

Tutorial Abstract Booklet

16th Modelica & FMI Conference

Lucerne, Switzerland

&
16th

Conference

Tutorial Overview:

1. Beyond Simulation: Building Workflows and Web Applications with Modelica and

Python

2. CasADi tutorial on dynamic optimization with FMI 3.0 Model Exchange

3. eFMI®: A beginner’s overview and hands-on

4. Exporting and importing an FMU using C code

5. FMI Beginners Tutorial - Exporting, Simulating, and Co-Simulating FMUs

6. FMUGym: From Uncertainty-Aware Simulation to Learning-Based Control with FMI

and Python

7. Introduction to Modeling, Simulation, Debugging, and Interoperability with Modelica

and OpenModelica

8. Modelica in the Browser: Modeling, Simulation and Web App Integration for Custom

UI

9. Modeling and Simulation of profitableness analyses in Modelica – industrial energy

system meets variable energy prices

10. Modeling and Simulation of Robotic Arm Dynamics and Control in Modelica with

MWORKS.

11. Modeling complex thermal architectures using the DLR ThermoFluid Stream Library

12. Regression Testing with Dymola and the Testing Library

13. System Structure and Parameterization

14. Tutorial on FMI3 co-simulation with UniFMU

15. Using SMArtInt+ for machine-learning and easy integration of artificial intelligence in

Modelica

Beyond Simulation: Building Workflows and Web
Applications with Modelica and Python

Daniel Rohde, Modelon

Duration: 2.5-3 hours

Abstract:

Modelica is a powerful language for modeling complex physical systems—but when combined with
Python, its potential expands dramatically. This tutorial is designed to show attendees how to bridge
the gap between simulation and practical application by building custom workflows and web
applications based on Modelica models.

Through hands-on instruction, participants will learn how to integrate Python with Modelica to
automate tasks, visualize results, and build interactive interfaces – all within Modelon Impact.
Whether you’re looking to streamline your simulation processes, create intuitive apps for sharing
results with stakeholders, or create workflows that significantly cut down on post-processing time,
this session offers a practical starting point.

By the end of the tutorial, each attendee will have successfully created a basic workflow and a
functioning web app based on a simulation.

This is more than a coding session—it’s a launchpad for turning your engineering models into
accessible, usable tools that can drive innovation and collaboration across teams.

Expected experience of participants;
• Working knowledge of Modelica and Python

Software requirements:
• Laptop with Chrome or Microsoft Edge installed (Modelon Impact licenses will be provided by

Modelon)
• Voila installed (https://voila.readthedocs.io/en/stable/install.html)

Link to further information:
Modelon blog about this topic in practice: https://modelon.com/blog/hybrid-modeling-with-a-
reduced-order-model-and-neural-network-app/

&
16th

Conference

https://voila.readthedocs.io/en/stable/install.html)
https://modelon.com/blog/hybrid-modeling-with-a-reduced-order-model-and-neural-network-app/
https://modelon.com/blog/hybrid-modeling-with-a-reduced-order-model-and-neural-network-app/

CasADi tutorial on dynamic optimization with
FMI 3.0 Model Exchange

Joel Andersson, FMIOPT & CasADi
Joris Gillis, Yacoda & CasADi

Duration: 3 hours

Abstract:
CasADi is a versatile open-source framework for numerical optimization in general and numerical
optimal control in particular. Over the past 12 years, it has been used for numerous applications in
academia and industry.

In this tutorial, we provide a hands-on demonstration of FMI Model Exchange import and export in
CasADi. Topics covered include validated first and second order derivative calculation, forward and
adjoint sensitivity analysis, finding steady-state solutions and model predictive control.

Bring your laptop for the exercises, offered in Python and Matlab.

Expected experience of participants;
● Basic programming skills in Python or MATLAB.
● Interest in numerical optimization.

Software requirements:
● Laptop with Python or MATLAB.
● Python only: rights to install python wheels (e.g. pip, conda, ...)
● Instructions on how to install necessary software will be provided live.

