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Use Case I: Tsunami Early Warning System@INGV
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» Task: Predict Wave Height Time Series at different Buoy
locations in Real Time

» Basis of Tsunami Evacuation Forecast.
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Use Case II: Race Car Design@Dallara

» Optimize Car Design.

» Predict Aerodynamic body force changes by changing specific
parts.
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How are these problems solved currently 7
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Step |: Mathematical Modeling

» Model Physical Phenomena with Partial Differential Equations
» PDEs are Language of Nature

Reaction-Diffusion Phase-Field

Euler Navier-Stokes +- MHD-++ Einstein

» Immense diversity of Physical processes

> Very wide range of spatio-temporal scales
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Step Il: Numerical Simulation

» Not possible to find solution formulas for PDEs.

» Reliance on Numerical Methods to approximate PDEs on
computers.

S

" = nAt

Finite Element Spectral Method
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Numerical Methods are very Successful

» Including@CAMIab
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What about the Use Cases ?

» Tsunami Simulation with Shallow-Water Equations

» Flow past Race car simulation with Navier-Stokes Equations
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Where is the Catch ?
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Issues with Numerical Methods I:

P(ug) / ‘ — * \ P(u(t))

® $ 2
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» PDE solvers can be very expensive,

» Many-Query Problems: UQ, Design, Inverse Problems.
» Simulation of Navier-Stokes at 10243:
» With Azeban on Piz Daint.
Single Run: 94 GPU hours (4512 CPU hours)
Ensemble simulation: 96256 node hours

>
| 2
» Cost: Approx 500K USD.
» Solve PDEs fast
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What about the Examples ?

» Single Tsunami Simulation takes > 1 hour !!

» Flow past Race car simulation requires 500 node hours per
shape !l
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Missing Physics not just undetermined parameters.

Manifestation of Sim2Real gap.

Still have
Learn PDE Solutions from Data + Physics
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» Holds True for most real-world applications.
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The age of Al

» Exponentially more Compute aka GPUs :-)

» Huge Data
» Deep Neural Networks

ber sBaNSE o

R
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e Can Neural Networks solve PDEs ?
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What are Deep Neural networks ?
%ﬁ e

| Hidden L

LN(2)=00CKOTOCK_g oueun... oo GO G(2).
At the k-th Hidden layer: zKt1 := o(Cez¥) = (Wi zX 4 By)
Tuning Parameters: = { W, By} € ©,

o: scalar Activation function: ReLU, Tanh

Random Training set: S = {z}N, € Z, with i.i.d z

Use SGD (ADAM) to find Target £ ~ L* = L.

vVvvyVvVvyypy

N

0% = L(z) — L(2)]P,
onain 3 16(z) = £i()
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Physics Informed Neural Networks

» Variants of PINNs stem from Dissanayake, Phan-Thien, 1994.
» Also in Lagaris et al, mid 1990s.

» Reintroduced by Raissi, Perdikaris, Karniadakis, 2017.

P> Extensively developed by Karniadakis and collaborators.

» 10000s of papers on PINNs already.
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PINNs for the PDE D(u) = f

» For Parameters 8 € ©, ug : D — R™ is a DNN, with ug € X*
» Aim: Find 6 € © such that up ~ u (in suitable sense).
» Compute PDE Residual by Automatic Differentiation:

R:=Rg(y) =D (ug(y)) —f(y), y€D RgeY", V0eO

v

PINNs are minimizers of || Ry, ~ f|9%g )|P dy

Replace Integral by Quadrature !

Let S = {yi}1<i<n be quadrature points in D, with weights w;
Could be Random, Sobol, Grid points (Gauss rules)

PINN for approximating PDE is defined as u* = ug« such that

vvyVvVyy

N
0 — : AR (v:)|P
arggwelglz;wl\ o(i)]
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Heat Eqn: u; = uy with 0-BC and u(x,0) = &(x) IC

» Training Set: § = Sint U Spp U Sep Randomly chosen.

