Final Program | | Start
11:30 | | | | | | | | |-----------------------|----------------|---|---|---|--|---|--|--| | | 13:00 | Welcome Speech | | | | | | | | | 13:30 | | | | | | | | | | | Introduction to Modeling and
Simulation, Debugging with
Modelica and OpenModelica | FMI Beginners Tutorial | Introduction to System Structure and Parameterization (SSP) | eFMI: A beginner's overview and hands-on | Beyond Simulation: Building
Workflows and Web Interfaces
with Modelica and Python | | | | | | Modeling complex thermal
architectures using the DLR
ThermoFluid Stream Library | 3DS: Exporting and importing an FMU using C code | and easy integration of AI in Modelica | M&S of Robotic Arm Dynamics and
Control in Modelica with
MWORKS. | From Uncertainty-Aware
Simulation to Learning-Based
Control using FMI and Python | | | | Monday,
8. Sep. | | Regression Testing with Dymola and the Testing Library | CasADi tutorial on dynamic optimization with FMI 3.0 Model Exchange | Modeling and Simulation of
profitableness in Modelica
industrial energy systems | FMI3 co-simulation with UniFMU | Modiator: Develop a specialized
Modelica Web-App | | | | | 14:45 | Coffee Break with Poster Presentations | | | | | | | | | 15:15 | Tutorials continued | | | | | | | | | 16:30 | Short Break | | | | | | | | | 16:45 | 1 Platin and 3 Gold and 1 Silver Vendor Presentations: LTX, Dassault Systèmes, Modelon, Tongyuan, OpenModelica | | | 7 Silver Sponsor Presentations: JuliaHub, Wolfram, XRG, orthogonal, eXXcellent, Claytex, MathWorks | | | | | | 19:05 | | | | | | | | | | 08:30 | Welcome Coffee | | | | | | | | | 08:50 | Conference Opening by Ulf Christian Müller | | | | | | | | | 09:00 | Keynote of Prof. Mishra Siddhartha on Physics-Informed Al | | | | | | | | | 09:45 | Modelica and FMI News by Dirk Zimmer | | | | | | | | | 10:00 | · | | | | | | | | | | Scientific Track on
General Modelica | Scientific Track on
Energy | Scientific Track on
Control & Al | Scientific Track on FMI and related | Industrial Users
Presentations | | | | Tuesday | 10:20 | Modelica Tool Development | Power System Simulation | Modelica & Al | FMI Tool Developement | Modelica Applications | | | | Tuesday,
9 Sep. | 12:00 | | | | | | | | | | 13:00 | Chemics, Pharmacology and Medicin | Thermal Management for Green
Energy Systems | Robotics | Layered Standards | Aerospace | | | | | 14:15 | | | | | | | | | | 14:45 | Digital Twin | Media Property Modeling | Control for HVAC and Buildings | FMI for energy systems | Credible Simulation, Traceability, SSP | | | | | 16:00 | Panel discussion on the value of open standards | | | | | | | | | 17:00 | Transfer to Lucerne is individual by Train (Boarding at KKL) | | | | | | | | | 18:00 | Boat-Cruise-Dinner (Departure 18:30 / Arrival 22:30 / 30 min Boarding and Exit) | | | | | | | | | 08:00 | | | Welcome Coffe | | | | | | | 08:30 | Keynote of Dr. Johan R Åkesson on Opportunities and Challenges in Design and Operation of Integrated Energy Systems | | | | | | | | | 09:15 | Simulation and Optimization | Pumps and Vapour Compression | FMI for Embedded Systems and
Virtual Prototyping | Workflows in Systems Engineering | FMI Applications | | | | | 10:30 | Coffee Break with Poster Presentations | | | | | | | | Wednesday,
10 Sep. | 11:00 | Modeling Methods and Tools | Energy Generation Systems | Control- and Al-based Methods
