Controller Design for a Magnetic Levitation Kit using OpenModelica’s Integration with the Julia Language

Bernhard Thiele¹ Bernt Lie² Martin Sjölund³ Adrian Pop³ Peter Fritzson³

¹Institute of System Dynamics and Control, DLR, Germany, bernhard.thiele@dlr.de
²University of South-Eastern Norway, bernt.lie@usn.no
³PELAB, Linköping University, Sweden, {martin.sjolund,adrian.pop,peter.fritzson}@liu.se

Abstract

This paper presents a practical application of computer aided control systems design using a new OpenModelica API (OMJulia) which allows to conveniently operate on Modelica models from the Julia language. Julia is a rather young language (Julia 1.0 was released in August 2018) designed to address the needs of numerical analysis and computational science, in particular it already has decent support for the control community. The magnetic levitation application at hand demonstrates how control system design can benefit from a suitable integration between Julia and Modelica. It is based on a commercially available control education kit in which the original controller is replaced by our own digital controller developed in this work. There exists an accompanying but independent paper which introduces the complete OMJulia API.

Keywords: OpenModelica, OMJulia, control, magnetic levitation, Arduino, Julia, Modelica

1 Introduction

Modelica is a well established language for modeling complex technical systems supported by several convenient and powerful modeling and simulation environments. Distinguishing language characteristics are the focus on declarative system descriptions using mathematical equations and a specific approach to object orientation which allows encapsulating component behavior (given by data + equations) into reusable units which can be connected by suitable constraints (connect equations) to build complex systems from manageable building blocks, see e.g., (Modelica Association, 2017; Fritzson, 2015).

However, for many numerical analysis tasks an imperative language is well suited and suggests itself. Indeed, the most prevalent software for computer aided control systems design on the market, MATLAB/Simulink¹, has two parts: MATLAB, a numerical computing environment built around the imperative MATLAB scripting language, and Simulink, a primarily graphical block diagram language which is tightly coupled to MATLAB, for modeling and simulation.

Although the Modelica language also has an imperative part for writing algorithms, its support in tools as scripting language has so far remained limited and rather tool specific. Consequently, no rich ecosystem for typical numerical computing tasks like data analysis and advanced data visualization was developed within the community. There are notable exceptions like the LinearSystems library for linear system analysis and controller design (Baur et al., 2009). However, as of the latest release of the library (Modelica_LinearSystems2 v2.3.4³) full support of the library is still limited to the Dymola³ tool.

OpenModelica⁴, similarly to other Modelica tools, provides interfaces to dedicated scripting languages which provide the desired advanced scripting support, inclusive a rich ecosystem for numerical analysis and advanced visualization. Based on OMPython (Ganeson, 2012; Ganeson et al., 2012) an API was developed for simple operation on Modelica models from within Python (Lie et al., 2016). However, in the meantime the rather young language Julia⁵ has matured (Julia 1.0 was released in August 2018) and has attracted a growing user base in the scientific computing community. The Julia language was originally designed to address the needs of numerical analysis and computational science, in particular it already has decent support for the control community. This motivated the development of OMJulia, an API for interacting with Modelica models from the Julia language. The OMJulia API is described in detail in an accompanying but independent paper (Lie et al., 2019).

The goal of this paper is to demonstrate the interaction between Julia and Modelica models using one of the most popular applications in control education: A magnetic levitation system; see, e.g., (Yoon and Moon, 2016; Lilienkamp and Lundberg, 2004; Craig et al., 1988; Wong, 1986). The intention is to present available tool support using a tangible example, it is not in the scope of the paper to propose and validate a controller that improves on existing designs.

2 Digital Control for a Magnetic Levitation Kit

Magnetic levitation is a popular application for teaching control theory. A levitating object which apparently defies the law of gravity is an attractive gadget and the underlying physics (unstable plant dynamics) convincingly demonstrate the importance of feedback control. The application is based on a commercially available electromagnetic levitation kit\(^6\) from Zeltom which is targeted at educational applications. The fully assembled unit is shown in Figure 1. The vertical position of the levitating magnet is measured using a linear Hall effect sensor which is directly attached below the electromagnet. The kit includes a black box microcontroller for controlling the current in the electromagnet.

