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Abstract

Dimensional analysis (DA) checks for dimensional
incongsistencies in equations and expressions. It
provides the ability to make fast estimates of the
dimensional correctness of equations in Modelica.
We believe this will enhance the overall quality of
Modelica code. Incorporating a DA system into
Modelica can be done without any changes to the
language itself. However, we believe that a slightly
extended type definition is needed to incorporate
dimensional analysis in a practical yet effective
manner for Modelica.

1. Introduction

Dimensional Analysis (DA) is a static analysis that
we believe will increase the quality of the
Modelica code (equations in particular). It
accomplishes this by doing dimensional
consistency checks, common to scientific and
engineering computations.

DA should not be mixed up with unit checking
where knowledge on the different units and the
conversion between them are necessary. The
difference is often lost in everyday use of the two
terms. Therefore we think a definition of the terms
is called for:

A unit 18 a scale factor, unit factor and a
dimension. The combination of the two factors and
the dimension yields a unit.

A dimension is a physical quantity.

An example of this is length. Length is a
dimension but not a unit, The unit could be meter,
foot, inch or centimeter, which all have the
dimension of length.

DA made its way into computer languages in the
late 70’s [Kar78] but has not made a big impact.
We believe this to be the opposite for Modelica
since the program domain of Modelica is mainly
dimensional, e.g., a Modelica model is part of one
or more physical domains that inherently is
dimensional.
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Besides Modelica’s intentions to unify the
specification of multi domain models it is
constructed to ease the transition from theory to
computer simulation. This is actually one of the
most important properties for the users and
creators of Modelica models. The amount of
expressions and equations in Modelica programs
and models increases with the complexity of the
system that is being simulated, and the risk of
human error increases accordingly. DA will help to
automate the transition and therefore contribute to
the overall quality of the Modelica models.

A DA system can be thought of as an extension to
the type systems of programming languages. It
extends the types with another property;
dimension. DA is a step towards a full unit-check
system, where faults like the NASA Mars orbiter
thrust malfunction [Isb99] would have been
detected as early as in the compilation phase of the
project.

The article presents a combination of two known
constructs: dimensional analysis and type
inference. This is applied on an explicitly typed
language in general and an idea on how this might
be adopted for Modelica is given.

We show this system in an example and discuss
the need and possibilities to incorporate a DA
system into Modelica.

2. Related Work

DA has been constructed for numerous languages:
[Bar95, Umr94] accomplishes DA in C++ by using
templates. They manage to do this without the
need to extend the language. Before templates
where part of the ANSI C++ standard DA was
done with data abstractions [Cme88]. Hilfinger
[Hil88], uses the inherent abstraction facilities of
Ada to present a DA system for Ada in the form of
a package. This package was also done without
any extension to the language. Furthermore, work
has been done for languages such as ML [Ken96]
where the language type system was used to enable
dimension inference.

The representations of dimensions have also been
subject to change over the years, towards a more



symbolic and flexible manner ([Hil88] vs.
[Ken96]). Still the selection of representation for
dimensions is mainly based on the originating
language rather than on convenience.

Type inference [Car87, Hal96] has been presented
for many programming languages, mainly
functional languages like Haskell and ML.

3. Dimensional Analysis

Based on the SI system of measurements a
dimensional space that represents the domain of all
SI units is created. This vector space is spanned by
seven unit vectors representing the dimensions in
the SI system: Time, Mass Length, Electric charge,
Thermodynamic temperature, Amount of
substance and Luminous intensity.

There are two ways of describing this vector space:
numerically and symbolically.

The numerical description directly uses seven-
dimensional vectors (or 7-tuples) where the
elements corresponds to the exponent of that
particular base dimension, for example:

D, =(1,0,0,0,0,0,0)

Time

Do = (0,0,1,0,0,0,0)

ength —

These dimensions can be combined to describe
other physical quantities like:
Dstoeiry =(—1,0,1,0,0,0,0)

Velocity

This tuple description was used by Barton and
Nackman [Bar95] for C++ (see Section 2).

The symbolic representation uses a textual variant
of the same dimensional vector, where dimension
symbols represent the dimensions:

D

Time

D

Length

=Time
= Length

These dimensions, like the tuple description, can
be combined to describe other physical quantities
like:

Do,y =Time™, Length

Formally, the symbolic representation is an abelian
group with a binary operation “,”, It is easy to see
that for a fixed set of dimension symbols, the
symbolic representation is isomorphic with the
tuple representation. An advantage with the
symbolic representation is that it easily can be

extended to represent dimensions outside the

selected system of measurement (in our case SI).
For example: bits per second are not a valid SI unit
since it is not a derivative of any base dimension.
However, it is easy to introduce a new dimension
symbol Bit. Bits per second can now be
represented symbolically as follows:

D, =D

bps Bit/Time

= Bit,Time™"
This is not possible using the tuple representation
since the seven base dimensions are fixed.