Link to further information:
See casadi.org for more information

https://web.casadi.org/

eFMI®: A beginner’s overview and hands-on

Christoff Bürger, Dassault Systèmes

Duration: 2h, 45min

Abstract:

This tutorial demonstrates the current state-of-the-art of available eFMI® tooling. Participants will get a

very high-level overview of the eFMI® workflow from acausal physics models in Modelica® down to

embedded target code and a hands-on experience of it for selected Modelica® examples. The generated

eFMUs and their various intermediate model representations are investigated, focusing on the non-

functional quality criteria satisfied by the generated solutions, like traceability within eFMUs, MISRA C:2023

compliance of generated production code and other code quality criteria like static memory allocation and

error handling.

Compared to the tutorial at the last International Modelica Conference in 2023, we will investigate more

advanced examples like hybrid physics and neural network (NN) models where unknown non-linear physics

are modeled using NN surrogate models well integrated with known physics (so called physics-enhanced

neural ordinary differential equations, PeN-ODEs). Also the latest eFMI® improvements will be presented,

like tooling to import eFMI® Production Code in MATLAB®/Simulink®, the new standard library of GALEC

built-in functions and others.

Expected experience of participants;

• No previous experience with eFMI®.

• Moderate knowledge of Modelica®.

• Good understanding of physics/equation-based modeling.

• Little/moderate knowledge of the embedded domain and its challenges.

Software requirements:

• Participants have to bring their own computer with Windows 10 or 11, 64-Bit, x86.

• Required software will be provided few days before via download and at the tutorial via USB stick.

• Time limited licenses (Dymola®, Software Production Engineering) valid throughout the conference
week are provided.

• To provide the download links, participants have to register for the tutorial.
Please write an e-mail to Christoff.Buerger@3ds.com (Modelica Association Project eFMI® project
leader) that you like to participate.

Link to further information:

• Official eFMI® website: https://www.efmi-standard.org/

• Previous tutorial at the 15th International Modelica Conference: https://youtu.be/oCDH-8mXeNw

https://www.efmi-standard.org/
https://youtu.be/oCDH-8mXeNw

Exporting and importing an FMU using C code
Torsten Sommer, Dassault Systèmes Deutschland GmbH
Andreas Nicolai, Umwelt- und Ingenieurtechnik GmbH Dresden

Duration: 3 hours

Abstract:
In this tutorial we show how to write a simple FMI 3.0 implementation for a Co-Simulation FMU in C
code. Starting with a minimalistic code framework we explain the implementation of all required
functions and give best-practice recommendations on implementing error handling. The first part of
the tutorial session is completed by building the FMU and simulating it in an FMI master program.

Next we present the steps on how to import an FMU into a software. Again, focus lies on
implementation of the necessary functions and implementation of robust error handling. The FMU
created in the first part is imported and run through a prepared simulation loop. Using the debugger
we follow the function calls and develop an understanding of how the FMI master interacts with the
FMU and how data is being exchanged.

We show how to build the FMU and the master program using platform-specific compiler tool chains.
Participants can use their own development environment or use a prepared online compiler and
development environment.

Expected experience of participants;
• A basic understanding of the Functional Mock-up Interface and the C programming language

Software requirements:
• A laptop with Linux, macOS, or Windows

Link to further information:
https://github.com/modelica/fmi-import-export-tutorial-2025/ (currently under development)

&
16th

Conference

https://github.com/modelica/fmi-import-export-tutorial-2025/

FMI Beginners Tutorial - Exporting, Simulating, and Co-Simulating FMUs

Christian Bertsch, Bosch, Modelica Association Project FMI
Cláudio Gomes, Aarhus University, Denmark
Maurizio Palmieri, University of Pisa, Italy

Duration: 3 hours

Abstract:

The Functional Mock-up Interface (FMI) standard plays a central role in enabling interoperability
between simulation tools, particularly in cyber-physical and embedded system development. This
tutorial introduces the core concepts of FMI and provides hands-on experience in exporting,
simulating, and co-simulating Functional Mock-up Units (FMUs). Designed for both beginners and
intermediate users, the tutorial is divided into three main sessions.
The first session presents the motivation and history of FMI, key technical concepts, and an overview
of FMI 3.0, followed by live demonstrations of FMU export using Dymola and Simulink. The second
session dives into working with FMUs using Python and the FMPy library, including validation,
simulation, and integration with Jupyter notebooks. The final session introduces participants to the
INTO-CPS Application for building co-simulations involving multiple FMUs, highlighting both graphical
and command-line workflows, and demonstrating the impact of co-simulation parameters on
accuracy and stability.
The tutorial concludes with a joint session summarizing the role of FMI in digital twins and highlighting
real-world applications. Throughout the tutorial, attendees will have opportunities to ask questions
and follow along with guided examples and shared materials.

