative and requires the costly evaluation
of the Jacobian of the right hand side.

 Offline methods can decrease the average
computation time for one implicit step by not
evaluating the Jacobian at each time step and by
allowing slower convergence slowly for the non-linear
solver once in a while [1]. All these considerations are
not possible dealing with real-time simulation, as each
single step must meet the real-time requirements. In
this context the use of implicit methods is very
critical.

Fast and slow components

The situation is especially unsatisfactory when both
fast and slow components are present in the model to
be simulated. Especially multi-domain modelling
often results in such systems. For example in
mechatronical systems a slow mechanical part is often
controlled by fast electric circuits or by a hydraulic
drive. Unfortunately the fastest time-constant governs
the stability of the whole system for explicit methods
and if only one component becomes unstable the
results are worthless. In the classical sense, the whole
model has to be treated as stiff.

To choose between an explicit and an implicit method
means that either the system is integrated at a too
small step size or a non-linear equation system of huge
size has to be solved at each step, although the fast
part is very small. Here, the choice of an implicit
method leads to similarly unsatisfactory results as the
choice of an explicit one.

Mixed-mode integration
As we have seen, both implicit and explicit methods
have performance problems simulating a model with
fast and slow components. This situation motivates the
idea of finding a middle course between implicit and
explicit. One idea is to cut the system into two pieces:
a (hopefully) small fast system that can be treated
easily with implicit methods and a slow system where
cheap explicit methods can be applied on: Mixed-
mode integration.

Principles

The basic idea is simple. We perform a row-wise
partitioning of the right hand side, which results in a
partitioning of the states into fast and slow ones:
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Here the superscript “F” denotes the fast, and the
superscript “S” the slow part of the system.

Then, an implicit discretization formula for step size
h is applied to the fast and an explicit one to the
slow system, for example the Euler-formulas:
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The first of these equations can be evaluated
explicitly and the result is inserted into the second
one. This reduces the size of the non-linear equation
system from the number of states to the number of
fast variables.

Note that the resulting method still has convergence
order 1. For higher order Runge-Kutta methods
certain coupling conditions have to be fulfilled
which is described e.g. in [2, pp. 302-311]. These
conditions trivially hold for the combination of
implicit and explicit Euler.

The linearized model

In the following, the case of a linear differential
equation system is regarded, which makes a closer
analysis possible.

The linear differential equation of dimension d
Axx =�

is partitioned by multiplying A with a diagonal
projection matrix { }1,0);,..( 1 ∈= indiagP δδδ  from

the left to select the slow part and with I-P to select
the fast part.

( )APIPAA −+=
P selects rows of A. PA is the slow part and

API )( −  the fast part.

The partitioned differential equation is:
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The two equations are discretized as:
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Using explicit Euler for the slow part and implicit
Euler for the fast part.
Adding those two equations yields:

( ) 11 ++ −++= nnnn AxPIhhPAxxx



That can be solved for 1+nx :

( )( ) ( ) nn xhPAIAPIhIx +−−= −
+
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which is again a linear discrete system with system
matrix:

( )( ) ( )hPAIAPIhIUh +−−= −1

nhn xUx =+1

This discrete linear system has to be numerically
stable for a desired step size h. This means for the
eigenvalues iλ of hU  that:

dihOi ≤≤∀+≤ 1           )(1λ

So after all, a partitioning is needed, that guarantees
this relation, but treats only a minimal number of
states implicitly.

In the non-linear case the differential equation can be
linearized at several time-points along the trajectory
and each linearization can be analysed. Then the union
of all fast states will be selected as fast and the
corresponding rows of the differential equation will be
selected for implicit integration.

Mixed-mode and inline integration

The concept of mixed-mode integration for itself can
already lead to a considerable reduction of the size of
equation systems to solve. Especially, when there is
only a small number of fast states and a large number
of slow states.

Another common case is that there are several fast
subsystems in a model coupled together by slow ones
like in complex mechatronical systems. Then pure
mixed-mode integration leads to a big implicit part,
which contains all the fast components. This system
has to be solved as a whole.

A big improvement in this situation is to combine
mixed-mode integration with a technique called inline
integration [3], which was designed to reduce the
computational effort when an implicit discretization
formula is used. The discretization formula is inserted
(inlined) into the ODE and the size of the non-linear
equation system can now be reduced by symbolic
manipulations like Block-Lower-Triangular-transfor-
mation and tearing before the integration starts. That
technique makes it possible to split large equation
systems into smaller ones. These small systems are
then much faster to solve. However, improvements
achieved by this technique alone are relatively low in
the case discussed here. The dimension of the
remaining non-linear equation system is still too high,
as the slow coupling between the fast components
prevents the symbolic manipulation to split up the
system.