Dimensions can naturally be calculated with
dimensional operators that corresponds to normal
arithmetic operators of multiplication, and division
for the tuple representation:

(tl,...,tn>*<t{,...,t,’,> = <t1 +t] .t +t,§>

(trrmait VIt oot ) = (1, =] oot —11)

Equivalent operators exist for the symbolic
representation (see [Ken96]). For simplicity, we
will in the following use the tuple representation.

As a short example, consider the well known
equation of velocity:

velocity = length/ time

Using the definition of time, length, velocity and
the dimensional operators the dimensional
correctness could be checked in the following
manner using the tuple representation:

D =D 1D, =

Velocity Length Time

(~1,0,1,0,0,0,0) =(0,0,1,0,0,0,0)7(1,0,0,0,0,0,0) =

(~1,0,1,0,0,0,0) =(~1,0,1,0,0,0,0) = True

When all variables and constants of a program are
assigned dimensions (as in the example above), a
dimensional check can be performed to show the
dimensional correctness of that program,; this
might not always be the case. Some of the program
constructs may lack dimensional information and
then the DA system must be extended with an
inference system. This inference system will try to
infer dimensions on the constructs that are missing
dimensional information. This is formalized as
follows.

We use a small language to exemplify this system.
It contains expressions and equations only. Here, e
stands for expressions, “id” for identifiers, ”num”
for numerical constants, and f for functions.



e—e te,le —e, le *e,le /e,
| idnum!| f(el,...,en)

idnum — id | num

equation — e, = e,

The system also needs a function dim that assigns a
dimension to each identifier and numerical
constant:

e o<, if not dimensionalized
dimlidnum): - ‘ ‘
D, if dimensionalized

Here, o< denotes an unbound dimension, that is: a
unique variable that will be assigned a dimension
by the inference system. For example if x is an
dimensionally unbound identifier, using the tuple
representation, then dim(x) is a 7-tuple of unique
variables:

dim(x)=oc = <xl,...,x7>

The inference system tries to assign a dimensional
type to each expression e. Formally, it has typing
judgements of the following form:

e:D,E

Here, D is the dimension of the expression e

(could be unbound) and E a set of dimensional
constraints (equations) that have been derived from
e.

The following axiom assigns a dimension type to
identifiers and numerical constants:

idnum : dim(idnum),

Note that the dimension of idnum could be
unbound, e.g., does not have any dimension, and
that this will later be bound by the inference
system.

These are the inference rules for dimensional
typing of arithmetical operations over expressions:

e:D.,E e,:D,,E,
e, +e,:D,E VE, u{D =D,}

e:D.E e,:D,.E,
e,—e,: D, E VE, u{D,=D,}
e D,E  e,:D,,E,

e *e,: D *D,,E UE,

e :D,E e,:D,,E,

e,le,:D,ID,,E, UE,

This is the inference rule for equations:
e:D.,E e,:D,.E,
e, =e,:D,E UE,u{D, =D,}

This is the inference rule for general function
application;

e :D,E ..e: D E e:D,E,
fle,ne,):D,,E, UE, U...UE,

Here, e is the expression defining the return value
of the function.

Finally, here are inference rules for some selected
functions in Modelica:

e:DE,
der(e): D, 1D

Time

Ee

der(e) returns the derivative of e with the respect to
time.

e:D,E
sin(e) o< E,
The dimension of the sin function is an unbound
dimensional type.

A set S of expressions, or equations, yields a set of

dimensional equations {E (e)l eecS } through the

inference system. This set corresponds to a linear
equation system. There are three different cases:

1. No solution: dimensions are not correct.
2. Unique solution: dimensions are correct.

3. Parametric solution: dimensions
undeterminable, but can be given a
minimal, parameterized description as a
linear system of equations.

4. A Dimensional Inference
System for Modelica

To show a working DA system for Modelica no
change to the syntax of the language is necessary.
Extending the Modelica language construct of unit
suffices. According to the semantic specification of
Modelica the Unit part of the type declaration
complies with ISO 31/0-1992 “General principles
concerning quantities, units and symbols” and ISO
1000-1992 “SI units and recommendations for the
use of their multiples and of certain other units”.
They do not depict a formal syntax and therefore
Modelica can permit universal strings as units.



Using unit as a string permits the storage of
dimensional data for types in Modelica.