Deep Neural networks : (x, t) — up(x,t), 6 € ©.
Temporal boundary residual: Rypg = up(-,0) — &
Spatial boundary residual: R, 9 = ug|op-

Interior PDE Residual: Rin¢ g = Ortig — Oxxlig
Evaluate PDE Residual by Automatic Differentiation
Loss function:

vyvyVvyVvyYVYyy

Ntb Nint

J= A}sztbexm +—Z|azsb9(xn, meteﬁ

Siddhartha Mishra Al for PDEs




Why PINNs are great 7: |

» Very easy to Code !!
» A few lines in PyTorch

compute_res (
f_train. require

0 utograd.grad(u, x_f_train x_f_train.shape[@], ).tol
grad_ul:

x_f_train v, _train. shape 0]

= grad_u_t -
residual

» Don't need Grids !!
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Numerical Results: (

» Heat Equation:

. 2021)

» Black-Scholes type PD

» Heston option-pricing PDE

Dimension | Training Error | Total error
20 0.006 0.79%
50 0.006 1.5%
100 0.004 2.6%
E with Uncorrelated Noise:
Dimension | Training Error | Total error
20 0.0016 1.0%
50 0.0031 1.5%
100 0.0031 1.8%
Dimension | Training Error | Total error
20 0.0064 1.0%
50 0.0037 1.3%
100 0.0032 1.4%
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Radiative Transfer Equations

» 2d + 1-dim Integro-Differential PDE for Intensity

1
Jur +w-Vu+ (k(x,v)+o(x,v))u

_ U(:’ V) //‘D(w,w',u, Vudw'dv' = f(x, t,n,v).

» High-dimensional, non-local, mixed-type, multiphysics
» PINNs applied and bound derived in SM, Molinaro 2021.

Siddhartha Mishra Al for PDEs



Numerical Results

2-D, Inten5|ty 2-D, Boundary 6-D, Inc. Radiation 6-D, Radial flux

Dimension | Network Size | Error | Training Time
2 24 x 8 0.3% 57 min
6 20 x 8 2.1% 66 min
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An Industrial case study

» PINN simulation of Laser Powder Bed Fusion

» Key Component of 3-D Printing

» Traditional FEM Simulation: 4 hrs.
» PINNSs of Hosseini et al, 2022: 2 x 107° secs with 4% Error.
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Why do PINNs work or do they 7

v

Based on sound theory.
» Error Bounds of SM, Molinaro, De Ryck et.al 2021-2024:
» For generic PDE: D(u) = f:

Ju — gl ~ Cpae (u,up) [E7(0) + Couaa(ug) N ]

v

Cpde depends on ||[Vull.

v

Can blow up for large gradients.
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Viscous Burgers': u; + div f(u) = vAu

> Error € < CeCT (€7 + CGN~), C = C(||Vu”|1)
> |[VU”||foe ~ % = Error can blow up near shocks !!

v =103, Sh v =0, Sh v=10"3 RF v =0,RF

v | € (Shock) | € (Rarefaction)
103 ] 1.0% 2.2%
1074 11.2% 1.6%

0 23.1% 1.2%
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What about Training Error 7

» Rigorous Error estimate for PINNs for the PDE D(u) = f:

lu = ugll ~ Goae (1, ug) [E7(8) + Cauaa(us)N ]

» Training Error is a blackbox

» We have that mein Er(0) <e

» But can we train to reach close to the global minimum with
Gradient Descent ?

» De Ryck, SM et al (2024) showed that:

N(5) ~ O(s(A) log(1/5)), (A) = m, A~DD

» Convergence of PINNs depends on Conditioning of
Hermitian-Square !!
> Ex: if D= —A, then A = A?



Training PINNs is

!

e For Advection Equation: u; 4+ Bux =0

B vs Condition Number . Loss vs Epochs for Different §
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Intrinsic Limitations of PINNs

» Don't work on simple problems (Advection with § = 307)):

» Preconditioning is an active research area !

> Have to bring Data to centerstage.
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What does solving a PDE entail ?

» Finding Solution Operators of PDEs.
» Darcy PDE: —div(aVu)=f, G:a~— Ga=u.

e

a u uo
Compressible Euler equations: G : up — Gup = u(t).
Operator: G: X — Y, dim (X,Y) = co.

Learn PDE Solution Operators from Data
Underlying Data Distribution u € Prob (X)

Draw N i.i.d samples (a;, G(a;)) with a; ~ p.

vVvyVvVvyypy

Operator Learning Task: Find approximation to Guu
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What does solving a PDE entail ?