The goal is to replace Zeltom’s controller by our own design.

3 Plant Model

A behavioral model describing the dynamics of the physical system is provided in a technical report by Zeltom (Zeltom LLC, 2009). A schematic diagram of the system is shown in Figure 2, where \(v\) is the voltage across the electromagnet, \(i\) is the current flowing through the electromagnet, \(R\) is the resistance and \(L\) the inductance of the electromagnet, \(e\) is the voltage across the Hall effect sensor, \(d\) is the distance between the Hall sensor and the levitating magnet, \(m\) is the mass of the levitating magnet, and \(f\) is the force on the levitating magnet generated by the electromagnet.

The nonlinear dynamic equations as described in (Zeltom LLC, 2009) are reproduced below.

![Figure 1. Zeltom’s electromagnetic levitation kit.](image)

Approximated force from the electromagnet on the levitating magnet:

\[
f = k \frac{i}{d^4}, \tag{1}
\]

approximated voltage across the Hall effect sensor:

\[
e = \alpha + \beta \frac{1}{d^2} + \gamma i, \tag{2}
\]

Newton’s second law:

\[
m \frac{d^2d}{dt^2} = mg - f, \tag{3}
\]

Kirchhoff’s voltage Law:

\[
v = Ri + L \frac{di}{dt}, \tag{4}
\]

where \(k\) is a geometry dependent constant, \(\alpha, \beta, \gamma\) are constants that depend on the Hall sensor and the geometry, and \(g\) is the standard gravity constant. The system’s parameters are listed in Table 1; the values are from (Zeltom LLC, 2009) and from own measurements.

![Figure 2. Schematic of the magnetic levitation system.](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>(17.31 \cdot 10^{-9})</td>
<td>kg \cdot m^5/A \cdot s^2</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>2.44</td>
<td>V</td>
</tr>
<tr>
<td>(\beta)</td>
<td>(1.12 \cdot 10^{-4})</td>
<td>V \cdot m^2</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.26</td>
<td>V/A</td>
</tr>
<tr>
<td>(R)</td>
<td>2.41</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(L)</td>
<td>(15.03 \cdot 10^{-3})</td>
<td>H</td>
</tr>
<tr>
<td>(m)</td>
<td>(3.02 \cdot 10^{-3})</td>
<td>kg</td>
</tr>
</tbody>
</table>

Letting \(v\) be the control input and \(e\) be the measured output, these nonlinear equations can be readily transcribed into a Modelica model (condensed for saving space):

```model MagLevNL
parameter Real R=2.41, L=15.03e-3, 
m=3.02e-3, k=17.31e-9, alpha=2.44, 
beta=1.12e-4, gamma=0.26;
```

Controller Design for a Magnetic Levitation Kit using OpenModelica’s Integration with the Julia Language

Motivation

The goal for the magnetic levitation system is to design a controller which stabilizes the plant in an equilibrium position. Therefore, the system needs to be linearized around an equilibrium position of the nonlinear plant. Hence, the first step is to determine an equilibrium position. This is needed since in Modelica a variable which is declared as input is treated as a known, which would result in an overspecified initialization problem below. In order to search for the (unknown) voltage input to set the start values as parameters:

```
mlNL = OMJulia.OMCSession()
mlNL.ModelicaSystem("MagLevNL.mo",
"MagLevNL")
state_e, u_e, y_e =
mlNL.findEquilibrium(["d=0.02",
"d_der=0")
```

where `findEquilibrium(..)` would search for an equilibrium position under constraints that can be set as function arguments. The function would return the value of the state variables, as well as the value of the inputs and outputs at the equilibrium position. Here, an equilibrium is sought under the constraints that the levitating magnet, levitates at a distance of 2 cm below the sensor.

Unfortunately, such a function is not (yet) available in OMJulia.

However, it is possible to modify the Modelica model and impose the equilibrium constraints within a steady-state initialization problem as shown in the listing below. Notice that input `v` was turned into a parameter with unknown value (fixed=false) which has the effect that the value is determined during initialization.