The situation is different when mixed-mode inte-
gration and inline integration are used in combination.
Then the slow part is discretized explicitly. It breaks
up the coupling between the implicit components in

the equation system. The decoupled systems can
now be treated more easily by the symbolic
manipulation. This results in several small instead of
one large equation system. Sometimes the small
systems can even be solved symbolically at
translation time. All this leads to a drastic increase
of computational speed. Obviously both methods fit
together very well.

Alternative approaches

One alternative to mixed-mode integration is a
technique called multi-rate integration. The main
idea is to split the system into a slow and a fast part
(like in the mixed-mode case) and to apply an
explicit method to both parts using two different step
sizes: a small one to the fast part and a big step size
to the slow part.

Mixed-mode and multi-rate integration both have
their own advantages and drawbacks. The most
important advantage of multi-rate integration is that
it doesn’t contain any iterative parts during one
(large) step, which means that it might even be
better suited for real-time applications. The price for
this is that one has to choose two step sizes and the
smaller step size depends on the fastest component.
This has several consequences:

• Very fast components lead to a very small step
size and spoil the performance

• Integrating non-linear models, the small step
size has to guarantee stability for the whole
simulation, but the time-constants can vary
during integration.

Another important reason for us to prefer mixed-
mode integration is that it benefits largely from
symbolic manipulation routines and especially from
inlining. Both features are incorporated in Dymola
[4].

There is also a different approach for systems with
fast and slow components. It utilises the structure to
solve the linear equation systems that occur at each
time step quicker, using for example Krylov-space
methods. This approach is described e.g. in [5, pp.
171-176]. However this class of methods is not that
well suited for real-time integration, because they
introduce another iterative loop (for solving the
linear equation system) and the computational cost
can vary considerably between steps.

Partitioning

Once a partitioning is made, the mixed method can
be implemented quite easily in an environment like
Dymola.  The task is now to get a good partitioning
that guarantees stability without choosing too many
fast variables. We designed an automatic algorithm
for this purpose which will be described briefly in
this section.



Basic ideas

For a given linear differential equation system
Axx =�

and a given step size h the partitioning algorithm will
return a projection matrix P as described above such
that the discrete system:

nhn xUx =+1
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is numerically stable and the implicit part is as small
as possible.

This could be seen as a combinatorial problem, which
could be solved by complete search. However this is
not possible because of complexity reasons. Instead,
heuristic criteria are used to classify variables as fast
or as slow.

The algorithm is divided into two phases:

• Partitioning of the continuous system Axx =�  into
a fast and a slow part with the help of a user
supplied threshold for the magnitude of the
eigenvalues.

• Stability check of the resulting discrete system

nhn xUx =+1  and - if necessary - stabilisation of

the discrete system.

Partitioning of the differential equation

The main task of this partitioning is to select a “fast”
part so that the magnitudes of the eigenvalues in the
remaining slow part of the system are below a user-
supplied threshold.

The first step is quite straightforward: the fast
components of the system are the eigenvectors
corresponding to the fast eigenvalues. The cleanest
solution would be to cut out the subspace spanned by
these eigenvectors. However this is not possible in
general because in the non-linear case it would
involve a coordinate transformation in each step of the
integration routine as the linearization A is time
varying.

Our only freedom is to select states; that means rows
of the matrix. One could select all rows that are
influenced by the fast subspace. This would however
lead to the choice of too many states. In most cases all
states would be selected which means, that we would
receive a fully implicit method again.

The best way to solve this problem is to choose only
states, that are effected strongly by the fast dynamics
and put them into the set of fast states. This means of
course that the fast subspace is not completely
removed from the slow system. Some eigenvalues of
the slow system could still be larger in magnitude than
the threshold. The slow system has to be checked
again and the state selection is repeated, until the
eigenvalues of the slow system are below the
threshold.

Stability of the mixed discrete system

Obviously, there are many possible partitionings of a
model, e.g. depending on the supplied threshold. All
of them split up the continuous system into two parts
of which the slower part has got eigenvalues below
the threshold. But not all are equally well suited for
a model. This has to do with the coupling between
the two parts. It strongly affects the stability of the
discretization, especially if the eigenvalues of the
two systems are too close to each other.

We illustrate this in the case of a 2x2-matrix:
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Here the components S and F are the eigenvalues of
the uncoupled slow and fast system. S is assumed to
be small and negative, F is large and negative. FC

and SC  are the couplings between them. They shall

be assumed as small compared to F and S.

