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Use Case I: Tsunami Early Warning System@INGV

I Task: Predict Wave Height Time Series at different Buoy
locations in Real Time

I Basis of Tsunami Evacuation Forecast.
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Use Case II: Race Car Design@Dallara

I Optimize Car Design.

I Predict Aerodynamic body force changes by changing specific
parts.
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How are these problems solved currently ?
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Step I: Mathematical Modeling

I Model Physical Phenomena with Partial Differential Equations

I PDEs are Language of Nature

Schrödinger Kohn-Sham Reaction-Diffusion Phase-Field

Euler Navier-Stokes ++ MHD++ Einstein

I Immense diversity of Physical processes

I Very wide range of spatio-temporal scales
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Step II: Numerical Simulation

I Not possible to find solution formulas for PDEs.

I Reliance on Numerical Methods to approximate PDEs on
computers.
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Numerical Methods are very Successful

I Including@CAMlab
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What about the Use Cases ?

I Tsunami Simulation with Shallow-Water Equations

I Flow past Race car simulation with Navier-Stokes Equations
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Where is the Catch ?
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Issues with Numerical Methods I: Computational Cost

I PDE solvers can be very expensive,

I Many-Query Problems: UQ, Design, Inverse Problems.
I Simulation of Navier-Stokes at 10243:

I With Azeban on Piz Daint.
I Single Run: 94 GPU hours (4512 CPU hours)
I Ensemble simulation: 96256 node hours
I Cost: Approx 500K USD.
I Solve PDEs fast
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What about the Examples ?

I Single Tsunami Simulation takes > 1 hour !!

I Flow past Race car simulation requires 500 node hours per
shape !!
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Issues with Numerical Methods II: Unknown Physics

I Missing Physics not just undetermined parameters.

I Manifestation of Sim2Real gap.

I Holds True for most real-world applications.

I Still have Data for the underlying Problem

I Learn PDE Solutions from Data + Physics
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The age of AI

I Exponentially more Compute aka GPUs :-)

I Huge Data

I Deep Neural Networks

X = Z0 Z1 Z2 Z3
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• Can Neural Networks solve PDEs ?
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What are Deep Neural networks ?

X = Z0 Z1 Z2 Z3
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I L∗(z) = σo �CK � σ�CK−1 . . . . . . . . .� σ�C2 � σ�C1(z).

I At the k-th Hidden layer: zk+1 := σ(Ckz
k) = σ(Wkz

k + Bk)

I Tuning Parameters: θ = {Wk ,Bk} ∈ Θ,

I σ: scalar Activation function: ReLU, Tanh

I Random Training set: S = {zi}Ni=1 ∈ Z , with i.i.d zi
I Use SGD (ADAM) to find Target L ≈ L∗ = L∗θ∗

θ∗ := argmin
θ∈Θ

N∑
i=1

|L(zi )− L∗θ(zi )|p,
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Physics Informed Neural Networks

I Variants of PINNs stem from Dissanayake, Phan-Thien, 1994.

I Also in Lagaris et al, mid 1990s.

I Reintroduced by Raissi, Perdikaris, Karniadakis, 2017.

I Extensively developed by Karniadakis and collaborators.

I 10000s of papers on PINNs already.
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PINNs for the PDE D(u) = f

I For Parameters θ ∈ Θ, uθ : D 7→ Rm is a DNN, with uθ ∈ X ∗

I Aim: Find θ ∈ Θ such that uθ ≈ u (in suitable sense).

I Compute PDE Residual by Automatic Differentiation:

R := Rθ(y) = D (uθ(y))− f(y), y ∈ D Rθ ∈ Y ∗, ∀θ ∈ Θ

I PINNs are minimizers of ‖Rθ‖pY ∼
∫
D
|Rθ(y)|p dy

I Replace Integral by Quadrature !