This is needed since in Modelica a variable which is declared as input is treated as a known, which would result in an overspecified initialization problem below. In order to search for the (unknown) voltage input at which the system stays at an equilibrium with the prescribed constraints the Modelica tool needs to treat the voltage input as an unknown.

```
model MagLevNL_SteadyState
```

```
input Real v;
output Real e;
Real i, d, d_der, f;
constant Real g=9.81;
equation
f = k*i/d^4;
e = alpha + beta/d^2 + gamma*i;
der = d_der;
m*der = m*g - f;
v = R*i + L*d_der(i);
end MagLevNL;
```

For the purpose of controller design it is typically necessary to work with a linearized version of the plant dynamics. The nonlinear electromagnet equation "\(\dot{d} = d_{\text{der}} \)" can be linearized around an equilibrium position of the nonlinear plant.

```
function arguments. The function would return the value of the state variables, as well as the value of the inputs and outputs at the equilibrium position. Here, an equilibrium is sought under the constraints that the levitating magnet, levitates at a distance of 2 cm below the sensor.

Unfortunately, such a function is not (yet) available in OMJulia.

However, it is possible to modify the Modelica model and impose the equilibrium constraints within a steady-state initialization problem as shown in the listing below. Notice that input `v` was turned into a parameter with unknown value (fixed=false) which has the effect that the value is determined during initialization.

This is needed since in Modelica a variable which is declared as input is treated as a known, which would result in an overspecified initialization problem below. In order to search for the (unknown) voltage input at which the system stays at an equilibrium with the prescribed constraints the Modelica tool needs to treat the voltage input as an unknown.

```
model MagLevNL_SteadyState
```

```
input Real v;
output Real e;
Real i, d, d_der, f;
constant Real g=9.81;
equation
f = k*i/d^4;
e = alpha + beta/d^2 + gamma*i;
der = d_der;
m*der = m*g - f;
v = R*i + L*d_der(i);
end MagLevNL;
```

With this model the OMJulia API can be used to retrieve the plant’s values at the equilibrium position and use them for linearizing the plant at this equilibrium position.

Since the OMJulia API does not (yet) allow to conveniently set start values, the following small modification to the MagLevNL model is introduced, in order to set the start values as parameters:

```
model MagLevNL
```

```
// ... same as previously
parameter Real d0 = 0.02 "Prescribed equilibrium position";
parameter Real v(start=0.5, fixed=false)
"Unknown equilibrium voltage across the electromagnet";
output Real e;
Real i, d, d_der, f;
constant Real g=9.81;
equation
f = k*i/d^4;
e = alpha + beta/d^2 + gamma*i;
der = d_der;
m*der = m*g - f;
v = R*i + L*d_der(i);
end MagLevNL;
```

Using this modified model the OMJulia API allows to retrieve the linearized representation of the plant model as shown in the listing below.

```
mlNLe = OMJulia.OMCSession()
mlNLe.ModelicaSystem("MagLevNL.mo",
"MagLevNL")
mlNLe.setParameters({"d0=0.02"})
mlNLe.simulate()
sol = mlNLe.getSolutions({"v", "i", "d", "d_der"})
```

```
v_e = sol[1][1] # input v at equilibrium
i_e = sol[2][1] # state i at equilibrium
d_e = sol[3][1] # must be equal to d0
d_der_e = sol[4][1] # must be 0
```

The final call to the `linearize()` function retrieves a tuple of 2D arrays (matrices) which encode the linearized model in a state space representation (\( \dot{x} = Ax + Bu, y = Cx + Du \)).

The values can be easily inspected, e.g., by...
printing them to the console window (number of digits truncated for readability):