A partitioning is now performed such that the first
row of A is classified as slow, the second as fast. The
projection-matrix is therefore:
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The matrix of the discrete system is then computed
as:
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If one of the coupling elements is zero, then hU  is

triangular and the eigenvalues iµ of the combined

discrete system are not different from those of the
two separate discrete systems:
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This system therefore inherits the stability properties
of the two separate discrete systems.

If both of the coupling elements are non-zero, the
eigenvalues iλ of the discrete system change. The

best insight is given for the linearization around iµ
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Some interesting observations can easily be made
regarding those formulas. First, for loose couplings
the explicit part is stabilised, whereas the implicit
part is destabilised. If the coupling between the two
systems becomes tighter, then SF CC  gets larger,



and with it the deviation from iµ . The other important

factor is )( 212 µµµ −  which also can amplify the

deviation, if 1µ  and 2µ  are too close together. On the

other hand, if 2µ  is very small, that means if the fast

system is very stiff, this effect is reduced.

The higher these two factors are, the worse can the
stability properties of the combined system be. In
some cases strong coupling can even result in a severe
destabilization. Then the resulting system only allows
much smaller step sizes than expected. On the other
hand, if the coupling is only moderate, then the
implicit system often stabilizes the combined system.

If coupling between the two parts is too strong, one
can try to reduce it by selecting slow states that
contribute most to it and move them into the set of fast
states. This is performed iteratively in the second part
of the algorithm.

Stability problems are often caused by a bad choice of
the threshold; e.g. when there are two eigenvalues
slightly above and below it. Then sometimes the
partitioning algorithm is forced to tear subsystems in
two pieces that should be kept undivided. This leads
of course to a very strong coupling between the fast
and the slow part. Users can avoid this problem by
carefully choosing the threshold value e.g. after
looking at the eigenvalues of the system.

The user’s view

In this paragraph we are summing up the most
important issues how to control the process of
partitioning in our algorithm.

The algorithm partitions a linear system of ordinary
differential equations into a fast and a slow part.

Users can supply two parameters:

• A step size, for which the integration process
should remain stable. If the differential equation
is linear, then stability can be guaranteed. If the
system is non-linear, then in many cases stability
is preserved, if the non-linearity doesn’t affect the
structure of the system severely.

• An optional parameter “threshold”, which is an
upper bound for the magnitude of the fastest
eigenvalue of the explicit part. If the users don’t
supply “threshold”, it will be calculated from the
step size via a simple formula.

In general the threshold should be chosen low enough
to avoid the need for stabilisation at a certain step size.
The threshold is also a good method to give the
algorithm knowledge about the distribution of the
eigenvalues.

The output is a string array with the names of all the
fast states. It can easily be inserted into the Modelica
model at the top-level.

Computational results

Mixed-mode integration using the explicit and
implicit Euler formulas was implemented in Dymola
[4], where the method and the partitioning algorithm
were tested on several Modelica [6] models. In the
following, three of those test cases are described.
The performance of the new method was measured
and compared with the performance of the fully
implicit and explicit Euler methods. All three
methods were used together with inline integration,
which means that symbolic manipulations could be
applied to the discrete system. The models contained
small algebraic loops.

Partitioning a robot model

The first model to describe is an industrial robot
with six degrees of freedom. For each joint, besides
the mechanical part, the electric circuit of the motor
and a controller are modelled. This leads to an
overall number of 78 states. The fastest eigenvalues
of the linearization of the system at the starting point
are about 7000 in magnitude. See Figure 1. The

model was simulated for 1.5 s at a fixed given step
size of 1 ms.

First the explicit Euler method was applied to the
problem. To obtain stable behaviour the step size
had to be reduced for about a factor ten to achieve
stable behaviour. The largest (linear) equation
system that had to be solved during the integration
was of dimension six. This was the mass matrix of
the robot. With a step size of 0.05 ms it took 16.4
sec to perform the simulation.

Implicit Euler performed the simulation run without
stability problems. The execution time was shorter
than the time explicit Euler needed to integrate with
smaller step size but still too long. This was due to a
large non-linear equation system of dimension 39
that couldn’t be split up by the symbolic
manipulation routines.  This resulted in an overall
execution time of 13 sec.
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Figure 1: The eigenvalues of the robot
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Now the algorithm we described in the last section
was used to partition the robot. The maximum
magnitude of eigenvalues allowed for the slow system
was chosen as 100. The partitioning algorithm chose
45 fast states, which were representing the electric
circuits and the fast parts of the controller of each
joint. Slow variables were mainly in the mechanical
part or pure integrators. Although a relatively large
number of states had to be treated implicitly, the
execution time was much shorter than in the fully
implicit case. This was because the symbolic
manipulation routines could now split up the large
non-linear equation system that had to be solved using
fully implicit discretization. It was split into a couple
of small linear systems - two for each joint drive - that
could be solved symbolically at compile time and one
linear system of dimension six to be solved during
integration. This was the mass matrix again: the same
as in the explicit case. Mixed-mode integration
managed to simulate the model in 1 sec.