with FMI for Automotive | Maritime Applications | Modelica Applications | | | | | 12:40 | Lunch | | | | | | | | | 13:40 | Awards and Announcements | | | | | | | | | 14:10 | New Translation Methods and
Language Experiments | Fuel Cell Modeling and Control | Control Applications in Modelica | Automotive | FMI and SSP for Model-Based
System Engineering | | | | | 15:50 | Coffee To Go | | | | | | | | | | - | | | | | | | | | Scientific Track | | | | Industrial Track | | |---------------|---|---|---|--|--|--| | | General Modelica | Energy | Control & Al | FMI and related | Industrial Users | | | Tue,
10:20 | Modelica Tool Development | Power System Simulation | Modelica & Al | fmi FMI Tool Development | Modelica Applications | | | | Hans Olsson
Improved Unit Inference and Checking
in Modelica | Marcelo de Castro and Luigi Vanfretti
OpenIWPI: Open-Instance Wave-Phasor
Interface Library for Power System
Simulation Studies in Modelica | Andreos Hofmann and Lors Mikelsons
Towards Integration of PeN-ODEs in a
Modelica-based workflow | Luis Sanchez-Heres, Fredrik Olsson and Jan
Östh
Liaison: an open-source tool for
distributed co-simulations | Kanadevia Inova AG Process-based Life-Cycle Sustainability Analysis of Integrated Solid Waste Management Systems: A Decision-Support Platform using OpenModelica | | | | Henrik Tidefelt and Quentin Lambert
Implicit Unit Conversion in Modelica | Srijita Bhattacharjee, Fernando Fachini and
Luigi Vanfretti Expanding an Open-Source Modelica-
Compliant Package of Generic
Renewable Energy Source Models:
Implementation of the REEC_D and
REGC_B Models in Modelica and
OpenIPSL | Linus Langenkamp, Philip Hannebohm and
Bernhard Bachmann
Efficient Training of Physics-enhanced
Neural ODEs via Direct Collocation and
Nonlinear Programming | Michele Urbani, Michele Bolognese, Luca
Pratticò and Matteo Testi
A Tool for the Implementation of Open
Neural Network Exchange Models in
Functional Mockup Units | Optimation AB On the challenges of large-scale simulation platforms and our solution to overcome them | | | | Zhipeng Chen, Zhichao Huang, Chong Zhou,
Yinqi Chen, Qi Liu, Fanli Zhou and Liping
Chen
Model Disambiguation Technology in
MWORKS.Sysplorer | Herbert Schmidt Analytical Treatment of Hollow Toroid Flux Tubes | Tim Jonas Hanke, Johannes Brunnemann,
Robert Flesch and Jörg Eiden
Status of the SMArtInt Library: Simple
Modelica Artificial Intelligence Interface | Erik Henningsson, Christian Schulze, Julius
Aka, Manuel Gräber, Dag Brück, Elmir
Nahodovic and Oliver Lenord
Input Smoothing for Faster Co-
Simulation using FMI | Electric Power Research Institute, US
System Cost of Hydrogen Optimization &
Sub-Hourly Comparative Analysis of PEM and
Alkaline Electrolyzer Operation | | | | Baptiste Mazurié, Audrey Jardin, Pascal
Borel, Didier Boldo, Frans Davelaar and Luis
Corona Mesa-Moles
Data Reconciliation for Industrial
Experiments | Thomas Egsgaard Kallesen, Søren Waagø
Christiansen and Rene Just Nielsen
Master controller concept for power
flexible energy systems | Ankush Chakrabarty, Marco Forgione, Dario
Piga, Alberto Bemporad and Christopher
Laughman
Zero-Shot Parameter Estimation of
Modelica Models using Patch
Transformer Networks | Felix Tischer, Simon Genser, Daniel Watzenig
and Martin Benedikt
Comparing the Predictive Event
Handling Algorithm LookAhead to
Rollback and Early Return | Smith Group, United States
How Modelica Provides Value to the Building
Industry: Flexible Plant Design from