» Finding Solution Operators of PDEs.
» Darcy PDE: —div(aVu)=f, G:a~— Ga=u.

e

a u ug
Compressible Euler equations: G : up — Gup = u(t).
Operator: G: X — Y, dim (X,Y) = co.

Learn PDE Solution Operators from Data
Underlying Data Distribution u € Prob (X)

Draw N i.i.d samples (a;, G(a;)) with a; ~ p.
Operator Learning Task: Find approximation to Guu

vV vvVyYVvyVvYVvYyy

Caveat: Neural Networks: RV — RM
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Possible Solution:

vVvYvyyvyy

DNNs are Lg =0k @ 0k—1 O ...... ® o1

Single hidden layer: o4 (y) = o(Axy + Bx), with y € RN
Generalize DNNs to oo-dimensions: Kovachki et al, 2021:
NO: Ng =N, ON_1O...... ®Np

Single hidden layer;

(Ne)(x) = [Po] | Bu(x) + / Ke(x,y)(y)dy
D

Kernel Integral Operators with Parameters By, Ky
Nonlocal activations [Po] Bartolucci, SM et. al, 2023
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; et al, 2023

F‘r»nv.»zvn‘...m‘:’u’zwuav{ ' ‘
? o . : A
Encoder Decoder A . iy ‘WVLV

frequency

» |: Use Convolutional Kernels in Physical space
» [I: Modulated Nonlocal activations for Alias-free processing.
» CNO instantiated as a modified Operator UNet

B B
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Example: Navier-Stokes Eqns.

» Operator:

» Test Errors:
Model FFNN UNet DeepONet FNO  CNO

Error 8.05% 3.54% 11.64%  3.93% 3.01%
» CNO is Resolution Invariant a la Bartolucci, SM et. al, 2023
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» Operator Attention: A(v fK( (x), v(y))v(y)dy :
(Qv( X) KV(V)>
u(x) = = W/ o Z) R ——————Vv(y)dy.
5 fe vmoodz

D

» Computational Cost is Quadratic in # (Tokens) !!
» Scaling through Vision + SWIN transformers

» scOT of Herde,SM et. al., 2024.
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form very well on 2-D Cartesian Domains !!

» Extensive Empirical evaluation on RPB benchmarks.

In/Out  FFNN GT UNet  ResNet DON FNO  CNO

Poisson In 5.74% 2.77% 0.71%  043%  12.92% 4.98% 0.21%
Equation Out 5.35% 2.84% 1.27%  1.10%  9.15%  7.05% 0.27%
Wave In 2.51% 1,44% 1.51% 0.79% 2.26% 1.02%  0.63%
Equation Out 3.01% 1.79% 203%  1.36%  283% 177% 117%
Smooth In 7.09% 0.98% 049%  0.39%  1.14%  028% 0.24%
Transport Out 650.6% 875.4% 1.28% 0.96% 1572% 3.90% 0.46%
Discontinuous In 13.0% 1.55% 131%  1.01%  578% 1.15% 1.01%
Transport Out 257.3% 22691.1%  1.35%  1.16%  117.1% 2.89% 1.09%
Allen-Cahn In 18.27% 0.77% 082%  1.40% 13.63% 0.28%  0.54%
Equation Out 46.93% 2.90% 2.18% 3.74%  1986% 1.10% 2.23%
Navier-Stokes In 8.05% 4.14% 3.54%  3.69% 11.64% 3.57% 2.76%
Equations Out 16.12% 11.09% 10.93%  9.68% 15.05%  9.58% 7.04%
Darcy In 2.14% 0.86% 0.54% 0.42% 1.13%  0.80% 0.38%
Flow Out 2.23% 1.17% 0.64%  0.60%  1.61% 1.11% 0.50%
Compressible In 0.78% 2.09% 038%  1.70%  1.93%  0.44% 0.35%
Euler Out 1.34% 2.94% 0.76% 2.06% 288%  0.69% 0.59%
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Caveat |: PDEs on Arbitrary Domains

Discussion so far has only focussed on Cartesian Domains

| 2
» Discretized with Uniform Grids.