```julia
julia> println("v_e=$v_e, i_e=$i_e, e_e=$e_e")
```

where \( K_p \) is the proportional gain, and \( T_d \) is the derivative time parameter. The listing below uses the construct \( s = \text{tf}("s") \) to create a continuous-time transfer function \( s \), which enables a convenient notation for creating transfer functions using standard mathematical operators like \( PD = K_p*(T_d*s + 1) \).

The plant’s state space representation from above can be converted into a transfer function representation \( G(s) \) using function \( \text{tf}(..., \) e.g., \( G = \text{tf}(mlLin) \). Using the plant’s transfer function \( G(s) \), the open-loop transfer function is given by a serial connection of controller and plant,

\[
P_{PDol}(s) = CPD(s)G(s),
\]

which can be achieved using the \text{series}(...) function in Julia. The sensitivity function is then given by

\[
S(s) = \frac{1}{1 + P_{PDol}(s)}.
\]

Since poles are not canceled automatically, the function \text{minreal}(...)\(^{10}\) is used to obtain a minimal transfer function representation.

Function \text{bodeplot}(...) is used for plotting the magnitude of the sensitivity function. Using the Julia Interact.jl package\(^1\) together with functions from ControlSystems.jl allows for interactive plots in which the controller’s parameters can be tuned experimentally. The Interact package provides means to create small GUIs in Julia based on web technology. It defines the macro \text{@manipulate} which sets up sliders for varying the parameters within the specified range.

```julia
using Interact
s = \text{tf}("s")
@manipulate for Kp=3:.5:20, Td=0.01:.01:0.1
 mlLin=ss(A, B, C, D)
 mlLinPDol = \text{series}(\text{PD,tf}(mlLin))
 mlLinPDSensitivity = \text{minreal}(1/(1+mlLinPDol))
 \text{bodeplot}(mlLinPDSensitivity,
 plotphase=false, yscale=:identity,
 yticks=0:0.1:2, title="Sensitivity")
end
```

Evaluating the above code in an IJulia/Jupyter session gives a result as depicted in Figure 3. The two sliders at the top allow to change the PD controller’s parameters. When the parameters are changed, the plot is immediately updated.

## 5 Nonlinear Closed-Loop Model

After an acceptable design (based on the linearized model) has been found, the controller can be tested and further tuned by plugging it into the nonlinear Modelica model.

In the present example the PD controller can be easily transcribed into Modelica code and can be added appropriately to the MagLevNL model in order to close the loop between controller and plant. Let the resulting model be named “MagLevNLPD” (the complete listing is given in Appendix A).

\(^{10}\)Function \text{minreal}(...) creates a minimal transfer function representation by canceling pole-zero pairs.


---

Combining OMJulia with the Interact package allows to quickly create small GUIs for interactive experimentation with a Modelica model. The Julia code below creates sliders for varying the controller parameters, as well as to vary the initial distance \( d_0 \) of the levitating magnet. Since the controller is designed for keeping an equilibrium position at \( d = 0.02 \text{m} \), it is interesting to explore how the closed system behaves for small displacements, where \( d_0 \neq 0.02 \text{m} \).