Traditional Chiller Plants to Hybrid GSHP
Systems | | | Tue,
13:00 | Chemics, Pharmacology and
Medicin | Thermal Management for Green
Energy Systems | fmi Robotics | fmi Layered Standards | fmi Aerospace | | | | <i>Marek Matejak</i>
Chemical 2.0 (Free open-source
Modelica library) | Finn van Ginneken and Alexander Busch
Modelling, Simulation and Validation of
thermal propagation for 3D discretized
battery cells in Modelica | Sebastian Rojas-Ordoñez, Mikel Segura and
Ekaitz Zulueta
Integration of Physical and Al Models
Using Open and Interoperable
Standards: A Model-Based
Methodology for Autonomous Robot
Development | Amin Bajand, L. Viktor Larsson, Lena
Buffoni, Elmir Nahodovic, Robert Hällqvist,
Oliver Lenord, Hans Olsson, Martin Otter,
Antoine Vandamme and Adrian Pop
Towards a Common Standard for
Uncertainty Quantification | Dassault Aviation Bridging the gap between System Engineering and Simulation, applied to collaborative design of Aircraft Systems | | | | Tomas Kulhanek, Filip Jezek, Jiri Kofranek,
Marek Matejak and Stef Rommes
Pharmacolibrary - Free Library to Model
Pharmacology | Validation of an Unglazed Photovoltaic-
Thermal Collector Modelica Model that
only needs Datasheet Parameters | Matthias Reiner Modelica FMI based hybrid reinforcement learning enhanced trajectory planning for an ADR scenario for combined control of a satellite with a 7-axis robotic arm using Modelica/FMI | Tobias Thummerer, Hans Olsson, Chen
Song, Julia Gundermann, Torsten Blochwitz
and Lars Mikelsons
LS-SA: Developing an FMI layered
standard for holistic & efficient
sensitivity analysis of FMUs | Saab Aeronautics
OpenSCALING: A Saab Aeronautics
Perspective | | | T | Clément Coïc and Marco Masannek
Combining static and dynamic
optimization approaches for path
planning, with collision avoidance | Markus Gillner and Arne Speerforck
Modelling Aquifer Thermal Energy
Storage (ATES) System with Buoyancy
Flow | Antoine Pignède and Carsten Oldemeyer
Automatic Modelica Package and Model
Generation from Templates and Data
Files with Python, Exemplified with
URDF | Christian Bertsch, Kahramon Jumayev, Andreas Junghanns, Pierre R. Mai, Benedikt Menne, Masoud Najafi, Tim Pfitzer, Jan Ribbe, Klaus Schuch, Markus Süvern and Patrick Täuber FMI Layered Standard for Network Communication: Applications in Networked ECU Development | AIRBUS SAS, ALTEN FMI Standard and Airbus Needs, Usages and Expectations Full Version | | | Tue,
14:45 | <u>fmi</u> Digital Twin | Media Property Modeling | Control for HVAC and Buildings | fmi FMI for energy systems | Credible Simulation, Traceability, SSP | | | | Corentin Lepais and Dirk Zimmer Prototypical Control for the Digital Twin of Aircraft Environmental Control System | Pascal Borel, Rafik Moulouel, Antoine
Chupin and Felix Marsollier
TAeZoSysPro: A Modelica Library for
Thermal Aeraulic and Buildings
Thermodynamics Calculations | Michael Wetter, Yan Chen, Karthik
Devaprosad, Paul Ehrlich, Antoine Gautier,
Jianjun Hu, Anand Prokash and Marco
Pritoni
Modelica Meets ASHRAE: Towards A
Digital Standard for Building Control | Karim Besbes An innovative heterogeneous modeling approach to build a cooling system for battery thermal management with common fluid properties involving FMI terminals | AVL List GmbH, Robert Bosch GmbH Integration of systems engineering and simulation based on standards: The needs, challenges and solutions from an industrial perspective | | | | Andreas Heckmann, Alexander Poßeckert