I Let S = {yi}1≤i≤N be quadrature points in D, with weights wi

I Could be Random, Sobol, Grid points (Gauss rules)

I PINN for approximating PDE is defined as u∗ = uθ∗ such that

θ∗ = argmin
θ∈Θ

N∑
i=1

wi |Rθ(yi )|p
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Heat Eqn: ut = uxx with 0-BC and u(x , 0) = ū(x) IC

I Training Set: S = Sint ∪ Stb ∪ Ssb Randomly chosen.

I Deep Neural networks : (x , t) 7→ uθ(x , t), θ ∈ Θ.
I Temporal boundary residual: Rtb,θ = uθ(·, 0)− ū
I Spatial boundary residual: Rsb,θ = uθ|∂D .
I Interior PDE Residual: Rint,θ = ∂tuθ − ∂xxuθ
I Evaluate PDE Residual by Automatic Differentiation
I Loss function:

J =
1

Ntb

Ntb∑
n=1

|Rtb,θ(xn)|2+
1

Nsb

Nsb∑
n=1

|Rsb,θ(xn, tn)|2+
1

Nint

Nint∑
n=1

|Rint,θ|2.
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Why PINNs are great ?: I

I Very easy to Code !!

I A few lines in PyTorch

I Don’t need Grids !!

Siddhartha Mishra AI for PDEs



Numerical Results: (SM, Molinaro, Tanios, 2021)

I Heat Equation:

Dimension Training Error Total error

20 0.006 0.79%

50 0.006 1.5%

100 0.004 2.6%

I Black-Scholes type PDE with Uncorrelated Noise:

Dimension Training Error Total error

20 0.0016 1.0%

50 0.0031 1.5%

100 0.0031 1.8%

I Heston option-pricing PDE

Dimension Training Error Total error

20 0.0064 1.0%

50 0.0037 1.3%

100 0.0032 1.4%
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Radiative Transfer Equations

I 2d + 1-dim Integro-Differential PDE for Intensity

1

c
ut + ω · ∇u + (k(x , ν) + σ(x , ν)) u

− σ(x , ν)

sd

∫
R+

∫
S

Φ(ω, ω′, ν, ν ′)udω′dν ′ = f (x , t, n, ν).

I High-dimensional, non-local, mixed-type, multiphysics

I PINNs applied and bound derived in SM, Molinaro 2021.
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Numerical Results

2-D, Intensity 2-D, Boundary 6-D, Inc. Radiation 6-D, Radial flux

Dimension Network Size Error Training Time

2 24× 8 0.3% 57 min

6 20× 8 2.1% 66 min
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An Industrial case study

I PINN simulation of Laser Powder Bed Fusion

I Key Component of 3-D Printing

I Traditional FEM Simulation: 4 hrs.

I PINNs of Hosseini et al, 2022: 2× 10−6 secs with 4% Error.
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Why do PINNs work or do they ?

I Based on sound theory.

I Error Bounds of SM, Molinaro, De Ryck et.al 2021-2024:

I For generic PDE: D(u) = f :

‖u− uθ‖ ∼ Cpde (u, uθ)
[
ET (θ) + Cquad(uθ)N−α

]
I Cpde depends on ‖∇u‖.
I Can blow up for large gradients.
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Viscous Burgers’: ut + div f (u) = ν∆u

I Error E ≤ CeCT (ET + CqN
−α), C = C (‖∇uν‖L∞)

I ‖∇uν‖L∞ ∼ 1√
ν
⇒ Error can blow up near shocks !!

ν = 10−3, Sh ν = 0, Sh ν = 10−3, RF ν = 0, RF

ν E (Shock) E (Rarefaction)

10−3 1.0% 2.2%

10−4 11.2% 1.6%

0 23.1% 1.2%
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What about Training Error ?

I Rigorous Error estimate for PINNs for the PDE D(u) = f :

‖u− uθ‖ ∼ Cpde (u, uθ)
[
ET (θ) + Cquad(uθ)N−α

]
I Training Error is a blackbox

I We have that min
θ

ET (θ) ≤ ε
I But can we train to reach close to the global minimum with

Gradient Descent ?

I De Ryck, SM et al (2024) showed that:

N(δ) ∼ O(κ(A) log(1/δ)), κ(A) =
λmax(A)

λmin(A)
, A ∼ D∗D

I Convergence of PINNs depends on Conditioning of
Hermitian-Square !!