> Most Real world PDEs are on Arbitrary Domains

» Discretized with Unstructured Grids or Point Clouds
» Need to handle such Data !!
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Use Graphs + Transformers

» Geometry Aware Operator Transformer: Wen, SM et. al, 2025
» GAOT is both accurate and efficient.

Ground-truth Model estimate Ground-truth Model estimate
» » .< '(
—
0504.0.6430.7920936 1080 1224 1368 1512 1636 1.800 00 02 01 0o 08 1o 12 14 16 18

Siddhartha Mishra Al for PDEs



The DrivaerNet++ Challenge

» Flow past Cars Dataset (8K Car Shapes with 2M nodes each)

Model GAOT FigConvNet TripNet RegDGCNN
L1 Pressure Err. 0.110 0.122 0.125 0.161
LY Shear Err. 0.156 0.222 0.215 0.364

e CFD: 300 Node hours vs. GAOT: 0.36 seconds Il



The DriverML challenge

» HR-LES simulations of flow past 500 cars.
» More accurate than RANS for Drivearnet++.
» Upto 10 M surface nodes handled accurately by GAOT !l

Input Mesh Ground-truth Model estimate
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Flow Past an entire Aircraft

> AlAA’s NASA CRM Benchmark.
» GAOT predicts Surface Pressure+Skin Friction accurately !!

Input Mesh Ground-truth Model estimate

Input Mesh Ground-truth Model estimate

2 e

Suace Fricion Goeffcint (z-componcnt)
1 508 " Dhoe g™ AR
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Caveat |l: PDE with Solutions

» 3-D Navier-Stokes with Taylor-Green initial data.
e Spectral Viscosity Method:

e Convolutional Fourier Neural Operator (C-FNO):

» All ML models trained to minimize MSE or MAE:

» Smooth out Small Scales
» Collapse to Mean
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Why does this happen ?: , 2025

» Insensitivity of Neural Networks:
Vo(u+ du) = Vy(u), du<<1

» DNNs are optimal at the Edge of Chaos: Lip(Wy) ~ O(1)
» Spectral Bias of DNNs
> Bounded Gradients are essential for training with GD

» Implication = DNNs will Collapse to Mean !l

Esal|Wo(a* + o) — S(u* + 6a)||> ~ Bsal|Wo(a*) — S(@* + 6u)||* (insensitivity hypothesis)
= || Wo(i*) — EsuS(u* + 6u)||> + Varsy[S(a* + oa)). (bias-variance decomposition)
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Why does this happen ?: , 2025

» Insensitivity of Neural Networks:
Vo(u+ du) = Vy(u), du<<1

» DNNs are optimal at the Edge of Chaos: Lip(Wy) ~ O(1)
» Spectral Bias of DNNs
> Bounded Gradients are essential for training with GD

» Implication = DNNs will Collapse to Mean !l

Esal|Wo(a* + o) — S(u* + 6a)||> ~ Bsal|Wo(a*) — S(@* + 6u)||* (insensitivity hypothesis)
= || Wo(i*) — EsuS(u* + 6u)||> + Varsy[S(a* + oa)). (bias-variance decomposition)

e Directly Learn the Conditional Distribution Supu
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algorithm of , 2025

» Based on Conditional Score Based Diffusion Models

'R

e e e @

» Denoised with the Reverse SDE:

®

G, s, o, _ = &
du, =2| = + = |dt - 25, —Dy(At, Uy, T, 0T + 5\/20,0_dW
T N T ©

» Denoiser minimizes E||u(t,, @) — Dy(u(tn, @) + 1, d,0)]|

g}}”

e GenCFD provably approximates the Conditional Distribution !!
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Taylor-Green Results

\
\

©

True WM GenCFD mmm C-FNO

eGencsD
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GenCFD works very well for Realworld Flows

—— —
) ‘D00t 0002 0003
-
.