and Vijaya-Bhaskar Adusumalli
Aspects and Ideas for the FMI-based
Modeling of Railway Digital Twins | Rohit Dhumane, Dan Gorman, Rajkumar K S
and Dongping Huang
Development of a Refrigerant Mixture
Package for Dynamic Simulation of Auto-
Cascade Refrigeration: A Case Study
with R23/R134a | Karl Walther, Michael Wetter, Anand
Prakash and Jianjun Hu
CDL-PLC translator: From Modelica
HVAC control design to IEC 61131 PLC
implementation | Sagnik Basumallik, Luigi Vonfretti,
Mohammad Ali Dashtaki, Ziang Zhang,
Reza Pourramezan and Hossein Hooshyar
Enhancing Large-Scale Power Systems
Simulations through Functional Mockup
Unit-based Grid-Forming Inverter
Models | Robert Bosch GmbH, Dassault Systèmes AB, eXXcellent solutions GmbH Towards a Credible System Simulation Architecture applicable to Heat Pump Systems using Modelica, FMI and SSP | | | | Gerhard Hippmann and Blas Blanco Mula
Collaborative Digital Twin Development
for Railway Braking and Traction
Applications | Hubert Blervaque and Félix Marsollier
A Generic Non-Miscible Liquid-Gas
Medium Model in Modelica with
Analysis of Incompressibility
Assumptions | Lucas Bex, Muhammad Hafeez Saeed, Lucas
Verleyen, Lieve Helsen and Geert Deconinck
Yet Another Residential District
Simulator: yards for Controller
Development in the Residential Built
Environment | Ruirui Zeng, Hui Gao, Wei Liu, Lei Huang, Qi
Liu, Jian Liu and Xingjian Han
Design and Simulation Validation of
Steam Power Systems Based on MBSE | Robert Bosch GmbH, PMSF IT
Consulting, eXXcellent solutions GmbH
Traceability and Support of Modeling &
Simulation using SSP-Traceability
Layered Standard | | | | Scientific Track | | | | Industrial Track | | |---------------|---|---|---|--|---|--| | | General Modelica | Energy | Control & Al | FMI and related | Industrial Users | | | Wed,
09:15 | Simulation and Optimization | Pumps and Vapour Compression | FMI for Embedded Systems and Virtual Prototyping | Workflows in Systems Engineering | fmi FMI Applications | | | | Francesco Casella, Bernhard Bachmann,
Karim Abdelhak, Philip Hannebohm and
Teus van der Stelt
Diagnosing Newton's Solver
Convergence Failures in the
Initialization of Modelica Models | Raphael Gebhart, Martin Düsing, Niels
Weber and Franciscus L. J. van der Linden
Centrifugal Pump Model of the DLR
Thermofluid Stream Library | Tom Reynaud, Erfan Enferad and Maxime
Lefrancois
Facilitating the use of Physics-Based
Simulations on Embedded Devices by
running FMUs from MicroPython | Mark Williams, Hubertus Tummescheit,
Ajaykumar Mst and Jose Mario Alvarez-
Rodriguez
The Fundamental Modeling Practices
and Specifications to support the
Preservation and Reuse of Analytical
Simulations | Robert Bosch GmbH, DLR e.V. Optimization with FMI and CasADi: Analysis in Industrial Applications | | | | Matteo Luigi De Pascali, Lorenz T. Biegler,
Emanuele Martelli and Francesco Casella
Modelica2Pyomo: a tool to translate
Modelica models into Pyomo
optimization models | Jiacheng Ma and Matthis Thorade
Frost/Defrost Models for Air-Source
Heat Pumps with Retained Water
Refreezing Considered | Nils Bosbach, Meik Schmidt, Lukas Jünger,
Matthias Berthold and Rainer Leupers
FMI Meets SystemC: A Framework for
Cross-Tool Virtual Prototyping | Erik Rosenlund, Robert Hällqvist, Robert
Braun and Petter Krus
Automation Nation: Taming Complex