I Ex: if D = −∆, then A = ∆2
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Training PINNs is ill-Conditioned

• For Poisson Equation: −u′′ = −k2 sin(kx):

• For Advection Equation: ut + βux = 0
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Intrinsic Limitations of PINNs

I Don’t work on simple problems (Advection with β = 30π)):

I Let alone real use cases !!

I Preconditioning is an active research area !!

I Have to bring Data to centerstage.
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What does solving a PDE entail ?

I Finding Solution Operators of PDEs.

I Darcy PDE: −div(a∇u) = f , G : a 7→ Ga = u.

a u u0 u(T )

I Compressible Euler equations: G : u0 7→ Gu0 = u(t).

I Operator: G : X 7→ Y, dim (X,Y) =∞.

I Learn PDE Solution Operators from Data

I Underlying Data Distribution µ ∈ Prob (X)

I Draw N i.i.d samples (ai ,G(ai )) with ai ∼ µ.

I Operator Learning Task: Find approximation to G#µ

I Caveat: Neural Networks: RN 7→ RM
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Possible Solution: Neural Operators

I DNNs are Lθ = σK � σK−1 � . . . . . .� σ1

I Single hidden layer: σk(y) = σ(Aky + Bk), with y ∈ RN

I Generalize DNNs to ∞-dimensions: Kovachki et al, 2021:

I NO: Nθ = NL �NL−1 � . . . . . .�N1

I Single hidden layer;

(N`v)(x) = [Pσ]

B`(x) +

∫
D

K`(x , y)v(y)dy


I Kernel Integral Operators with Parameters B`,K`
I Nonlocal activations [Pσ] Bartolucci, SM et. al, 2023
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Convolutional Neural Operators: Raonic, SM et al, 2023

I I: Use Convolutional Kernels in Physical space

I II: Modulated Nonlocal activations for Alias-free processing.

I CNO instantiated as a modified Operator UNet
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Example: Navier-Stokes Eqns.

I Operator:

I Comparison:

I Test Errors:
Model FFNN UNet DeepONet FNO CNO
Error 8.05% 3.54% 11.64% 3.93% 3.01%

I CNO is Resolution Invariant a la Bartolucci, SM et. al, 2023
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What about Nonlinear Kernels ?

I Operator Attention: A(v)(x) =
∫
D

K (v(x), v(y))v(y)dy :

u(x) = A(v)(x) = W

∫
D

e
〈Qv(x),Kv(y)〉√

m∫
D

e
〈Qv(z),Kv(y)〉√

m dz
Vv(y)dy .

I Computational Cost is Quadratic in # (Tokens) !!

I Scaling through Vision + SWIN transformers

I scOT of Herde,SM et. al., 2024.
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Models perform very well on 2-D Cartesian Domains !!

I Extensive Empirical evaluation on RPB benchmarks.
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Caveat I: PDEs on Arbitrary Domains

I Discussion so far has only focussed on Cartesian Domains

I Discretized with Uniform Grids.

I Most Real world PDEs are on Arbitrary Domains

I Discretized with Unstructured Grids or Point Clouds

I Need to handle such Data !!
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Use Graphs + Transformers
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I Geometry Aware Operator Transformer: Wen, SM et. al, 2025

I GAOT is both accurate and efficient.
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The DrivaerNet++ Challenge

I Flow past Cars Dataset (8K Car Shapes with 2M nodes each)

I GAOT: SOTA for Surface Pressure, Shear Stress

Model GAOT FigConvNet TripNet RegDGCNN
L1 Pressure Err. 0.110 0.122 0.125 0.161
L1 Shear Err. 0.156 0.222 0.215 0.364

• CFD: 300 Node hours vs. GAOT: 0.36 seconds !!!
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The DriverML challenge

I HR-LES simulations of flow past 500 cars.

I More accurate than RANS for Drivearnet++.