Expected experience of participants;
• Basic familiarity with simulation concepts
• Some programming experience (e.g., in Python)
• Optional: Experience with Simulink, Dymola, or co-simulation tools is beneficial but not required

Software requirements:
To follow the hands-on parts of the tutorial, participants should have the following installed:

• Python with fmpy[complete] (installation guide)
• Optional: Matlab/Simulink
• Optional: Java (version 11 recommended) and INTO-CPS Application
• Optional: a Modelica tool such as OpenModelica or Dymola to export FMUs.
• A Google account to use Google Colab for co-simulation notebooks

Link to further information:
More information and tutorial materials can be found on the FMI Tutorial GitHub Repository

&
16th

Conference

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FCATIA-Systems%2FFMPy%23installation&data=05%7C02%7Cchristian.bertsch%40de.bosch.com%7Cf13e5e1ad38848b368cf08dd8d72dc9e%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C638822246638451476%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=LkNh9iiywWv4CpqotSccOQQg4xC7tI6wY0fOvmpjjCY%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fse.mathworks.com%2Fproducts%2Fsimulink.html&data=05%7C02%7Cchristian.bertsch%40de.bosch.com%7Cf13e5e1ad38848b368cf08dd8d72dc9e%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C638822246638480198%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=ntRTxrz79jPDFW6QKPLq4hYbL4GV2X4ywb2uGakQC60%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fyoutu.be%2FHkWh-PubYQo&data=05%7C02%7Cchristian.bertsch%40de.bosch.com%7Cf13e5e1ad38848b368cf08dd8d72dc9e%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C638822246638506867%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=UCj%2FidILk68H5R4D8yAqdtmGSAsr%2F2rEMkaT2MpzH2w%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fopenmodelica.org%2F&data=05%7C02%7Cchristian.bertsch%40de.bosch.com%7Cf13e5e1ad38848b368cf08dd8d72dc9e%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C638822246638531652%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=iruYjK0FYn89uBSy2lC4YS2D65tIeeTBYC4Cv%2BEJFA4%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.3ds.com%2Fproducts%2Fcatia%2Fdymola&data=05%7C02%7Cchristian.bertsch%40de.bosch.com%7Cf13e5e1ad38848b368cf08dd8d72dc9e%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C638822246638550474%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=it2f66wzkkKvfm0vyg8R1N9tOh92mLHizUrifi%2FGhLU%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcolab.research.google.com%2F&data=05%7C02%7Cchristian.bertsch%40de.bosch.com%7Cf13e5e1ad38848b368cf08dd8d72dc9e%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C638822246638574108%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=YXmvOJfzWUWgDRKnX0NErirXg7MnP5vhqEq6juH8XYI%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fmodelica%2Ffmi-beginners-tutorial-2025&data=05%7C02%7Cchristian.bertsch%40de.bosch.com%7Cf13e5e1ad38848b368cf08dd8d72dc9e%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C638822246638595297%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=QUDTBfGwQxno%2FFc87AUE5id82KthNRfiWrGfmK1JnlM%3D&reserved=0

FMUGym: From Uncertainty-Aware Simulation
to Learning-Based Control with FMI and Python

Konstantin Wrede, Fraunhofer Institute for Integrated Circuits
Christoph Steinmann, TU Dresden

Duration: 2 hours

Abstract:
Classical system identification often falls short when modeling nonlinear systems such as robot
actuators or HVAC systems, especially under real-world conditions where measurement noise and
input disturbances are unavoidable. These challenges highlight the need for control strategies that
are not only accurate but robust to uncertainties.
This tutorial offers a hands-on introduction to FMUGym (https://github.com/Fraunhofer-IIS/fmugym),
an open-source Python package for system simulation and control design under uncertainties.
FMUGym leverages co-simulation of Functional Mock-up Units (FMUs) exported from tools such as
OpenModelica or Dymola and provides interfaces compliant with the Gymnasium standard, enabling
reinforcement learning (RL) environments where FMUs serve as the control plant.