The unit part of type declarations is optional in
Modelica. Therefore, this mechanism can yield
partially dimensonalized programs. Dimensional
inference can still be able to derive dimensional
properties for such programs. We exemplify this
with Modelica functions using the tuple
representation of dimensions:

type Volt
type Ampere

Real (Unit="<-2,1,2,-1,0,0,0>");
Real (Unit="<-1,0,0,1,0,0,0>");

function Resistance
input Volt u;
input Ampere i;
output Real r;

algorithm

r 1= u/i;
end Resistance;
Without the dimensional inference system the
parameter r does not have a declared dimension
and consequently the function Resistance does not
have a dimensional return value. The dimension of
r can however, be inferred by the fact that both i
and u are dimensionalized (e.g., have a dimension
declared or inferred) together with the fact that the
operator / is defined to combine two dimensions
forming a new (see inference rules). This in the
conjunctions with the assignment statement results
in the fact that r must have the same dimension as
u/i namely resistance.

Another example is when it is not possible to infer
a dimension:

type Volt = Real (Unit="<-2,1,2,-1,0,0,0>");

function Capacitance

input Volt u;

input Real i;

output Real ¢
algorithm

c := i/der(u);
end Capacitance;
The dimensional information available is
insufficient to allow any inferred dimension for
either ¢ or i. However, their possible dimensions

will be linked through a linear equation.

The trivial case, not shown here, is when all the
constructs have dimensional information and the
problem is reduced to a dimensional check.

5. Adapting Modelica for
Dimension Inference

As mentioned above extending the unit statement
of the type declaration to incorporate DA into
Modelica is preferable. This adoption should be

extended for the possibility of a full unit-check
system right a way. This implies that not only
dimensional information has to be stored within
the type but also information on the scale factor
and unit factor is needed. This combined with the
existing textual description of the type declaration
would be sufficient to handle DA and unit
checking as well as presenting a textual
representation of predefined dimensions and units
to users.

We suggest the a syntactical extension of Modelica
to support statements as follows example:

type Volt=Real (unit="V”, dimension="<-2,1,2,-
1,0,0,0>»", sfactor=1l,ufactor=1);

6. An Example

The example circuit is taken from the introduction
of Modelica [Fri98] and modified to reflect a more
current version of the electric library of Modelica.
This example does not use the suggested
dimensional extension to the Modelica language
and for reasons of clarity uses the tuple
representation of dimensions.

Fig 1. Simple electric circuit

W, N W,

+ +
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N
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+
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—

W N, W;

—G

Modelica Code

The following declarations of types is included to
reflect dimensions:

type Volt = Real (unit="<-2,1,2,-1,0,0,0>");
type Ohm = Real (unit="<-1,1,2,-2,0,0,0>");
type Ampere = Real (unit="<-1,0,0,1,0,0,0>");
type Capacitance =

Real (unit="<2,0,0,1,0,0,0>");

type Inductance = Real (unit="<0,1,2,-
2,0,0,0>");

Here is the actual model of the circuit:



class circuilt
Capacitor C(C=0.01);
Inductor L(L=0.1);
Ground G;
Resistor R1(R=10);
Resistor R2(R=100);
VsourceAC AC;

equation
connect (AC.p, Rl.p)
connect (Rl.n, C.p);
connect (C.n, AC.n);
connect (Rl.p, R2.p)
( i
(
(

’

’

connect (R2.p, L.p)

connect (L.n, C.n);

connect (AC.n, G.p);
end circuit;

To further show the equations behind this example
a part of the Modelica electrical library is included:

connector Cut

Volt across[:] = zeros(0);

flow Ampere through[:] = zeros(0);

Roolean booleans[:] = fill(false, 0);
end Cut;

connector CutBase extends Cut;
end CutBRase;

connector PinCurrentIn extends CutBRase;
end PinCurrentlIn;

connector PinCurrentOut extends CutBase;
end PinCurrentOut;

connector TwoPinNeg extends PinCurrentOut
end TwoPinNeg;

connector TwoPinPos extends PinCurrentlIn;
end TwoPinPos;

model TwoPin
Volt Vi
Volt vVpe;
Ampere 1i;
Volt Vn;

TwoPinPos p(across=[Vp], through=[i])

;
TwoPinNeg n(across=[Vn], throuch=[-1]);
equation
v = Vp - Vn;

end TwoPin;

model Resistor extends TwoPin;
parameter Ohm R;

equation
R*¥1 = Vp - Vn;

end Resistor;

model Capacitor extends TwoPin;