V&V Workflows | DNV AS Accuracy and assurance of co-simulations in marine lifting operations | | | | Linus Langenkamp and Bernhard Bachmann
Enhancing Collocation-Based Dynamic
Optimization through Adaptive Mesh
Refinement | Scott Bortoff, Vedang Deshpande,
Christopher Laughman and Hongtao Qiao
A Dynamic Analysis of Refrigerant Mass
in Vapor Compression Cycles | Tobias Kamp, Christoff Bürger, Johannes
Rein and Jonathan Brembeck
Hybrid Simulation Models for
Embedded Applications: A Modelica
and eFMI approach | Christoph Steinmann, Konstantin Wrede,
Jens Schirmer and Jens Lienig
Integration of Geometric Tolerance
Analysis in System Simulations via
Functional Mock-up Units | Renault Optimizing Assemblies of FMUs | | | Wed,
11:00 | Modeling Paradigms and Language
Experiments | Energy Generation Systems | Control- and Al-based Methods with FMI for Automotive | Maritime Applications | Modelica Applications | | | | Gaadha Sudheerbabu, Dragos Truscan,
Mikael Manngård and Kristian Klemets
Validation of Dynamic Simulation
Models using Metamorphic Testing and
Given-When-Then Patterns | Ingo Beyers, Lukas Krebeck, Astrid
Bensmann and Richard Hanke-
Rauschenbach
Modelling and Impact of Hydraulic
Short Circuit Operation in Pumped
Hydro Energy Storage | Minsu Hyun
A Study on Vehicle Suspension Loads
Prediction Method Based on Hybrid
Road Simulation using Modelica Library
and FMI | Karl Gunnar Aarsæther and Stian Skjong
Shared sea-environment definition and
realization for maritime and offshore co-
simulations | Danfoss AS, TLK Energy GmbH Optimized usage of heat recovery potentials in modern liquid cooled data centers to minimize their environmental impact | | | | Dirk Zimmer
The Value of Enforcing a Strict Modeling
Methodology within Modelica | Igor Belot, Francois Nepveu, Pierre Garcia,
Nathan Fournier, Teddy Chedid, Etienne
Letournel, Pierre Delmas, Alexis Gonnelle
and Guillaume Raigné
Introducing the NewLib Library and its
application to multi-level, large-scale
solar field models | Tobias Thummerer, Fabian Jarmolowitz,
Daniel Sommer and Lars Mikelsons
Br(e)aking the Boundaries of Physical
Simulation Models: Neural Functional
Mock-up Units for Modeling the
Automotive Braking System | Severin Sadjina, Lars Kyllingstad and Stian
Skjong
Decreasing Risk in the Design of Large
Coupled Systems via Co-Simulation-
Based Optimization and Adaptive Stress
Testing | Lince S.r.L. Optimal Energy Management of a Biogas Plant Using Model Predictive Control and Forecast-Driven Optimization | | | | Christian Gutsche, Christoph Seidl,
Volodymyr Prokopets, Sebastian Götz, Zizhe
Wang and Uwe Assmann
Context-Oriented Equation-based
Modeling in ModelingToolkit.jl | Ao Zhang and Xiang Wang
Further Application of Modelica-Based
Nuclear Power System Simulation: Tasks
in Different Scenarios Driven by Model
and Data | Jonathan Brembeck, Ricardo Pinto de
Castro, Johannes Ultsch, Jakub Tobolar,
Christoph Winter and Kenan Ahmic
VDCWorkbench: A Vehicle Dynamics
Control Test & Evaluation Library for
Model and Al-based Control
Approaches | Basilio Puente Varela, Maria Dolores
Fernández Ballesteros, Maria Isabel Lamas
Galdo and Luis Carral
ShipSIM: A Modelica Library for Ship
Maneuverability Modeling and
Simulation | Samsung Electronics Development of scalable rule-based temperature feedback controls for energy- efficient condenser water loops in semiconductor factories | | | | Zizhe Wang, Christian Gutsche and Uwe