;;.4.4,1& ; —
. 888

» Nozzle Jet: 3.5 hrs (LBM) vs. GenCFD: 1.45s
» Cloud-Shock: 5 hrs (FVM) vs. GenCFD: 0.45s
» Conv. Boundary Layer: 13.3 hrs (FDM) vs. GenCFD: 3.8s
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What about the Use Cases ?

testp =09 estp =10
i, O N
0 ey
_ os _ i
E EO|ls
F £ os
i H
fo L)
02
o] — netrence 05— neerece
e o
oo Wm0 o 1w P R TR
Time (s] Time [s]

» Al Tsunami Simulation takes 1073 secs (vs. 1 hr)
» Al RaceCar Simulation takes 1072 secs (vs. 500 Node hrs)

Mesh with Ground Truth Shear (X)

G

00 s00

Mesh with Predicted Shear (X)
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Where's the CAVEAT ?

256 512
Training dataset

20 g0 i gz
Number of training samples

CNO/FNO RIGNO GAOT GenCFD

v

Models Scale with sample size: & ~ N™¢ but with « small
» Even more pessimistic rates with theory 1

ML models require Big Data: O(10%) — O(10%) training
samples per Task

Very Difficult to obtain Data for PDEs.

» How to make models much more Sample Efficient ?

v

v

1 anthaler, SM, Karniadakis, 2022, De Ryck, SM, 2023
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are the Key for Text/Vision!!

Tasks

Question 9
Answering

’ Sentiment
.+ . Analysis

<

Data

Text I -
"‘ 14% AV Information C)
. J/ Images y Extraction \
e Adaptation '

e & €

N Y
Speech/\/% Training Foundation . ([
Model @ Captioning Q
 Structured =
* Data

o Object
3D Signals é} %, ‘ Recognition
N Instruction
AV, Following ..
@ oo
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What would a Foundation Model for PDEs look like ?

Poey 0o0ooeo

op U
Op Y2
Op Y3 [ X X ]

» Op: Operators need PDE + Data.
> PT: Pretraining.
» FT: Finetuning (Adaptation)
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Can it Work ?

6 0"
® ®
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Can it Work ?

6 0"
® ®

e Lets try it out !!
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Can it Work ?

POE:
®

® O

e Lets try it out !!
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vVvYyyVvyy

PDE foundation model of Herde, SM et. al, 2024
Pretrained on Euler + Navier-Stokes Eqns in 2-D.

Finetuned on 15 Unseen Tasks

Paper + Code:

https://github.com/camlab-ethz/poseidon

Model + Datasets: https://huggingface.co/camlab-ethz

Task-specific
Operator Learning

B o
(0
A model 4 ﬁ
'omp. Euler) N
model
W'IVC l&? A%
mode]
Poisson
model

Posemon: Foundation Model for PDEs

ﬁne(une on ou: of- dlslnbutmn downstream tasks] e

5 = = ® Poscidon-B
},\ P\‘:"‘ F‘Y E“" v FNO
Number of

w006 1 1096 1 1096 1 64 1096 trajec

Relative

Comp Euler Wave Poisson
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https://github.com/camlab-ethz/poseidon
https://huggingface.co/camlab-ethz

Summary of Performance on all Downstream Tasks

1 : - - - - .
i \:\\ 10 20 30 40 50
& Median EG
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Deep Dive: Poisson Eqn.

e Input (Source):

.

©

0.00 005 010 015 020

e Output (Solution):

Ground Truth
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How much Physics has been learnt in PreTraining ?

e
‘ - L :

Siddhartha Mishra Al for PDEs



Ongoing: Scaling up POSEIDON

» Increase Model Size by 4x: 2.5B Model.

» Increase Dataset Size by 10 — 50 x
> Augment Model Features:
> 3D
» Unstructured (point cloud) inputs
» Genuine Multiphysics Training
» Diffusion model for multiscale problems
» PDE symbolic information
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Summary+ Outlook

ML/AI model can be potential Neural PDE Solvers (PINNs)

» Training is intrinsically Ill-conditioned.
» ML/AI models are effective Neural PDE Surrogates:

» Neural Operators (CNO, scOT) for PDEs on Cartesian
Domains.

» Graphs+Transformers (GAOT) for Arbitrary Domains.

» Diffusion Models (GenCFD) for Multiscale, Chaotic PDEs.

Sample Efficiency is the main challenge.

v

v

» Foundation Models (Poseidon) can address it.

v

They need to be Scaled Up significantly.
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