R:(-112-2),0 i:(-1,00,1),@
R*i:(-11,2,-2)%(-1,00,),&

Vp:(-212-1),0

parameter Capacitance C;

equation
C*xder(v) = 1i;
end Capacitor;

model Inductor extends TwoPin;
parameter Inductance L;

equation
L*der (i) = Vp - Vn;
end Inductor;

model Ground
Volt Vp;
Ampere 1i;

equation
Vp = 0;
end Ground;

model VsourceAC extends TwoPin;
constant Real PI = 3.141592653589793;
parameter Volt VA = 220;
parameter Real freg = 50;
parameter Real t0 = 0;

equation
Vp-Vn = VA*sin(2*PI*freg* (Time—-t0));
end VsourceAC;
Now selecting a few of the equations from this
example (all would be to extensive for this article)

as S, the set of equations:

R* = Vp Vn,

L*der(i) = Vp - Vn,

C*der(v) = 1,

Vp-Vn = VA*sin( 2¥PI*freq*(Time-10))

For clarity the scope of the variables are not shown
here. R should be Resistor.R and L should be
Inductor.L etc. The dimensional vector space is
also reduced to a four degrees to reflect the electric
sub-space (domain) of the SI system of
measurements. This is done mainly to shorten the
amount of text presented in the derivations and has
no effect on the calculations performed therein.

When run through the inference system the
equations of S gives a system of dimensioned

equations. These equations can then be checked for
integrity.

Vn:(-212,-1),0

Va-Vp:(-212-1),{-212-1)= (-212,-1)}

R*i=Vp-Vn:(-212-1),{-212-1)=(-21,2-1),(-2,12-1) = (-2,1,2,-1)}
Derivation of the dimensional equation for R *i =Vp —Vn



L:(012,-2),@

der(i): (-1,0,01)7(1,000),@  Vp:(-212,-1),D

Vn:(-212,-1),0

Lrder(i): (01,2,-2)%(-2,00,1), @

Va—Vp:(-212-1),{-212-1) = (-2,1,2,-1)}

L¥der(i)=Vp-Vn: (-2,12-1),{(-21.2,-1) = (- 2,12,-1), (-2,1.2,-1) = (- 2,.2,-1)}

Derivation of the dimensional equation for L¥der(i)=Vp-Vn

C:(20,01):@  der(v):(-212,-1)7(1,0,00): @

CHder(v): (2,-1,-2.2)%(-312,-1): &

i:(-10,01):@

C*der(v)=i:(~10,0,1),{~10,01) = (-10,01)}
Derivation of the dimensional equation for C*der(v) =i

Vp:(-212,-1),0 Vn:(-2,12,-1),0

Time : (1,0,0,0),& 10:e<,,&
Time-10,(1,0,0,0),{(1,0,0,0) =<, }
freq*(Time-10) o<, #(1,0,0,0),{(1,0,0,0) =< }
Plfreq*(Time-10) <, % o<, #(1,0,0,0),{(1,0,0,0) =< }

freqe<,,

Pl <, O

3

2 <,

4

24PI¥freq(Time-10):0< , * o<, * o<, %(1,0,0,0),{(1,0,0,0) =o<, }

VA:(-212,-1):@

sin(2*PI*freq*(Time-10)) =, {(1,0,0,0) =o< }

Va-Vp:(-212-1),{-212-1)= (-2,12-1)}

VA*sin(2*PI*freq*(Time-10)): (—2,,2,~1)% o<, {<1,0,0,0> =, }

Vp-Vn =VA*sin(2*PI*freq*(Time-10)): (—2,1,2,-1), {<1,0,0,0> =, (=21,2,-1)= (21,2, 1 5}
Derivation of the dimensional equation for Vp-Vn = VA * sin (2*PI*freq*(Time-t0))

7. Conclusion and Further
Research

As stated in the introduction a DA system is a
structured start at a full unit check system for
programming languages. Dimensions are the
fundamental base on which unit checking is
transformed to a linear problem. Two different
units with the same dimensions are but a linear
transformation from conversion.

The examples and the DA system shown in this
article use the SI metric unit system, but the DA
system can be adapted to any set of dimensions
and units.

We have shown that a dimensional inference
system behaves as a type inference system and that
this can be applied to an explicitly and strongly
typed language such as Modelica.

We believe that the symbolic representation is
more flexible and conforms more to the multi-
domain requirements of Modelica. We therefore
recommend its use over the tuple representation.

We will present a formal proposal to the extension
of the type declaration to handle DA and unit
checking to the Modelica design group.

An implementation of the DA system for
Modelica, most likely by extending an existing

implementation, is the next logical step in the
evolution
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