Assmann
Context-Oriented Modelica for
Advanced Variability Management | Joy El Feghali, Louis Garbay, Adrien
Guironnet, Philibert Parquier, Marco
Chiaramello, Martin Franke and Luka Plavec
An Open-Source Industrial-Grade
Collection of Renewable Energy Source
Generic Models in Modelica Language | Zhiguo Zhou, Xuehua Zhou, Lin Du, Peiquan
Ma, Xiang Wang, Ying Chen, Mingjia Liu,
Tengyue Wang, Lixin Hui and Cun Zeng
Simulation of Embodied Cyber Physical
System Based on Modelica/MWORKS: A
Case Study of Intelligent Unmanned
Surface Vessel | Boudewijn Van Groos, Alje Van Dam,
Carsten von Ohlen, Finn Theel, Johannes
Brunnemann and Jörg Eiden
Modelica driven development of the
thermal management control system
for a zero emission yacht | | | | Wed,
14:10 | New Translation Methods and Tools | Fuel Cell Modeling and Control | Control Applications in Modelica | Automotive | SSP Model-Based Workflows and SSP | | | | Benoît Caillaud, Albert Benveniste and
Mathias Malandain
Benchmarking the Modular Structural
Analysis Algorithm | Michele Bolognese, Emanuele Martinelli,
Luca Pratticò and Matteo Testi
Dynamic modelling of an Ammonia to
Power application at high efficiency
using a solid oxide fuel cell system | Alberto Leva On the precise and efficient representation of industrial controllers in Modelica | Massimo Stellato, Alberto Momesso,
Theodor Ensbury and Alessandro Picarelli
Race Car Braking System Thermal Model
for Real Time Use in a Driving Simulator | DENSO Automotive, BMW Group MBSE using SSP and SysML for Collaborative Development: An Open-source ADAS Use Case | | | 14:35 | Martin Otter and Hilding Elmqvist
Resizable Arrays in Object-Oriented
Modeling | Emanuele Martinelli, Michele Bolognese,
Nirmala Nirmala, Narges Ataollahi and
Matteo Testi
Direct Ammonia Solid Oxide Fuel Cell
Stack: Modelling and Experimental
Validation | Rüdiger Franke, Marcin Bartosz and Rasmus
Nyström
Master controller for offshore wind
power and hybrid grids | Jaewung Jung, Alessandro Picarelli, David
Briant, Kadir Sahin, Garron Fish, Victor-
Marie Lebrun, Christopher Stromberger,
Arnaud Colleoni and Quentin Prieto
Development of a Multi-Physical
Simulation Platform for Durability
Prediction for Hyundai & Kia Electric
Vehicles | DENSO Automotive, PMSF IT Consulting
Transmission Control Unit Use Case for
Virtual ECUs and SSP-based Collaborative
Development | | | 15:00 | Karim Abdelhak and Bernhard Bachmann
Constant Time Causalization using
Resizable Arrays | Markus Pollak, André Thüring and Wilhelm
Tegethoff
Dynamic Simulation of a PEM
Electrolysis System | Reiko Müller
The FlightControl library for aircraft
control design applications | Jan Friedrich Hellmuth, Markus Pollak,
Andreas Schulte, Wilhelm Tegethoff and
Jürgen Köhler
Solid-State Battery-Systems and
Thermal Management for Electric Long-
Distance Buses | Toshiba Digital Solutions Corporation
Cross-Company Collaborative Model-Based
Development using FMI3.0 and SSP2.0 | | | 15:25 | Hilding Elmqvist and Martin Otter
Modiator - A Web App for Modelica
Simulation | Axelle Hégo, Félix Bosio and Sylvain
Mathonnière
Model-Based Control Design for a Multi-
Stacks SOC System | Tilman Bünte and Jakub Tobolář
Quasi-Periodic Feedforward Control
Based on Inverse Model Tabled FFT | | MAN Energy Solutions Neural Network-Based Reduced-Order Model of a Large-Scale CO ₂ Heat Pump for Real-Time Simulation and Digital Twin Applications | | | Scientific Poster Presentations | | | | | |---------------------------------|--|--|---|---| | | Philip Hannebohm and Bernhard Bachmann
