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Abstract

Simulation of fast and slow dynamic behavior
of electrical power systems is needed for many
industrial applications. The results influence the
development of electrical and mechanical com-
ponents and the design of control elements in
power systems. Examples are

� Mechanical stresses on network elements

� Control systems of turbines and generators

� Settings of protective relays

� Transient stability of power systems

Important phenomena to be simulated are i.e.
synchronous stability, machine dynamics, sub-
synchronous resonance, influence of load varia-
tions, switching and lightning overvoltages, and
saturation effects.
The conventional and functional grouping of
simulation tools into power flow-, short circuit-
and dynamic calculations was necessary in the
past for computation reasons. Traditional simu-
lation tools are especially designed for each ap-
plication, seperated by the different time con-
stant of interest.
Power flow calculations are needed for stability
investigations in electrical power systems. Sim-
ulation tools like PSS/E and Simpow, [10, 11]
are able to compute the long term dynamics.
In order to calculate fast transients caused by
switching and lightning, etc. detailled models
of the network components are needed (realized
i.e. in EMTP, EMTDC, Netomac, etc. [7, 8, 9])
The numerical schemes implemented are based
on [4] and discussed in detail in [5]. Draw-
backs have been identified and compared to a
pure state space representation.

The effizient object-oriented hierarchical mod-
elling languageModelica enables the graphi-
cal definition of complex networks. The used
components are defined by their differential al-
gebraic equations (DAE). Simulation tools [1]
transform the overall differential algebraic sys-
tem to a state space representation. The in-
dividual components are depending on the ap-
plication (time constraints) and can be variied
in compexity. The component interfaces are
kept equal, which enables an easy exchange of
simple to complex components. This concept
enables the simulation of electrical, mechani-
cal and control application and combines power
flow-, short circuit- and dynamic calculations
within one simulation environment.

1 Introduction

Important for object-oriented modelling of a
physical domain is the determination of the
component interfaces. For electrical power sys-
tems, this is done by the following considera-
tions.
The simulation of the dynamical behavior of a
synchronous machine is usually formulated us-
ing the two-axis theory of Park [2, 6]. This
theory is based on the mathematical description
(Park-TransformationP) of a 3-phase rotating
system (voltagesUabc and currentsIabc) by the
diagonal components of the rotor (Udq0, Idq0).
For θ = ωt +φ, with ω angular velocity,t sim-
ulation time andφ initial angle, the following
mathematical relations hold:
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Uabc = PT �Udq0 ; Iabc = PT � Idq0

P�der(Iabc) = der(Idq0)+ω �y � Idq0

The quantatiesUdq0 andIdq0 are constant in case
of a non-disturbed steady state, e.g. fixed ro-
tating frequency of the rotor. (see figure 3, 4).
These consideartions can be generalized to all
model components of electrical power systems
that are described in this paper. Therefore, the
definition of theinterfacesis dependend onUdq0

aspotential variableandIdq0 asflow variable.
The following example of an inductive element
describes the changes in the differential equa-
tions (in thedq0-system), which are due to the
Park-transformation.

der(L � Iabc) =Uabc

LP �der(Idq0)+ω �y �LP � Idq0 =Udq0

The matrixLP = P�L �PT is for all model com-
ponents (generator, transformer, load, etc.) con-
stant (e.g. independent of time). This finally
leads to a system of DAEs, that can be solved
very efficiently.
When modelling electrical power systems, it is
common to formulate the equations of different
components dependend on a base voltage Ubase

and a base power Pbase. The so-called per unit
modelling allows, therefore, a description of the
model component independent of the surround-
ing system. This results in the following re-
calculations:

Idq0 = Ibase� idq0

Udq0 =Ubase�udq0

The differential equation for the inductive ele-
ment can be rewritten in per-unit quantaties as
follows:

x �der(idq0)+ω �yx� idq0 = udq0

Due to the Park-transformation, x and y are the
resulting normalized reactance-matrix and ro-
tating matrix, respectively.

The identification and determination of the
model parameters of a component within elec-
trical power systems is very difficult and time-
consuming. The model parameters are often de-
termined based on measurement data. The cal-
culations are in general well-known, and in ex-
ample for the generator described in [3]. These
pre-calculations should not be mixed with the
dynamical simulation and be done in advance.
This can be realized in Modelica by using cor-
responding functions, so that the user has only
to input the given measurement data for a simu-
lation run. For the following model component
equations these pre-calculations are considered
as given.

basic components

3Phase-
Star

f0;0;

p
3�ung = udq0p

3 � i0 = in

3Phase-
Resistor

r � idq0 = udq0

3Phase-
Inductor

x �der(idq0)+

ω�yx� idq0 = udq0

3Phase-
Capacitor

c �der(udq0)+

ω�yc�udq0 = idq0

Table 1: Basic component models

2 Basic Components

The most simple 3-phase basic model compo-
nents necessary for building an electrical power
system are shown in table 1. The component
equations on the right column of the table are
given in per unit (p.u.). The star-connector gives
the possibility to couple also 1-phase electrical
model components, necessary i.e. for grounding



Figure 1: Object-diagram of a linear∆/Y-Transformer.

elements of transformers and generators. Using
hierarchical connections of these basic compo-
nents, other linear models can be easily gener-
ated (i.e. inductive-capacitive load, pi-element
of a transmission-line, etc.).