Obviously the weak mechanical coupling between the
fast components of the robot was responsible for the
large equation system of implicit Euler. The

partitioning algorithm together with the symbolic
manipulation detected and broke up this weak
coupling.  This led to speedup factors of 16
compared to explicit Euler and 13 compared to
implicit Euler.

To judge the quality of the computed solution a
reference trajectory was created using a high
accuracy method (DASSL; tol =1e-6) and compared
to the mixed-mode solution. As one can expect the
accuracy of the mixed-mode solution wasn’t very
high but fairly good. The errors at the position level
were around 3mm (that is about 2e-3 x the
dimensions of the robot) and on velocity level
around 0.2 m/s (that is about 8e-3 x the maximum
speeds).  For the robot model mixed-mode
integration performed better than DASSL even when
the overall integration time was considered. DASSL
needed 10.5 s to simulate the model using a low
tolerance of 1e-2. This suggests the possibility of
using the mixed-mode approach also for offline-
integration, if a partitioning can be reused for several
simulation runs.

Partitioning an engine model

Runtime comparisons have also been made
simulating a model of a drive train. It consists of a
diesel engine, its air-supply and a modelled load.

Together there were 26 states. Most of them were
used to model the air-supply. An eigenvalue analysis
showed that three eigenvalues were much faster than
the others were, namely about factor 20 (see Figure
3). The model was simulated for 10 seconds and a
step size of at least 1 ms should be used.

First explicit Euler was used. The largest non-linear
equation system for it to solve had dimension 1. Due
to the stiffness of the system the integration failed at
a step size of 1ms. Reasonable results were obtained
at a step size of 0.1 ms, which corresponds to the
observation, that the fastest Eigenvalues were 2e5 in
magnitude.  In this case the execution time was 23
sec.
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Figure 3: Magnitudes of eigenvalues changing
during execution time

Figure 2: Model of the robot



Implicit Euler had no problems with stability running
at a step size of 1 ms. The drawback was, that it had to
solve a non-linear equation system of size 17, which
increased the computational cost per step
considerably. The overall execution time was now 21
sec.

Using mixed-mode integration with a threshold of
1000, 4 fast variables were selected. The fastest
Eigenvalues of the slow system therefore had a size of
500 in magnitude and furthermore the discrete system
was stabilised by the implicit part (which is not always
the case). This enabled the simulation to run stable at a
step size of 1 ms and in each step a non-linear
equation system of dimension 3 had to be solved. The
overall execution time could be reduced to 5.4 sec,
which is a speedup factor of 4 compared to implicit
Euler and factor 4.5 compared to explicit Euler.

Robot Engine

No. of states 78 26

Simulated Time 1.5 s 10 s

Sample Time 1 ms 1 ms

Explicit Euler

Overall Time 16.4 s 23 s

Stable  Step size 0.05 ms 0.1 ms

Size of Eq. Syst. 6x6 1x1

Implicit Euler

Overall time 13 s 21 s

Size of Eq. Syst. 39x39 17x17

Mixed-mode Integration

Overall Time 1 s 5.4 s

Size of Eq. Syst. 6x6 3x3

Table 1: Performance of the three methods

Conclusions and Outlook

Mixed-mode combined with inline integration
provides a good alternative to the classical explicit and
implicit methods. Especially real-time integration of
multi-domain models can benefit considerably. The
main strength of mixed-mode integration lies in its
increased flexibility and in the additional information
the integration routine uses. Stability is preserved, but
the equation systems to be solved are much smaller
compared to an implicit method.

The designed selection routine automatically chooses
states, so that the stability of the linear system for a
given step size is guaranteed. However it is still
important for users to know about the properties of
their model if they want to achieve the best results.

One future extension to this concept could be the
introduction of a third class of states: oscillating
states, which could be treated using the trapezoidal
rule. In many cases mixed-mode integration can also
accelerate off-line simulation especially when large
models with few fast components are considered. In
this case mixed-mode integration should be
performed using partitioned methods of higher
order.
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