```julia
using OMJulia, Plots, Interact
mlNLPD = OMJulia.OMCSession()
mlNLPD.ModelicaSystem("MagLevNLPD.mo", "MagLevNLPD")
@manipulate for Kp=7:0.5:23, Td=0.01:0.01:0.1, d0=0.015:0.0002:0.025
 mlNLPD.setParameters(["Kp=$Kp", "Td=$Td", "d0=$d0"])
 mlNLPD.simulate()
 sol = mlNLPD.getSolutions(["time", "d", "v"])
 time, d, v = sol[1], sol[2], sol[3]
 p1 = plot(time, d, label="",
 xlabel="time [s]", ylabel="d [m]"
)
 p2 = plot(time, v, label="",
 xlabel="time [s]", ylabel="v [V]"
)
 plot(p1, p2, layout=(1,2))
end
```

Figure 4 shows a screenshot of the resulting GUI when evaluating the above code in an IJulia/Jupyter session. The start value of \( d \) is set to \( d_0 = 18 \text{mm} \), hence two millimeters closer to the electromagnet than the set reference distance of 20 millimeters.

6 Digital Control

For a practical implementation of the presented PD controller, the derivative “D” part is first approximated by a “DT” element before the controller is discretized in a second step. Finally, hardware characteristics of the target controller are considered in a nonlinear closed-loop, sampled-data model.

The “D” part can be approximated by

\[
|C_{PD}^D(s)| = \left| \frac{K_p T_d s}{N_d s + 1} \right|.
\]

6.1 Discrete-Time Approximation

Using backward differences for approximation, transfer function (8) can be transformed into a pulse-transfer function by substituting \( s \) by \( s' \) using the formula

\[
s' = \frac{z-1}{zh},
\]

where \( h \) is the sampling period and \( z \) is the Z-transform variable, resulting in the pulse-transfer function

\[
|C_{PD}^D(z)| = \left| \frac{T_d N_d (z-1)}{(T_d + N_d h) z - T_d} + 1 \right|.
\]
Controller Design for a Magnetic Levitation Kit using OpenModelica’s Integration with the Julia Language

6.2 Target Hardware

The popular Arduino Uno board\(^{12}\) is used as implementation hardware for the control algorithm. It is based on the Microchip ATMega328P microcontroller, has six analog inputs supporting 10-bit analog-to-digital conversion (ADC) for input voltages between zero and five volts, and 14 digital input/output pins of which six can be used as pulse-wide modulation (PWM) outputs. The frequency of the PWM outputs is configurable and a simple interface exists in which the PWM duty cycle can be set with a resolution of 8-bit.

In our application the voltage across the Hall effect sensor is read using one of the analog inputs. The voltage to the electromagnet is set by a PWM output driving a MOSFET which is connected to a DC voltage regulator fed from an external power supply. A breadboard is used for the implementation of the supporting electronics (see Figure 8).

6.3 Sampled-Data Model

A model of the closed-loop, sampled-data system can be built conveniently with the help of the Synchronous library (Otter et al., 2012). Figure 5 shows a diagram view in which the nonlinear continuous-time magnetic levitation plant model is connected to the discrete-time (clocked) controller model using sample and hold blocks from the Synchronous library. The controller is activated by a periodic clock with a sampling period of 500 µs. The upper controller input specifies the setpoint of the controller. The setpoint is 0V for the equilibrium position.

```plaintext
block Controller
 parameter Real Kp=15, Td=0.05, Nd=5, h=0.0005, v_e=0.66, e_e=2.79;
 input Real du_set "Setpoint delta voltage (=0 for d=>0.02)";
 input Real e "Measured voltage across the Hall effect sensor";
 output Real v "Output voltage to the electromagnet";
protected
 Real Dpart(start=0), de_e, du(start=0), dy, ad, bd;
 equation
 // Measured delta voltage at OP
 de_e = e - e_e;
 // input to PD(T1) control law
 du = du_set - de_e;
 // Control law
 ad = Td/((Td + Nd*h));
 bd = Td*Nd/(Td + Nd*h);
 Dpart = ad * previous(Dpart) + bd * (du - previous(du));
 dy = Kp*(du + Dpart);
 // Output voltage to electromagnet
 v = dy + v_e;
end Controller;
```

for which the controller is designed (i.e., in the presented design the levitating object is at \(d = d_e = 0.02\) m, the Hall effect sensor output is \(e = e_e = 2.79\) V). Modifying the setpoint allows to influence the position of the levitating magnet.

The utilized sample and hold blocks allow modeling additional real-world effects like noise, quantization effects of digital-analog and analog-digital conversions, sensor and actuator limitations, and computational delays. In the displayed model the sample and hold blocks are parametrized so that they reflect the capabilities of the target hardware as described in Section 6.2. The measurement variable \(e\) is limited between \(0 V \leq e \leq 5 V\) using 10-bit quantization. The actuating variable \(v\) is limited between \(0 V \leq v \leq 1.3 V\) using 8-bit quantization.

Simulating the sampled-data model given above using the same scenario as for the nonlinear continuous-time model in Section 5 reveals a severe control degradation for the considered digital controller. Further simulation experiments reveal that this is mainly due to ADC quantization effects of the Hall effect sensor output. Figure 6 shows results plots\(^{13}\) for simulating with different ADC settings, while the other settings, e.g., computational delay of one sampling period and 8-bit quantization of the actuating variable, are unchanged. The upper plot shows the distance \(d\) of the levitating object. The two lower plots show the sampled and quantized Hall sensor output \(e (= \text{sample1.y})\) and the quantized actuating variable \(v (= \text{hold1.y})\) in a narrow time window \((t \in [4.00 s, 4.03 s])\).

Although the levitating object can be stabilized in all simulated cases, it shows persisting oscillations for the case of an ADC with 10-bit resolution over the range \([0V, 5V]\). For this setting, the actuating variable exhibits large, high frequency oscillations. Increasing the quantization resolution mitigates this adverse effect and restores

---


\(^{13}\)Apart from using OMJulia for controlling the complete simulation (as shown in Section 5), it is also possible to use the Julia CSV package for simply importing an OpenModelica (CSV-) result file into Julia for postprocessing. For example, plotting variable `magLevNL.d` from a CSV-result file can be achieved by:

```julia
using Plots, CSV
r = CSV.read("myresultfile.csv")
plot(r[Symbol("time")], r[Symbol("magLevNL.d")])
```
a behaviour which is closer to the continuous-time controller. Besides increasing the ADC resolution (e.g., to 16-bit), the simulation results suggest that a 10-bit ADC resolution is fine, if it is available within the (smaller) relevant operating range of the sensor, e.g., \([2.5 \text{ V}, 3.5 \text{ V}]\). This can be achieved by using a suitable signal conditioning circuit for mapping the signal's operating range to the full-scale voltage range of the ADC.

### 6.4 Real-Time Target Code

In a first approach, the Modelica code for the demonstrator presented in Section 7 was hand translated to C in order to compile and upload it to Arduino. This is rather straightforward, since the control algorithm is short and the Arduino environment is easy to use.

However, particularly for more complex models, it would be beneficial to automatically generate the target code, instead of manually converting the controller models to compact C code. This is quicker and less error prone than manual translation. One big challenge is to produce target code that fits into very small footprint platforms.

For these reasons we have developed an experimental version of an embedded target simple code generator\(^\text{14}\) for OpenModelica aimed at very restricted platforms such as the Atmel AVR 8-bit microcontrollers. The regular C-code generator creates huge data structures and contains much debugging information while the run-time system contains many numerical solvers and is around 6 MB in size (of which 0.5 MB is textual strings for error messages). This regular C-code is intended to run on powerful desktop CPUs where the code size does not matter much and it proved difficult to try to strip out unnecessary code when targeting embedded systems. The largest of the 8-bit AVR processor MCUs (Micro controller Units) have 16 KB SRAM. One of the smaller ones (ATmega328P, Arduino Uno) has 2 KB SRAM.

The embedded target code generator was designed to generate code for constructs that are easy to compile. For example, it does not support arrays, strongly connected components, or initialization, but still works fine for many models since the OpenModelica compiler will convert many complex constructs into simpler ones during the compilation process, e.g., make array equations into scalar equations. Instead of having a big run-time system that is linked in (as is the case for the regular code generator), the code generator will generate the needed C-functions corresponding to the Modelica and run-time functions called.

As can be seen from Table 2, the experiment was so far successful. The regular stripped-down code generator

<table>
<thead>
<tr>
<th>Code generator comparison. Regular vs Simple.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code generator</td>
</tr>
<tr>
<td>Regular stripped-down source-code FMU targeting 8-bit AVR processor</td>
</tr>
<tr>
<td>Simple code generator targeting 8-bit AVR processor</td>
</tr>
</tbody>
</table>

\(^{14}\)The embedded code generation target for OpenModelica can be activated by passing the option `--simCodeTarget=ExperimentalEmbeddedC` to the OMC.

\(^{15}\)For example, when using OpenModelica's scripting interface the base period can be specified by providing the `stepSize` argument to the `translateModel(…)` function.
erating point to the full-scale voltage range of the ADC. Notice that the parameters for back-calculation of the conditioned Hall effect sensor signal deviate slightly from the theoretical values ($k = 2.5$ for the signal offset and $k = 0.2$ for the signal gain). This is the result of tuning the parameters for the actual demonstrator with its (non-ideal) supporting electronics.

Most of the parameters in the hardware interface blocks are at their default values. However, several interesting parameter settings are not visible on the diagram layer. The microcontroller block is set to the ATmega328P platform and its internal parameter `desiredPeriod` is set to 0.0005s. The real-time block is configured to use `Timer0` for the real-time synchronization. The PWM block is configured to use `Timer1` with a prescaler value of “1/8”.

7 Demonstrator

Figure 8 shows a setup in which Zeltom’s controller has been replaced by an Arduino Uno and supporting electronics.

It was possible to stabilize the levitating mass for several minutes at a time using the presented controller and the experimental hardware setup with a 10-bit ADC resolution in the range of $[0V, 5V]$, but the magnet showed clearly visible oscillations around the equilibrium position and was very sensitive to disturbances, e.g., a tiny push against the table would destabilize the mass instantly. Motivated from the simulation results in Figure 6, a signal conditioning circuit based on Texas Instrument’s INA333 instrumentation amplifier was developed to map the operating range $[2.5V, 3.5V]$ of the Hall effect sensor signal to the full-scale voltage range of the ADC. As suggested by the simulation results, this attenuated the oscillation and lead to a greatly improved robustness in maintaining the equilibrium position.

8 Conclusion

The paper shows how computer aided control system design based on Modelica models can benefit from the new OpenModelica OMJulia API which allows joint interaction between the Modelica and Julia ecosystems. For practical illustration a complete magnetic levitation application is presented with sufficient details so that the example can be readily reproduced, e.g., in the context of a lab session in control education.

While Modelica excels in modeling and simulation of complex technical systems, Julia can provide the numerical analysis, optimization and advanced visualization capabilities, including specialized packages for control engineering. Simple web technology based GUIs can be created in Julia in just a few lines of code, which allows interactive experimentation with Modelica simulation models giving immediate feedback to the user, e.g., by updating key performance plots. The magnetic levitation application aims at illustrating how a carefully designed API has the potential to leverage attractive synergies between the two languages.

Acknowledgements

This work has been supported by Vinnova in the ITEA OPENCPS and EMPHYYSIS projects, and in the Vinnova RTISIM project. Support from the Swedish Government has been received from the ELLIIT project. The OpenModelica development is supported by the Open Source Modelica Consortium.

References


Kevin Craig, Thomas Kurffess, and Mark Nagurka. Magenetic
Controller Design for a Magnetic Levitation Kit using OpenModelica’s Integration with the Julia Language


A Listing of the Nonlinear Closed-Loop MagLev Model

The complete listing of the nonlinear closed-loop Modelica model used in Section 5.