Selective Evaluation of RHS during Multi-
Rate Simulation | Markus Gillner, Jan Westphal, Béla Wiegel,
Tom Steffen, Julian Urbansky, Anne
Hagemeier, Stefanie Ruppert, Annika Heyer,
Jörn Benthin, Tim Hanke, Johannes
Brunnemann, Christian Becker and Arne
Speerforck
Status of the TransiEnt Library:
Transient Simulation of Complex
Integrated Energy Systems | Joshua Brun, Thomas Sergi, Sylvan Mutter,
Tim Arnold and Ulf Christian Müller
From Simulation to Reality: Deployment
of Reinforcement Learning-Based
Neural Network Controllers Trained
with Modelica Models | Stefan H. Reiterer, Alexander Meierhof
Ivan Vidovic, Marco Forberger, Benjam
Stuntner and Jochen Nowotny
Railway Marketplace for Data, Knov
How and Services | | | Gustavo Canon, Volodymyr Prokopets,
Fabian Elizondo Arrieta, Eliécer Arias and
Alexander Zeißler
A Thermal Digital Twin of Asphalt
Pavements: Implementation and
Application to an Instrumented
Pavement in Costa Rica | Carles Ribas Tugares, Gerald Zotter and
Carina Seidnitzer-Gallien
Absolut Modelica library | A. Phong Tran and Fatma Cansu Yücel Safe and Efficient Control of a Brayton Cycle Heat Pump Using Reinforcement Learning | Simon Müller, Abdulrahman Dahash, Sh
Akbar, David Schmitt, Peter Bayer am
Tobias Schrag
Integrating a Seasonal Thermal Ene
Storage FMU in a MATLAB/Simsca
Thermal Source Network Model | | | Micah Condie, Abigaile Woodbury, James
Goppert and Joel Andersson
Rumoca: Towards a Translator from
Modelica to Algebraic Modeling
Languages | Marcelo Muro, Guido Sassaroli and
Riccardo Lazzari
MultiEnergySystem: A Modelica Library
for Dynamic Modeling and Simulation
of District Heating and Gas Networks | Robert Weber, Staša Gejo, Rainer Gehring
and Lars Mikelsons
Identification and Elimination of
Instabilities During Simulation of Highly
Stiff Vehicle Electrical Power System
Models | Alberto Romero, Johannes Angerer, Eli
Steinkellner and Luca Belforte
A low complexity physics-based agi
model for lithium ion cells with sol
electrolyte interphase and lithiun
plating side-reactions | | | Lena Buffoni, Audrey Jardin and Adrian Pop
Requirement Verification with CRML
and OpenModelica | Christophe Montsarrat, Pascal Borel and
Ana Paez
Calibration of a Chiller Modelica model
with experimental data | Mathieu Specklin, Elie Solai, Clémence
Rouge and Michael Deligant
Dynamic modeling of a liquid piston
compressor system including conjugate
heat transfer | Li Zuo, Yuanhui Dong, Shubin Zhang, Yu
Li, Haiming Zhang, Ji Ding, Fanli Zhau, Q
and Liping Chen
Dynamic Simulation of Off-Grid Ene
Island with Wind-PV-Storage Hydro
Production | | | Songchen Tan, Keming Miao, Alan Edelman
and Christopher Rackauckas
Scalable Higher-order Nonlinear Solvers
via Higher-order Automatic
Differentiation | Pierre Blaud and Imad Mourtaji
A Dynamic Simulation Model of
Outdoor Swimming Pool with Thermal
Energy Storage, Boiler and Solar
Thermal Collectors | Fabian Lagerstedt, Samuel Kärnell, Marcus
Rösth and Liselott Ericson
Modeling and Simulation of a Direct
Heat Recovery System for Cabin Heating
in Battery-Powered Mobile Machines | Bahareh Bakhsh Zahmatkesh, Mina Sho
and Amirhoushang Mahmoudi
Physics-Based Dynamic Modeling (
Solar-Powered Off-Grid Cold Storage
Perishables Using Modelica: A Cas
Study – Xingalool, Somalia |