Participants will work through three practical stages using FMUGym:

1. Conducting a Monte Carlo simulation on a nonlinear dynamic system to analyze the impact
of parameter uncertainties,

2. Designing a classical feedback controller to stabilize the uncertain system, and

3. Training an RL agent — using libraries such as Stable-Baselines3 — to optimize control
performance in the presence of input/output noise and parameter variations.

Attendees will leave with a functional toolchain for uncertainty-aware control design combining
FMUs, Python, and RL libraries. This tutorial is ideal for practitioners and researchers familiar with
Python who are interested in bridging system simulation with modern, learning-based control
strategies.

Expected experience of participants;
• Basic knowledge of Python and Control Systems

Software requirements:
• Windows/Linux(/Mac) machine with Python >=3.10 installed, stable internet connection

Link to further information:
https://github.com/Fraunhofer-IIS/fmugym

&
16th

Conference

https://github.com/Fraunhofer-IIS/fmugym
https://github.com/Fraunhofer-IIS/fmugym

Introduction to Modeling, Simulation, Debugging,
and Interoperability with Modelica and
OpenModelica

Peter Fritzson, Linköping University, Open Source Modelica Consortium
Lena Buffoni, Linköping University and St Anna IT Research Institute
Adeel Asghar, St Anna IT Research Institute

Duration: 3 hours

Abstract:
This tutorial gives an introduction to the Modelica language, the OpenModelica environment, and an
overview of modeling and simulation in a number of application areas. Some advanced features of
OpenModelica will be presented, including debugging, profiling, clocked synchronous support, real-
time embedded code generation, OMPython, OMJulia, FMI export, etc. A number of hands-on
exercises will be done during the tutorial, both graphical modeling using the Modelica Standard
Library (MSL) and textual modeling. Bring your laptop for exercises.

Expected experience of participants;
• No prior Modelica experience needed.

Software requirements:
• OpenModelica supports Linux, Windows and Mac systems, Docker, VMBox and it is also possible

to access Linux installations on the web via the browser.

Link to further information:
https://www.openmodelica.org

https://openmodelica.org/images/M_images/250204-ModelicaTutorial-PeterFritzson-AdrianPop-
MODPROD-2025.pdf

&
16th

Conference

https://www.openmodelica.org/
https://openmodelica.org/images/M_images/250204-ModelicaTutorial-PeterFritzson-AdrianPop-MODPROD-2025.pdf
https://openmodelica.org/images/M_images/250204-ModelicaTutorial-PeterFritzson-AdrianPop-MODPROD-2025.pdf

Modelica in the Browser: Modeling, Simulation
and Web App Integration for Custom UI
Hilding Elmqvist, Mogram AB, Sweden
Martin Otter, DLR-FK, Germany

Duration: 3 hours

Abstract:

Modiator (Modelica Instant Simulator) is a simulator for a subset of Modelica with some extensions.
The compilations and simulations can run in the browser on desktops, laptops, tablets, mobiles, or
using node.js to run on IoT devices or on the cloud. Modiator is based on pure JavaScript modules with
the simulator based on Sundials compiled into WebAssembly. Modiator UI has a library browser,
drag&drop Modelica diagram editing, Modelica text editor, plotting, Monte Carlo simulator and
analyzer, 3D animation, etc.

During the tutorial, the participants will be able to start develop a Modelica web app simulator with a
specialized user interface for a certain model/domain. The modular architecture and API of Modiator
will be explained. A development environment will be set up, for example, using VS Code for the web
(i.e. no installation needed) and the participants will build a specialized user interface using the
Modiator modules. The specific user Modelica model can be developed using the Modiator UI and
tuned with the help of the Monte Carlo simulator and analyzer. A web app template will be provided
which calls the Modiator API to compile and simulate Modelica models. The participants will adapt
this template to get a desired user interface for experimenting with their specific model. Alternatively,
AI tools, such as GitHub Copilot, can be used to produce a first Modelica model of the application
and a first version of the HTML and JavaScript code of the web app.

Expected experience of participants:
• Some know-how of Modelica, JavaScript and HTML is beneficial.

Software requirements:
• A Web browser (Chromium-based browser preferred, e.g. Chrome or Edge).