```model MagLevNLPD
// Parameters MagLev
parameter Real R=2.41, L=15.03e-3, m=3.02e-3, k=17.31e-9, alpha=2.44, beta=1.12e-4, gamma=0.26;
// Equilibrium point (values actually depend on parameters above!)
parameter Real v_e=0.659957, e_e=2.791198;
// Setting initial conditions to values at equilibrium point
parameter Real d0=0.02, d_der0=0, i0=0.273841;
// Variables MagLev
Real d(start=d0, fixed=true), d_der(start=d_der0, fixed=true), i(start=i0, fixed=true), v, f, e;
constant Real g=9.81;
// Parameters PD
parameter Real Kp=15, Td=0.05;
parameter Real du_set=0 "Desired setpoint OP delta voltage of PD controller";
// Variables PD
Real u,y;
equation
u = du_set - (e - e_e) "Input to the PD controller (negative feedback loop)";
y = Kp*(u + Td*der(u)) "Ideal PD controller";
v = y + v_e "Controller output to the plant";
// Nonlinear MagLev plant equations
f = k*i/d^4 "(1) force applied by the electromagnet on the levitating magnet";
e = alpha + beta*i/d^2 + gamma*i "(2) voltage across the Hall effect sensor";
der(d) = d.der;
m*der(d) = m*g - f "(3) Newton’s second law that";
v = R*i + L*der(i) "(4) Kirchhoff’s voltage law";
end MagLevNLPD;
```