I Upto 10 M surface nodes handled accurately by GAOT !!
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Flow Past an entire Aircraft

I AIAA’s NASA CRM Benchmark.
I GAOT predicts Surface Pressure+Skin Friction accurately !!
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Caveat II: PDE with Chaotic Multiscale Solutions

I 3-D Navier-Stokes with Taylor-Green initial data.

• Spectral Viscosity Method:

• Convolutional Fourier Neural Operator (C-FNO):

I All ML models trained to minimize MSE or MAE:
I Smooth out Small Scales
I Collapse to Mean

Siddhartha Mishra AI for PDEs



Why does this happen ?: Molinaro, SM et. al, 2025

I Insensitivity of Neural Networks:

Ψθ(u + δu) ≈ Ψθ(u), δu << 1

I DNNs are optimal at the Edge of Chaos: Lip(Ψθ) ∼ O(1)

I Spectral Bias of DNNs

I Bounded Gradients are essential for training with GD

I Implication ⇒ DNNs will Collapse to Mean !!

• Directly Learn the Conditional Distribution S#µ
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GenCFD algorithm of Molinaro et. al, SM, 2025

I Based on Conditional Score Based Diffusion Models

I Denoised with the Reverse SDE:

I Denoiser minimizes E‖u(tn, ū)− Dθ(u(tn, ū) + η, ū, σ)‖

• GenCFD provably approximates the Conditional Distribution !!
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Taylor-Green Results
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GenCFD works very well for Realworld Flows
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I Nozzle Jet: 3.5 hrs (LBM) vs. GenCFD: 1.45s

I Cloud-Shock: 5 hrs (FVM) vs. GenCFD: 0.45s

I Conv. Boundary Layer: 13.3 hrs (FDM) vs. GenCFD: 3.8s
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What about the Use Cases ?

I AI Tsunami Simulation takes 10−3 secs (vs. 1 hr)
I AI RaceCar Simulation takes 10−2 secs (vs. 500 Node hrs)
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Where’s the CAVEAT ?

CNO/FNO RIGNO GAOT GenCFD

I Models Scale with sample size: E ∼ N−α but with α small

I Even more pessimistic rates with theory 1

I ML models require Big Data: O(103)−O(104) training
samples per Task

I Very Difficult to obtain Data for PDEs.

I How to make models much more Sample Efficient ?

1Lanthaler, SM, Karniadakis, 2022, De Ryck, SM, 2023
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Foundation Models are the Key for Text/Vision!!
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What would a Foundation Model for PDEs look like ?

I Op: Operators need PDE + Data.

I PT: Pretraining.

I FT: Finetuning (Adaptation)
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Can it Work ?

PDEs

• Lets try it out !!
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POSEIDON

I PDE foundation model of Herde, SM et. al, 2024

I Pretrained on Euler + Navier-Stokes Eqns in 2-D.

I Finetuned on 15 Unseen Tasks

I Paper + Code: https://github.com/camlab-ethz/poseidon

I Model + Datasets: https://huggingface.co/camlab-ethz
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Summary of Performance on all Downstream Tasks
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Deep Dive: Poisson Eqn.

• Input (Source):
f
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How much Physics has been learnt in PreTraining ?

u
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Ongoing: Scaling up POSEiDON

I Increase Model Size by 4x : 2.5B Model.

I Increase Dataset Size by 10− 50 x
I Augment Model Features:

I 3D
I Unstructured (point cloud) inputs
I Genuine Multiphysics Training
I Diffusion model for multiscale problems
I PDE symbolic information
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Summary+ Outlook

I ML/AI model can be potential Neural PDE Solvers (PINNs)

I Training is intrinsically Ill-conditioned.
I ML/AI models are effective Neural PDE Surrogates:

I Neural Operators (CNO, scOT) for PDEs on Cartesian
Domains.

I Graphs+Transformers (GAOT) for Arbitrary Domains.
I Diffusion Models (GenCFD) for Multiscale, Chaotic PDEs.

I Sample Efficiency is the main challenge.

I Foundation Models (Poseidon) can address it.

I They need to be Scaled Up significantly.
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