&
16th

Conference

Modeling and Simulation of profitableness analyses in
Modelica – industrial energy system meets variable
energy prices
M.Sc. Martin Leuschke, EA Systems Dresden GmbH (martin.leuschke@ea-energie.de)

Duration: 1,5 hours

Abstract:
Modelica is now a very sophisticating modeling language that is used by engineers worldwide in multi-
physical design processes. However, technical feasibility is only one part of the decision-making
process, especially in industry. There, engineers need to consider both technical optimality and
profitability in almost all design steps.

These already complex tasks are made even more complex by the variable pricing of energy
consumption, grid-feed and peak power demand. Customized control algorithms can overcome these
challenges by using available storage capacities and flexible system operation times. However, this
requires an easy-to-use toolset with intuitive models and consistent accuracy and acceptable
simulation speed.

This tutorial uses a typical industrial application with process and building heat demand as well as
electricity consumption to demonstrate the benefits of modeling a complex system with controls and
variable energy prices in a Modelica model. All necessary system components are modeled using the
Modelica-based Blue Energy library. Modelon's Impact platform provides the flexible environment that
engineers and simulation experts can use together to collaborate on evaluating the challenging issues
in a consistent workflow. Modelica thus becomes an essential part of the design process, integrating
seamlessly into companies' decision-making processes.

Expected experience of participants:
• Engineers and researchers with focus on energy system design and advanced system controls
• In-depth knowledge of the energy markets and the energy industry

Software requirements:
• Access to Modelon Impact Cloud with prepared Workspace
• Please send an e-mail to licensing@blue-energy-library.com so that we can provide you with

access in advance

Link to further information:
https://www.blue-energy-library.com/

https://www.blue-energy-library.com/

Modeling and Simulation of Robotic Arm
Dynamics and Control in Modelica with
MWORKS
Xueqi Ma, Suzhou Tongyuan Software&Control Technology Co., Ltd.

Duration: 2.5 hours

Abstract:

This tutorial introduces the complete development workflow for robotic arm systems using the
Modelica language and the MWORKS platform. Participants will systematically explore methodologies
to: model multi-domain physical systems, design control algorithms, execute simulations, perform
design optimization, and generate embedded code—all within a cohesive model-based design (MBD)
framework.

MWORKS, developed by Tongyuan, delivers an integrated environment for comprehensive system
modeling, simulation, and deployment. Through practical hands-on examples, the tutorial
demonstrates effective application of Modelica and MWORKS to co-develop physical and control
systems, enabling accelerated design iterations with rigorous system-level verification and validation.

This session is ideally suited for engineers, researchers, and educators working in robotics,
mechatronics, automotive, or any technical domain featuring intelligence embedded within physical
systems.

Expected experience of participants;
• Basic knowledge of Modelica and Julia language syntax

Software requirements:
• Operating System: Windows 10 or later.
• Portable (USB drive) versions of MWORKS.Sysplorer and MWORKS.Syslab will be provided on-site;

no installation required.

Link to further information:
https://en.tongyuan.cc (Available after August 15th)

&
16th

Conference

https://en.tongyuan.cc/

Modeling complex thermal architectures using
the DLR ThermoFluid Stream Library

Raphael Gebhart, DLR,
Institute of System
Architectures in Aeronautics
Dirk Zimmer, DLR,
Institute of Robotics
and Mechatronics

Duration: 3 hours

Abstract:

The DLR ThermoFluid Stream Library introduces a novel computational concept for simulating complex

thermodynamic architectures. This concept is able to solve many well-known problems during initialization

and simulation of thermo-fluid systems by avoiding algebraic loops and large nonlinear systems of

equations.

In this tutorial, we will begin with an introduction to the core methodology behind the library, followed by

an overview of its structure and the most essential components. This will help participants understand the

modeling philosophy and capabilities of the library.

After the short introduction of the library, we will build up a thermal management system for an electric

vehicle step-by-step in a hands-on example which will be easy to follow. The system will include multiple

operating modes with reconfigurable fluid paths, as well as a fully integrated vapor-compression cycle. We

will always provide intermediate results of the example system, to make sure all participants can stay

engaged and can follow the tutorial until the end. Alongside the hands-on example, there will be enough

room for discussions about modeling heuristics regarding the library and best practices in modeling thermal

system architectures in general. We will also highlight recent updates to the library and invite participants

to discuss future developments, including potential features and improvements. By the end of the tutorial,

participants will have a solid understanding of how to work with the DLR ThermoFluid Stream Library to

build up thermal system architectures.