3 Transformer and Generator

When modelling transformers in Modelica, a
special treatment can be done in order to seper-
ate the topology information (∆- / Y- Connec-
tors) from the magnetic coupling of the individ-
ual phases (see figure 1).
As a result, the magnetic coupling can be de-
scribed with different complexity based on the
phenomena of interest, i.e. losses, saturation
and internal faults can be include if important
for the corresponding simulation application.
The differential algebraic equations of a linear
transformer model are given as follows:

� Delta-Connector

vdq = fuq;�udg, idq = f�jq;jdg,
v0 = 0, i0 = 0

� Y-Connector

vdq0 =udq0�f0;0;

p
3�ung, idq0 =jdq0,

un =rn�in, in =
p

3�i0

� Trafo-Coupling

x1 �der(j1dq0)+

(ω�yx+ r)1�j1dq0 = (v1dq0�v0dq0)

x2 �der(j2dq0)+

(ω�yx+ r)2�j2dq0 = (v2dq0�v0dq0)

xcpl �der(jmdq0)+

ω�yxcpl�jmdq0 =v0dq0

jmdq0 =j1dq0+j2dq0

Modelling of generators leads to equations with
analog structur as described in [2, 6].

4 Mechanical Components and
Control System

The turbine model components can be described
in different complexity by using the Modelica
library Rotational1D. For applications, where
stress effects of turbine and generator, or the
movement of masses of generator, exciter and
turbine group can be neglected, all masses can
be combined to one mass or it can be assumed
that an infinite mass is given. This corresponds
to simulation with constant velocity. The con-
trol system can be defined by using the model
components of the Modelica Block library.

hybrid elements

3Phase-

Switch

0= if (Opena) then

der(ia) elseua

0= if (Openb) then

der(ib) elseub

0= if (Openc) then

der(ic) elseuc

ABC-
Fault

f0;0;0g= if Fault then

fua�ub;

ub�uc;

sum(der(iabc))g
elseder(iabc)

Table 2: Switch and 3-phase fault

5 Ideal Switches and Faults

When simulating switches and faults, the 3
phases of a model component have to be
considered seperately and be written in abc-
representation. Table 2 shows the correspond-
ing equations for the switch and the 3-phase
fault. Having switches or faults in a differential
algebraic equation system results in general in



Figure 2: Object-diagram of the simulation

so-called higher index problems and variing in-
dex of the DAE during switching and fault sce-
nario. Therefore, the equations have to be for-
mulated differentiated. The boolean variables
Opena;Openb;Openc andFault have to be de-
termined, so that the switch can only be op-
erated, when the current crosses the zero line.
This is true for simulating a fault or switch in
series to an inductive element. If a capacitive
element is parallel to a switch or fault analog
considerations result in differentiating the volt-
agesuabc. In this case, operating the switch or
fault can only be done when the corresponding
voltage crosses zero. Other 3-phase fault types
are given by:

� ABCG-Fault:

f0;0;0g = if Fault thenuabc

elseder(iabc)

� AB-Fault:

f0;0g = if Fault thenfua�ub;

sum(der(iab))g
elseder(iab)

0= der(ic)

� ABG-Fault:

f0;0g = if Fault thenuab elseder(iab)
0= der(ic)

� AG-Fault

0= if Fault thenua elseder(ia)
f0;0g = der(ibc)

Cyclic permutations of the variablesia; ib; ic and
ua;ub;uc result in further fault-types.

6 Initialization

Due to the representation of the overall sys-
tem in dq0-coordinates, the initialization can be
done with the same differential algebraic system
that is later used for the dynamic simulation. In
existing simulation tools (EMTP, EMTDC, Ne-
tomac, etc.) a seperate equation system for the
initialization process has to be generated. This
is only necessary, when representing the equa-
tions in the abc-system. In this case, the currents
and voltages are not constant for the stationary
state (see figure 3).
The initialization of the switch and fault model
components is simple, since in example the
switch is either open (Iabc= f0;0;0g) or closed
(Uabc= f0;0;0g), before the simulation starts.
Similarly, the fault is not present when initializ-
ing the system (Iabc= f0;0;0g).

7 Simulation

For the application example defined in figure 2
the following fault szenario has been simulated.
First, the stationay state has been initialized and
kept for 0.03 seconds (see figure 3,4).
During the stationary state a constant power is
flowing across both transmission lines into the
infinite bus. Then a 3-phase fault is initiated in
the middle of the transmission line RXf. At
0.05 seconds the two switches Switch1, Switch2
receive a signal to take off the faulted transmis-
sion line. The abc-currents have been cut off
when crossing the zero line (see figure 5). This
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Figure 3: Stationary state (abc-phase-system)
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Figure 4: Stationary state (dq0-phase-system)

corresponds to an ideal description of a switch.
The signals are in general given by a protection
relay. Later in the simulation the transmission
line is again inserted in the system by re-closing
the switch. After a certain time the stationary
case is again reached. This can be seen most
clearly in the dq0-system (see figure 6).
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Figure 5: Fault szenario (abc-phase-system)
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