Expected experience of participants;

• Used to Modelica. No further requirements needed.

Software requirements:

• All Open Source: Modelica Standard Library, ThermofluidStream Library, Tutorial Package

• Any Modelica IDE (Dymola, Open Modelica, ...)

Link to further information:

https://github.com/DLR-SR/ThermofluidStream

https://github.com/DLR-SR/ThermofluidStream

Regression Testing with Dymola and the Testing
Library

Marco Keßler, Dassault Systèmes Austria GmbH

Duration: 2.5 hours

Abstract:
In this tutorial we use the Testing library (shipped with Dymola) to create unit tests and perform
regression tests on Modelica classes. The tutorial addresses both, new and experienced users of the
Testing library. New users learn how to get started and get and overview of the library’s feature set.
Participants which already use it, hear about the latest improvements, advanced features and our
learnings on how to build reliable test models.

We elaborate on the benefits of test-driven development and how to do it in Modelica. For this
purpose, various test methods in the Testing library are shown and explained, especially the novel
clock-based comparison blocks. Together, we create test cases and execute them within Dymola. We
discuss relevant signals for tests and recommend test methods and tolerances.

Finally, we run the tests in PowerShell with the new PSTesting package which is shipped with the
Testing library. From there it’s only a small step to run nightly tests on build automation servers like
Jenkins and Gitlab CI. Users which are interested in this specific topic get guidance how to setup such
a server and how to test Modelica libraries with it.

Expected experience of participants:
• Fundamental Modelica and Dymola knowledge
• Fundamental git knowledge

Software requirements:
• Dymola 2025x Refresh 1 Fixpack 1

• Installer will be provided on USB sticks
• Testing library is installed with Dymola and requires no extra license
• Dymola license is not needed for small test models

• PowerShell 7.5 (for PSTesting):
• Windows installation instructions
• Linux installation instructions

Link to further information:
Testing Modelica classes on Jenkins, Gitlab and in local terminals (post in CATIA Systems Simulation
Community)
Testing Library: A Look Inside (blog post by Claytex)

&
16th

Conference

https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.5
https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.5
https://r1132100503382-eu1-3dswym.3dexperience.3ds.com/community/swym:prd:R1132100503382:community:22?content=swym:prd:R1132100503382:communitypost:WwqQtGHVRSOuYkONaiBZ7Q
https://r1132100503382-eu1-3dswym.3dexperience.3ds.com/community/swym:prd:R1132100503382:community:22?content=swym:prd:R1132100503382:communitypost:WwqQtGHVRSOuYkONaiBZ7Q
https://www.claytex.com/tech-blog/testing-library-a-look-inside/

System Structure and Parameterization

Dag Brück, Dassault Systèmes AB
Peter Lobner, eXXcellent solutions GmbH
Antoine Vandamme, Robert Bosch GmbH

Duration: 3 hours

Abstract:
System Structure and Parameterization (SSP) is a standard for combining simulation models,
parameter sets, requirements, test and documentation into one coherent unit that can be processed
by several complementary tools. From this starting point, the application of SSP has expanded to the
definition of system architecture and to the scope of complete system verification and validation.

Key topics presented:

• What is SSP?
• Hands-on session with easySSP.
• Extending the scope to creadible modeling process and more advanced simulation.
• Closing and Q&A.

A large part of the tutorial will be focused on hands-on usage of SSP for system definition and
simulation using easySSP.

Expected experience of participants;
• General knowledge of system modeling.
• FMI (optional).

Software requirements:
• Laptop with WiFi and a modern web browser. Please connect to the IMOC network in advance.
• Hands-on part will be run on a cloud server, no software installation required.

&
16th

Conference

Tutorial on FMI3 co-simulation with UniFMU
Santiago Gil, Aarhus University, Denmark
Cláudio Gomes, Aarhus University, Denmark
Yon Vanommeslaeghe, University of Antwerp, Belgium

Duration: 3 hours

Abstract:
UniFMU is an open-source command line tool, which provides a universal mechanism for
implementing FMUs in popular languages that would otherwise not be able to produce C-
compatible binaries. Currently, UniFMU has support for creating FMUs following FMI2 and
FMI3 co-simulation in Python, Java, and C#. When used in combination with a co-simulation
orchestration algorithm, UniFMU also has support for running distributed co-simulations.

In this tutorial, we want to showcase the usability of FMI3 co-simulation including clocks and
clocked variables using UniFMU and its capabilities. We will have a general introduction to
FMI3, and then, we will use a representative and simple case study, the incubator, where we
will set up the incubator as a composition of FMI3 FMUs.

Attendees will be able to interact, update, and execute an FMI3 co-simulation that uses step-
and event-mode. The co-simulation scenario replicates the functionality of the incubator with
three coupled FMUs, namely, Plant, Controller, and Supervisor.

Expected experience of participants;
 Have a basic understanding of co-simulation.
 Have a basic understanding of Python.

Software requirements:
 Be able to execute commands from the command line.
 Have Python and pip installed on their machines with the corresponding path settings to

run these from the terminal.
 Be able to create Python virtual environments and install new Python packages.

Link to further information:
https://github.com/INTO-CPS-Association/example-incubator-fmi3

&
16th

Conference

https://github.com/INTO-CPS-Association/unifmu
https://github.com/INTO-CPS-Association/example-incubator-fmi3
https://github.com/INTO-CPS-Association/example_digital-twin_incubator

Using SMArtInt+ for machine-learning and easy
integration of artificial intelligence in Modelica
M. Sc. Tim Hanke, XRG Simulation GmbH

Duration: 3 hours

Abstract:
There is an increasing need for hybrid models consisting of physical and machine-learning models. XRG has
developed the SMArtInt+ Library, that enables the easy generation and integration of neural networks from
different sources and types. This tutorial provides a hands-on introduction to the use of this library. The main
use case is the creation of a hybrid model for a thermodynamic application.

Key topics include the generation of training data using SMArtInt+’s DataGenerator and the definition and
training of neural networks using the NetworkGenerator. The DataGenerator allows for the generation of
training data for physical Modelica models or model components by varying input parameters via Latin
Hypercube Sampling (LHS) and recording the corresponding output values.

For the training process, the neural network architecture is defined directly in Modelica using predefined layer
models. The library provides a range of useful layers for building neural networks, including dense layers,
scalers, dropout layers as well as custom layers, for instance for constructing dimensionless neural networks.
An overview of the various layer types and their role within neural network architectures is provided in this
tutorial. The training is then performed automatically via a precompiled Python backend. Participants will
explore strategies such as early stopping, learning rate scheduling, and hyperparameter tuning to improve
training outcomes and assess model quality.

A central part of the tutorial is the integration of the trained neural networks into Modelica models using the
SMArtInt+ Interface-Blocks, allowing seamless substitution of physical subcomponents with learned
surrogates. To enhance understanding of the interface block, the integration of the trained network into
Modelica is illustrated using both automated methods via the ModelGenerator as well as manual
implementation.

Additionally, several concepts of hybrid modeling that combine physical and data-driven approaches are
introduced, with a strong focus on the practical integration of trained neural networks within the Modelica
environment.

Finally, model performance is evaluated through comparisons with the original physical model, including
scenarios that trigger extrapolation and make use of SMArtInt+’s built-in ExtrapolationWarnings.

Expected experience of participants;
• No prior knowledge of neural networks/AI or Python required and basic Modelica knowledge

Software requirements:
• Windows 10 or 11 with Dymola 2025 Refresh 1 or OpenModelica 1.26 (backup)

Link to further information:
https://xrg-simulation.de/en/seiten/smartint

&
16th

Conference

https://xrg-simulation.de/en/seiten/smartint

	Tutorial_Abstract_Modelon
	Beyond Simulation: Building Workflows and Web Applications with Modelica and Python
	Duration: 2.5-3 hours
	Abstract:
	Modelica is a powerful language for modeling complex physical systems—but when combined with Python, its potential expands dramatically. This tutorial is designed to show attendees how to bridge the gap between simulation and practical application by ...
	Through hands-on instruction, participants will learn how to integrate Python with Modelica to automate tasks, visualize results, and build interactive interfaces – all within Modelon Impact. Whether you’re looking to streamline your simulation proces...
	By the end of the tutorial, each attendee will have successfully created a basic workflow and a functioning web app based on a simulation.
	This is more than a coding session—it’s a launchpad for turning your engineering models into accessible, usable tools that can drive innovation and collaboration across teams.
	Expected experience of participants;
	Software requirements:
	Link to further information:

	Tutorial_Abstract_casadi
	Duration: 3 hours
	Abstract:
	Expected experience of participants;
	Software requirements:
	Link to further information:

	eFMI-tutorial-abstract
	Exporting and importing an FMU using C code
	Duration: 3 hours
	Abstract:
	Expected experience of participants;
	Software requirements:
	Link to further information:

	Tutorial_Abstract_FMI_Beginners_Tutorial
	Duration: 3 hours
	Abstract:
	The Functional Mock-up Interface (FMI) standard plays a central role in enabling interoperability between simulation tools, particularly in cyber-physical and embedded system development. This tutorial introduces the core concepts of FMI and provides ...
	Expected experience of participants;
	Software requirements:
	Link to further information:

	Tutorial_Abstract_FMUGym
	Duration: 2 hours
	Abstract:
	Classical system identification often falls short when modeling nonlinear systems such as robot actuators or HVAC systems, especially under real-world conditions where measurement noise and input disturbances are unavoidable. These challenges highligh...
	Participants will work through three practical stages using FMUGym:
	1. Conducting a Monte Carlo simulation on a nonlinear dynamic system to analyze the impact of parameter uncertainties,
	2. Designing a classical feedback controller to stabilize the uncertain system, and
	3. Training an RL agent — using libraries such as Stable-Baselines3 — to optimize control performance in the presence of input/output noise and parameter variations.
	Attendees will leave with a functional toolchain for uncertainty-aware control design combining FMUs, Python, and RL libraries. This tutorial is ideal for practitioners and researchers familiar with Python who are interested in bridging system simulat...
	Expected experience of participants;
	Software requirements:
	Link to further information:

	OpenModelicaIntroduction
	Duration: 3 hours
	Abstract:
	Expected experience of participants;
	Software requirements:
	Link to further information:

	Tutorial_Abstract_Elmqvist_Otter
	Duration: 3 hours
	Abstract:
	Modiator (Modelica Instant Simulator) is a simulator for a subset of Modelica with some extensions. The compilations and simulations can run in the browser on desktops, laptops, tablets, mobiles, or using node.js to run on IoT devices or on the cloud....
	During the tutorial, the participants will be able to start develop a Modelica web app simulator with a specialized user interface for a certain model/domain. The modular architecture and API of Modiator will be explained. A development environment wi...
	Expected experience of participants:
	Software requirements:

	OnePageSummary_Tutorial_ModelicaConference_2025_EASD_final
	Tongyuan
	Duration: 2.5 hours
	Abstract:
	Expected experience of participants;
	Software requirements:
	Link to further information:

	TUTORI~3
	TestingTutorial_Abstract
	Duration: 2.5 hours
	Abstract:
	Expected experience of participants:
	Software requirements:
	Link to further information:

	SSP_Tutorial_Abstract
	Duration: 3 hours
	Abstract:
	Expected experience of participants;
	Software requirements:

	Tutorial_FMI3_UniFMU
	
	Duration: 3 hours
	Abstract:
	Expected experience of participants;
	Software requirements:
	Link to further information:

	Tutorial_Abstract_SMArtInt^M
	Duration: 3 hours
	Abstract:
	Expected experience of participants;
	Software requirements:
	Link to further information:

	Tutorial_Abstract_Suzhou_Tongyuan_MWORKS.pdf
	Duration: 2.5 hours
	Abstract:
	This tutorial introduces the complete development workflow for robotic arm systems using the Modelica language and the MWORKS platform. Participants will systematically explore methodologies to: model multi-domain physical systems, design control algo...
	MWORKS, developed by Tongyuan, delivers an integrated environment for comprehensive system modeling, simulation, and deployment. Through practical hands-on examples, the tutorial demonstrates effective application of Modelica and MWORKS to co-develop ...
	This session is ideally suited for engineers, researchers, and educators working in robotics, mechatronics, automotive, or any technical domain featuring intelligence embedded within physical systems.
	Expected experience of participants;
	Software requirements:
	Link to further information:

