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Abstract

The Functional Mock-up Interface (FMI) is an indus-

try standard which enables co-simulation of complex

heterogeneous systems using multiple simulation en-

gines. In this paper, we show how to use FMI in

order to co-simulate hybrid systems modeled in the

model checkers SPACEEX and UPPAAL. We show how

FMI components can be automatically generated from

SPACEEX and UPPAAL models. We also validate the co-

simulation approach by comparing the simulations of a

room heating benchmark in two cases: first, when a sin-

gle model is simulated in SPACEEX; and second, when

the model is split in two submodels, and co-simulated us-

ing SPACEEX and UPPAAL. Finally, we perform a mea-

surement experiment on a composite model to show a

potential for statistical model checking using stochastic

co-simulations.

Keywords: FMI, hybrid system, timed automaton

1 Introduction

Despite advances in model checking and other for-

mal verification techniques, simulation remains the

workhorse for system analysis. A plethora of simulation

tools are available today, from academia as well as from

industry. These tools support a large variety of model-

ing languages, targeted at different types of systems from

various disciplines (e.g., mechanical, electrical, digital,

continuous or discrete, or mixes thereof). Unfortunately,

these tools can rarely interoperate. This is a problem

because modern cyber-physical systems are highly com-

plex and multidisciplinary, requiring specialized model-

ing languages and tools from several domains.

The Functional Mock-up Interface1 (FMI) is a stan-

dard developed to address this problem. FMI defines

an XML schema for describing simulation components

and a C API that these components must implement.

The components are called functional mock-up units,

1See https://www.fmi-standard.org/ for more details.

or FMUs. An FMU is typically generated automati-

cally (exported) from some simulation tool, and corre-

sponds to a (sub-)model designed in that tool. The sub-

models/FMUs are then imported into a host simulator.

The host commands the simulation by calling the API

methods of the FMUs, thus effectively achieving integra-

tion of the original simulation environments. FMI sup-

ports two integration modes: (a) model exchange, where

the host simulator is handles the numerical integration;

and (b) co-simulation, where each FMU implements its

own numerical integration mechanism (or any other in-

ternal mechanism to advance its state in time). Because

each mode imposes its own requirements on FMUs (for

instance, in model exchange, the FMUs must provide the

host with information such as state derivatives, which are

not necessary for co-simulation) the FMI APIs for the

two modes are different.

In this paper, we use FMI in order to connect two

state-of-the-art modeling and verification tools for cyber-

physical systems: SPACEEX (Frehse et al., 2011) and

UPPAAL (Larsen et al., 1997). SPACEEX is a tool

for modeling and verifying hybrid systems (Alur et al.,

1995). UPPAAL is primarily a model-checker for timed

automata (Alur and Dill, 1994), however, it also supports

statistical model-checking of hybrid systems (David

et al., 2011).

Our goal is to integrate these two tools for co-

simulation. That is, we want to be able to: (a) build a

sub-model of the system (e.g., the model of the plant un-

der control) in SPACEEX; (b) build another sub-model

(e.g., the controller) in UPPAAL; (c) automatically gen-

erate an FMU for each sub-model; (d) import the FMUs,

connect and co-simulate them in a host environment.

The motivations for connecting SPACEEX and

UPPAAL in this manner are numerous. First, although

both SPACEEX and UPPAAL support simulation of hy-

brid systems, each tool offers its own modeling lan-

guage, which is not compatible with that of the other

tool. Translating from one language to the other is lim-

ited to common features supported by the tools. For

example, even though the frameworks CIF (Agut et al.,
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2013; Beohar et al., 2010) and HSIF (Pinto et al., 2006)

solve the complexity problem of one format translation

to another by performing at most two translations, the

approach still suffers from the fact that UPPAAL features

like committed locations and C-like function code are not

supported in SPACEEX and UPPAAL has limited support

for ODEs. Moreover, by using co-simulation, we are

able to take advantage not just of the specific strengths

of the language of each tool, but also of their native sim-

ulation engines, since each FMU is internally running

essentially a “copy” of the simulation algorithm of the

original tool.

As host environment we use the tool Ptolemy2.

Ptolemy is a modeling and simulation environment for

heterogenous systems (Eker et al., 2003). Recently, sup-

port has been implemented in Ptolemy for using it as

a host environment for co-simulation based on FMI.

FMUs (developed by other tools) can be imported into

Ptolemy, connected using Ptolemy’s graphical user in-

terface, and co-simulated using an implementation of

the co-simulation algorithm described by Broman et al.

(2013). This algorithm has desirable properties, such as

determinacy, namely, the fact that the results of the simu-

lation are independent of arbitrary factors such as names

of the FMUs, order of creation, or order of evaluation in

the diagram.

The contributions of this paper are the following:

1. We show how FMUs can be generated automati-

cally from models of hybrid and timed automata

built in SPACEEX and UPPAAL. There are several

subtleties involved in this, as hybrid and timed au-

tomata are models designed primarily with verifi-

cation in mind, whereas FMI is designed for sim-

ulation and therefore imposes certain properties on

FMUs, such as determinism.

2. We report on the implementation and case studies.

In particular, we apply our co-simulation frame-

work to a room heating benchmark (Fehnker and

Ivancic, 2004).

3. We validate the co-simulation algorithm proposed

by Broman et al. (2013) by comparing the results

of the case study in two settings: (a) when the case

study is modeled and simulated in a single tool, and

(b) when the various components of the case study

are modeled in two tools and co-simulated using

our framework. We show that our co-simulation

framework computes the same simulation trajecto-

ries as the setting (b) provided that the maximum

simulation step size of co-simulation is sufficiently

small.

4. We demonstrate how stochastic simulations can be

included into the composite model with hybrid sys-

tems and applied a simple statistical measurement

2See http://ptolemy.eecs.berkeley.edu/.

to show the potential for statistical model checking

using FMI co-simulations.

The rest of the paper is organized as follows. In

Sec. 2, we introduce the necessary background on FMI

for this work. Afterwards, we present our translation

of SPACEEX and UPPAAL models into FMUs in Sec. 3.

This is followed by the case study in Sec. 4. We discuss

related work in Sec. 5. Finally, we conclude the paper in

Sec. 6.

2 Background on FMI

Conceptually an FMU can be seen as a (timed) state

machine. This machine has a set of input variables (or

ports), a set of output variables, and a set of internal

states. The machine interacts with its environment only

by means of a clearly defined set of interface methods.

These methods are specified in the FMI standard. For

the purposes of this paper, and following the formaliza-

tion presented by Broman et al. (2013), the key interface

methods of FMI (for co-simulation) are:

• A method to initialize the state of the FMU. If S is

the set of states of the FMU, then init ∈ S.

• A method set to set a given input variable to a cer-

tain value. The signature of set is set : S×U ×
V→ S, where U is the set of input variables of the

FMU, and V is the set of all possible values (for

simplicity we ignore typing and use a single uni-

verse V of values for all variables). Given state s,

input variable u ∈ U , and value v ∈ V, set(s,u,v)
returns the new state obtained after setting u to v.

• A method get which returns the value of a given

output variable. Its signature is get : S×Y → V,

where Y is the set of output variables of the FMU.

Given state s and output variable y ∈ Y , get(s,y)
returns the value of y in s.

• A method doStep which advances the state of

the machine in time. Its signature is doStep :

S×R≥0 → S×R≥0, where R≥0 is the set of non-

negative real numbers. The behavior of doStep is

explained below.

As said above, an FMU is essentially a state machine:

the get method corresponds to the output function of the

machine, while the doStep method corresponds to the

transition function. The difference is that doStep takes

as input a time step h ∈ R≥0: in that sense, an FMU is a

timed state machine.

The behavior of doStep is as follows. Given state

s ∈ S, and time step h ∈ R≥0, a call to doStep(s,h) is

interpreted as the co-simulation algorithm “asking” the

FMU to perform a simulation step of length h. For a
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number of reasons, including numerical integration is-

sues, the FMU may “accept” or “reject” this request. If it

rejects, it means that it was not able to advance time by h

(but may have been able to advance time by a smaller de-

lay h′ < h). Formally, doStep(s,h) returns a pair (s′,h′)
where s′ ∈ S is a state and h′ ∈ R≥0 is a time step, such

that:

• either h′ = h, which is interpreted as F having ac-

cepted h, and having moved to a new state s′;

• or 0 ≤ h′ < h, which is interpreted as F having re-

jected h, but having made partial progress up to h′,

and having reached a new state s′.

It is worth noting that FMUs are deterministic ma-

chines, in the sense that for a given sequence of inputs

(i.e., a sequence of input values and time steps), the se-

quence of states and outputs that the machine produces

is unique. This is because there is a unique initial state

init ∈ S, and set,get,doStep are all total functions.

Moreover, the fact that these functions are total implies

that the machine is able to accept any input at any time,

therefore, it is implicitly input-enabled.

We also rely on zero-time steps in a sense of allowing

doStep(s,h) calls with h = 0 (despite that version 2.0 of

the FMI standard forbids this), because they are essential

for modeling discrete transitions like instantaneous mode

switches in hybrid automata models.

In addition to the above, each FMU comes with a set

of input-output dependencies, D ⊆ U ×Y . D specifies

for each output variable which input variables it depends

upon (if any): (u,y) ∈ D means that output variable y de-

pends on input variable u. This information is used to

ensure that a network of FMUs has no cyclic dependen-

cies, and also to determine the order in which all network

values are computed during a simulation step (Broman

et al., 2013).

FMI specifies the methods that every FMU must im-

plement, but it does not specify the co-simulation algo-

rithm (also called a master algorithm). In fact, devising

such an algorithm with good properties is not a trivial

problem, and has been the topic of previous work (Bro-

man et al., 2013). In that work, two co-simulation algo-

rithms were proposed and proved to have desirable prop-

erties, such as termination of a simulation step, and de-

terminacy. The determinacy property says that the re-

sults of a simulation do not depend on the order in which

the algorithm chooses to call doStep over a set of FMUs.

This ensures that the simulation results are well-defined

and are not influenced by arbitrary factors such as FMU

names, order of creation, geometrical position in the dia-

gram of a graphical model, etc., as is often the case with

simulation tools.

In a nutshell, the co-simulation method proposed

by Broman et al. (2013) relies on the following princi-

ple. First, the co-simulation algorithm chooses a default

time step, hmax, called the maximum step size. Second,

the algorithm saves the state of each FMU in the model

(FMI specifies methods for an FMU to export and import

its state, although these are optional). Assuming there

are n FMUs, F1, ...,Fn, the algorithm maintains n states,

s1, ...,sn. Third, the algorithm calls Fi.doStep(si,hmax)
on each FMU Fi, and collects the returned time steps

h′1, ...,h
′
n. There are two cases: either all FMUs accepted

the proposed time step, i.e., h′1 = h′2 = · · · = h′n = hmax,

in which case this simulation step is over, and the algo-

rithm proceeds to the next one; or at least one FMU Fi

rejected hmax, i.e., h′i < hmax for some i. In the latter

case, the algorithm computes the minimum of h′1, ...,h
′
n,

hmin = min{h′1, ...,h
′
n}, restores the saved state of each

FMU, and tries again with new step size hmin.

Assuming that the FMUs satisfy the reasonable

“monotonicity” property that if they were able to ad-

vance time by h′i then they are also able to advance time

by any smaller step, and by the fact that hmin is smaller

than all h′i, the second attempt is guaranteed to succeed.

That is, hmin will be accepted by all FMUs. As a result,

at most after two attempts, a co-simulation step is suc-

cessful, and the algorithm proceeds with the next step,

repeating the same procedure as above.

The FMI standard sets out a framework where FMUs

share the notion of time and exchange variable values via

input-output ports: outputs from one FMU are mapped as

inputs to other FMU(s) and so on. The output port val-

ues are said to be owned and controlled by the emitting

FMU, whereas the inputs are computed and provided

by another (outputting) FMU. The framework foresees

that before producing an output an FMU may first need

some input values and thus input-output dependency in-

formation is introduced. Overall the I/O port connec-

tivity graph derived from the model of interconnected

FMUs, together with the local I/O dependencies of each

individual FMU, result in a global I/O dependency graph

for the entire model (Broman et al., 2013).

Time and I/O values are synchronized by the co-

simulation algorithm: the time is agreed by repeatedly

consulting each FMU and the I/O values are propagated

according to dependencies. The co-simulation algorithm

assumes that each FMU provides a static dependency list

of its ports before simulation starts, and that the result-

ing global I/O dependency graph is acyclic, and therefore

there exists a schedule for computing the value of every

input port before the value of a dependent output port is

requested (Broman et al., 2013).

3 Translating Models into FMUs

The behavior of individual FMUs is provided by the

model-checker’s simulation engines based on the guide-

lines described by Tripakis (2015). In particular, the

report distinguishes continuous and discrete dynamics.

The continuous behavior is modeled by differential equa-

tions over continuous variables whose values can be
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shared among FMUs by the means of port connec-

tions. The output ports of an FMU are mapped to the

owned/controlled variables which are read and written

to, whereas input ports map to read-only variables within

the FMU.

The discrete behavior is modeled by discrete transi-

tions in the timed/hybrid automata control flow struc-

ture. The discrete transitions are designed to be exe-

cuted with micro-steps of zero delay. Transitions can

also be decorated with event labels and each tool sup-

ports its own kind(s) of synchronizing compositions in-

ternally and therefore the discrete transition synchroniza-

tion is also handled individually within the tools. Tri-

pakis (2015) provides the means of discrete transition

synchronization by allocating two special port variables:

one for incoming (input) synchronization and one for

outgoing (output) synchronization. The domain of dis-

crete input (output) ports coincides with the set of input

(output) labels plus a special value absent which denotes

no synchronization or an internal discrete transition.

3.1 Uppaal

UPPAAL uses timed automata models (Alur and Dill,

1994), extended with discrete variables over structured

types to describe behaviors of a timed system. In timed

automata, the continuous dynamics is controlled by real-

valued clock variables (with derivatives set to one) and

discrete states complemented with integer variables –

both of which are candidates for exchange via FMU

input-output ports. Statistical model checking (SMC) ex-

tensions (David et al., 2011, 2015) allow a finer control

of the clock derivatives by means of ordinary differential

equations, moreover the discrete transitions are stochas-

tic where the execution is determinized by probability

distributions over time and over branching edges. The

stochastic semantics of a parallel composition is simi-

lar to the FMI co-simulation algorithm (Broman et al.,

2013): the way the minimum delay is negotiated and

thus the timed composition within the FMI framework

is straightforward, and task is to find a systematic way of

handling discrete synchronizations. UPPAAL also sup-

ports the maximal progress or ASAP semantics on edges

labeled with urgent channels.

UPPAAL supports the notion of discrete I/O synchro-

nization natively by means of input and output channel

labels. Thus, its discrete input and output transitions can

be mapped directly to the input/output port variables of

an FMU that is dedicated to transfer the synchroniza-

tion label name. Nonetheless, we distinguish the fol-

lowing kinds of transitions: internal (transitions without

I/O channel synchronization or internally synchronized

transitions for which channels are not marked as input or

output), input transitions (labeled by an input synchro-

nization where the channel name is marked as an FMU

input), and output transitions (labeled by an output syn-

chronization where channel is marked as an FMU out-

put). The marked outputs are controlled by the UPPAAL

simulation and are executed asynchronously irrespective

of whether the receiving FMU is ready to synchronize.

Meanwhile, the input transitions are executed only when

there is a corresponding input label set on a discrete input

port. At most one (internal, input or output) transition is

allowed at a time, hence fine-grained simulation control

can be achieved by the co-simulation algorithm.

UPPAAL FMUs do not introduce I/O dependencies be-

tween continuous variables because the models do not

use algebraic expressions to compute variable values. In-

stead of algebraic expressions the automata use discrete

transitions to update the variable values. However, only

one discrete transition is allowed at a time, therefore all

discrete outputs have dependencies on the inputs dedi-

cated to synchronization labels which restrict the selec-

tion of a particular discrete transition and hence specific

variable update.

3.2 SpaceEx

SPACEEX (Frehse et al., 2011) uses hybrid automata to

describe system behavior where the continuous variable

derivatives are constrained by differential equations. The

continuous variables are candidates for input and output

exchange via FMU ports. The discrete transitions of hy-

brid automata can be decorated with labels. Synchro-

nization may involve multiple participating processes,

but there is no notion of input and output – all processes

are equal contributors, therefore the simulator needs to

implement the input/output semantics required by FMI.

We use a special label naming notation to mark input and

output labels (see Fig. 6). The transitions with input la-

bels are only executed when the discrete input variable of

FMU is set to the corresponding label name. Meanwhile,

the transitions with an output label are controlled by

SPACEEX’ simulation, and are executed asynchronously

by setting the discrete output variable with the label

name irrespectively of whether the receiving FMU can

synchronize with it. We ensure the SPACEEX FMU de-

terminism by enforcing the must-semantics of discrete

transitions in a hybrid automaton. In other words, a dis-

crete transition is taken as soon as its guard is enabled.

Finally, we resolve the non-determinism between input,

output, and internal transitions in the following way: in-

put transitions have priority over output transitions and

output transitions are preferred over the internal ones.

Both UPPAAL and SPACEEX translations simulate the

source models as they are without intermediate transfor-

mations, except of the following additions: 1) input en-

abledness is ensured by broadcast channels in UPPAAL

modeling and asynchronous I/O is implemented for

SPACEEX synchronization labels, 2) for determinization

SPACEEX uses maximal progress whereas UPPAAL uses

stochastic semantics with a possibility of urgent channels

for maximal progress.
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x = 1
a!

x = 1
b!

a?

b! x = 1
c!

b?

c! x = 1
d!

c?

d!

A1 A2 A3 A4

Figure 1. An example of four timed automata chain.

3.3 Discussion on Co-Simulation Semantics

In this section, we discuss the co-simulation seman-

tics and contrast it to those typically used by a model-

checking tool. In particular, we demonstrate by exam-

ple how the FMI co-simulation algorithm resolves in-

put/output dependencies and contrast it with execution

analysed in a model checker. Our goal is to offer insights

in the differences of the two semantics.

Consider a system model shown in Fig. 1 which con-

sists of four timed automata composed in parallel. La-

bels of the form a! denote sending output a, whereas a?

denotes receiving an input a. The variable x is a clock

measuring time starting from zero. The constraint x = 1

is a guard which allows the corresponding transition of

the automaton to occur only if the guard is satisfied, i.e.,

in this case only when x equals 1. The automata synchro-

nize in a chain: the first can output a to the second one,

the second one can output b to the third one and so on.

In principle, the system can be loaded into an FMI

model in any combination: individually (one automaton

per FMU) or collectively (multiple automata per FMU),

but before an FMU can be loaded into an FMI model, it

must declare its input/output dependencies. According

to Broman et al. (2013) each automaton should expose

an input/output variable which will contain the synchro-

nization label value. Automaton A1 in the example above

will have only an output variable, which may have values

{a, absent}. Automaton A2 will have an input variable

ranging over {a, absent} and an output variable ranging

over {b, absent}, and so on. The special value absent de-

notes that currently there is no synchronization. Timed

automata must declare a dependency between its input

and output label variable in order to avoid simultaneous

input and output synchronizations.

In addition, it is assumed that each FMU is input-

enabled, meaning that it can handle (i.e., it is able to

receive) any declared input at any time. If a component

is not input-enabled and an input synchronization is trig-

gered then simulation is aborted, to avoid such situation

we allow only broadcast channels, which do not block

the sender process and receiver may simply ignore the

synchronization if has no receiving edge.

Suppose the automata from Fig. 1 are loaded within

separate FMUs and connected according to synchroniza-

tion labels. That is, the output of FMU(A1) is connected

to the input of FMU(A2), the output of FMU(A2) is con-

nected to the input of FMU(A3), and so on. The co-

simulation algorithm would detect that it has to fulfill in-

puts values for the FMU(A4), FMU(A3), and FMU(A2)

in order to proceed, therefore the input/output value

propagation will have to start with FMU(A1) and then

proceed to the FMU(A2) etc.. Once the values of all in-

put and output variables are propagated, the algorithm

proceeds with advancing each FMU in time by calling

doStep(). It is this dynamic behavior in time which in-

terests us in this example.

In particular, observe that A2,3,4 automata are non-

deterministic in the sense that, according to UPPAAL se-

mantics, at time x = 1 an automaton can either delay, or

take an outputting transition, or synchronize on inputs.

For instance, at time x = 1, A2 can either emit b, or re-

ceive a (which will be available in this case, because it is

sent by A1 at exactly that time), or let the time pass. In

timed automata semantics, all these options are possible

at the individual component level. Moreover, not only in-

dividual components can be non-deterministic, but their

composition is non-deterministic as well, based on so-

called interleaving semantics. This means that when

multiple automata are enabled at a given time, the choice

of which one to execute is arbitrary. Non-determinism

is a useful abstraction and thus model reduction tech-

nique in verification and model-checking. The same is

true when these tools are used for simulation, i.e. differ-

ent simulations in UPPAAL may yield different results.

In FMI, the situation is very different, as all FMUs are

treated as deterministic components, and their composi-

tion, ensured by the co-simulation algorithm, is guaran-

teed to yield deterministic results as well. Interestingly,

in this example, if all automata decide to output at time

x = 1, some of them will succeed outputting in parallel,

while others will be preempted by incoming inputs. In

particular, the master algorithm will request FMU(A1)
to produce its output, and thus FMU(A2) will be busy

handling an input and will not be producing output at

that time. Since FMU(A2) is not sending anything, then

FMU(A3) will be free to produce an output and hence

preempt FMU(A4).

As witnessed from above, such FMI system selects a

particular sequence of steps (which is expected) but is

not able to simulate all possible execution orders as in

original semantics even if we allow FMUs to determinize

their actions by themselves, which means that FMI sim-

ulations are selecting a particular subset of all possible

behaviors and some behaviors may not be reproducible

in FMI. Also FMI simulations may contain parallel syn-

chronizations (e.g. actions A1

a
 A2 and A3

c
 A4 at

the same computation step) which are possible only in

several steps in timed automata semantics (action a and

only then action c within zero-time), hence the interme-

diate state between a and c actions might not be acces-

sible in FMI without very fine grained control over indi-

vidual doStep() calls in one zero-time computation step.

However, the successor state of such parallel executions

can be matched with a state after multiple transitions in

the given automata semantics, hence the FMI simulation
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states in between system computation steps are included

in the original semantics, albeit definite proof requires

more formal insight to examine all scenarios.

4 Case Study

We have implemented the FMI standard in the

UPPAAL (Larsen et al., 1997) and SPACEEX (Frehse

et al., 2011) model checkers by providing model export

to FMU3. In this section, we present and evaluate the

performance of the resulting FMI framework on a case

study inspired by the well-known room heating bench-

mark originally proposed by Fehnker and Ivancic (2004).

Our model consists of a room with a heater (Fig. 2) and

a controller (Fig. 3) which regulates the heater behavior.

We model the room and the controller as a SPACEEX and

UPPAAL FMU, respectively (see Fig. 4). Our bang-bang

controller turns the heater on and off as soon as some

temperature thresholds Tlow and Thigh have been reached.

The as-soon-as-possible behavior is enforced by using

urgent channels which effectively make the controller

deterministic. The room temperature T evolves accord-

ing to the following differential equation:

Ṫ = k · (Tenv − t)+hpower

Ṫenv = 0

ḣpower = 0

In other words, the room temperature depends linearly

on the difference between the current room temperature

T and outside temperature Tenv. We assume the outside

temperature Tenv and heater power hpower to be constant.

The constant k defines the heat exchange rate between

the room and outside environment. If the heater is off,

the heater power is set to zero.

4.1 Evaluation

We evaluate our FMU framework by comparing simula-

tion trajectories of the FMUs with the ones produced by

a SPACEEX model consisting of both the controller and

room components. We consider three different simula-

tion step values: 1 (see Fig. 5a), 0.1 (see Fig. 5b) and

0.01 (see Fig. 5c). Considering the simulations, we ob-

serve that the FMU trajectories overshoot the controller

constraints in the sense that the controller exhibits a de-

layed reaction when the room temperature crosses the

temperature thresholds. The behavior is justified by the

fact that the method call doStep for every FMU relies

only on the local information about the state evolution

when making decisions, e.g., the controller FMU does

not have any information about the room temperature

evolution beyond the value which can be provided when

3A package containing the benchmarks is available for download

at http://swt.informatik.uni-freiburg.de/tool/spaceex/

co-simulation.

off

Ṫ = k · (Tenv −T )

Ṫenv = 0

ḣpower = 0

on

Ṫ = k · (Tenv −T )+hpower

Ṫenv = 0

ḣpower = 0

hon? hoff ?

Figure 2. Room component modelled in SPACEEX. The com-

ponent switches between “on” and “off” modes. The temper-

ature variable T is exported as output and synchronizations la-

bels hon and hoff as inputs.

off on

T ≤ Tlow

hon!

T ≥ Thigh

hoff !

Figure 3. Controller in UPPAAL uses urgent channels to en-

sure as-soon-as-possible transition trigger. Temperature T is

an input and labels hon and hoff are outputs.

the method doStep is called. Therefore, the controller

FMU detects that the guard is enabled only a simulation

iteration later after this event has already happened. We

observe that the impact of the overshooting can be made

arbitrary small by choosing a small enough simulation

step (see Fig. 5c vs. Fig. 5a and Fig. 5b).

We note that the overshooting problem is inherent

to the considered master algorithm and can be cir-

cumvented by incorporating additional cross-component

knowledge into the master algorithm. Overall, our exper-

iments validate that on this case study our co-simulation

framework based on SPACEEX and UPPAAL provides

equivalent simulation results compared to the setting

where all components are modelled in one tool.

4.2 Supervisory Control Example

In this section, we show how supervisory control systems

similar to the benchmarks presented by Fehnker and

Ivancic (2004) can be modeled using the FMI paradigm.

Compared to Section 4.1, we consider a model of the

building with two rooms sharing a common wall and

a heater. In this setting, the room temperature is influ-

FMU

FMU

Controller

Room

hmode

hmodeT

T

Figure 4. SPACEEX and UPPAAL FMUs connected using the

room temperature T and heater mode hmode.
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(c) Maximum step size 0.01.

Figure 5. Simulation trajectories: each red x is a data point re-

ported by SPACEEX, and blue + reported by the co-simulation.

enced by both the outside temperature and heat transfer

between the rooms. Figure 6 shows a hybrid automaton

from SPACEEX modeling the room temperature dynam-

ics. The difference from the previous example here is an

extra term (Tother−t)∗0.2 denoting a contribution from

another room. Another room is modeled analogously ex-

cept that it responds to heater2_on and heater2_off sig-

nals instead of heater1_on and heater1_off.

Our controller consists of two parts: local bang-bang

controller and a supervisor shown in Fig. 7. In order to

model the transitions of the heaters between the rooms,

we assume that the controllers can be turned on/off by

the supervising controller. Therefore, the local controller

has an extra mode besides On and Off which stands for

the controller being currently deactivated. The supervis-

ing controller has two kinds of stochastic behavior: it can

pick any pair of rooms (one recipient and another donor)

to transfer the heater, and it can choose the timing of

transfer. When a pair of rooms is selected (by choosing

concrete room identifiers for rec and donor variables) the

donor is disabled by moving from location decide to lo-

cation move and the recipient is enabled by going from

move to idle. The supervisor may stay in location idle

arbitrary long, but the exact duration is decided by an ex-

ponential probability distribution of rate 1 which means

the duration of 1/1 time units on average. Similarly the

supervisor may stay in decide and move but the duration

will be 1/10000 on average, i.e. denoting that the heater

is moved rather quickly.

Figure 8 shows the overall component connectivity di-

agram where the supervisor is reading temperatures from

each room and controls the local movable heater con-

trollers. The movable heaters then may either turn on the

heat in their room or let them cool off giving the heat to

Figure 6. Hybrid automaton for a heated room connected to

another room. Inputs are temperatures Tenv, Tother and labels

IN_heater1_on and IN_heater1_off, while output is tempera-

ture t. We use the prefix IN to mark input labels.

(a) Local bang-bang controller which can be moved (disabled).

The inscribed U means urgent location where time delay is

not allowed. The inputs are temperature variable T[id] and

labels enable[id] and disable[id], while outputs are labels

heater1_on and heater1_off.

(b) Supervising controller moves the heaters between rooms by

reading inputs on T[i] and sending outputs on labels enable[i]

and disable[i] where i is the room index.

Figure 7. Two layers of UPPAAL controllers.
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outside. The individual heated rooms are then connected

to the outside temperature and to each other denoting the

heat exchange. The splitter FMUs are repeaters needed

to connect multiple components to the same signal.

In the following, we discuss the behavior of the result-

ing composed model. Figure 9 shows the temperature

dynamics in each room. In particular, the plot shows that

in the beginning the temperature drops until the super-

visor detects a room temperate below T get = 17◦, then

around 6 time units a heater raises the temperature in

room 1. The local controller keeps rising the tempera-

ture until it goes over 22◦ bound at around 7.5 time units.

Notice that the temperature in room 2 also rises due to

heat exchange between the rooms. Around 10 time units

the supervisor decides to hand over the heater to room 2.

At 14 time units the heater is switched back to room 1

and so on. We can conclude that even though the tem-

perature drops well below 18◦ overall it seems that the

controllers manage to sustain the temperature at the sim-

ilar level without loosing control (without dropping to

outside temperature level).

4.3 Stochastic Simulations and SMC

The following is a demonstration of statistical model

checking (SMC) using the FMI framework. We show

how the performance of two stochastic controllers simu-

lated by UPPAAL can be compared using SMC approach

together with the heated room simulation provided by

SPACEEX. Figure 10 shows two controllers: (a) reacting

within 1 time unit to 18.0◦ and 22.0◦ temperature bounds

and (b) reacting within 2 time units to 19.0◦ and 21.0◦

temperature bounds. The channels used in these con-

trollers are not urgent and therefore the delay between

temperature detection and heater activation is decided

stochastically based on uniform distribution over the al-

lowed delay by invariants, i.e. the concrete delay will be

chosen from [0,1] for the first controller and from [0,2]
for the second one. The On and Off locations do not have

any invariant and therefore in principle the process may

stay there forever. In such cases UPPAAL uses an expo-

nential (Poisson) probability distribution to decide a par-

ticular time delay and hence asks to provide a rate of the

exponential. The higher the exponential rate, the shorter

the delays, hence we can provide a high rate to ensure

that the detecting transition is fired arbitrary quickly.

In our setup, we would like to know which controller

is better at keeping the room temperature within 18.0◦

and 22.0◦ bounds. In order to answer this question we

setup two FMI models for each controller with an equal

room, run 100 simulations with 100 time units in length

and 0.05 granularity, compute the amount of time spent

outside the temperature range for each simulation and

then compute the confidence intervals for both models.

Table 1 shows a summary of amounts of time during

which the temperature was either below or above the

range. The estimated time duration use confidence in-

terval (CI) notation which means that if we repeat the

measurement experiment then the real mean (which is

unknown) will fall into the interval with a probability of

95%. The results show that the second controller was

more successful at maintaining the lower bound of the

temperature, but was more overshooting beyond the up-

per bound. In total, the first controller kept the tempera-

ture in good range longer by 8.57 time units on average,

which is much larger than confidence interval, hence the

first controller is better.

Table 1. Time with temperature outside the range (95% CI).

Controller Time below Time above Total

Wide and fast 7.56±0.20 32.69±3.36 40.26±0.59

Narrow and slow 2.40±0.19 46.43±0.82 48.83±0.79

5 Related Work

The FMI standard and corresponding documentation are

constantly evolving, as new versions of the standard are

developed. The web site4 also contains a list of tools

supporting FMI. Descriptions of FMI can also be found

in the academic literature (Blochwitz et al., 2011).

Discussions about the limitations of FMI can be found

in the works by Broman et al. (2013, 2015). Broman

et al. (2013) also formalize the main methods of FMI

(get, set, doStep) by establishing a contract (pre-

/post-conditions) for each method and propose a mas-

ter algorithm (i.e., a co-simulation algorithm). Further-

more, the authors proves its termination, determinacy,

and other properties. However, the paper does not dis-

cuss how FMUs can be created. A different, master-slave

based, co-simulation approach is proposed by Bastian

et al. (2011), but formal properties such as determinacy

are not discussed in this work.

Broman et al. (2015) defines a suite of test models that

should be supported by a hybrid co-simulation environ-

ment, giving a mathematical model of an ideal behav-

ior, plus a discussion of practical implementation con-

siderations. Furthermore, the paper describes a set of ba-

sic modeling components in the spirit of Ptolemy actors

(constant, gain, adder, integrator, etc.). Finally, the au-

thors provide a kind of denotational description for each

component (input and output signals), but no encoding

into FMUs is discussed.

The FMU generation problem for various formalisms

is discussed by Tripakis (2015). This work only refers

to a generic model of timed machines which does not

include the particularities of UPPAAL’s timed automata.

In addition, hybrid automata are not considered in this

work.

Recently, the co-simulation algorithm presented

by Broman et al. (2013) has been implemented in the

4https://www.fmi-standard.org/
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how the non-deterministic models can be determinized

using stochastic semantics and included into FMI co-

simulation. We also provided an example how statisti-

cal model checking can be performed using numerous

FMI simulations which is an essential feature evaluating

stochastic behavior. The integration of model-checkers

into co-simulation frameworks provides further possibil-

ities of analyzing early design models like conformance

monitoring by checking that a simulation trace of a re-

fined (e.g. hybrid) model is included in a more a ab-

stract (e.g. timed automata) specification. We envision

our work being a further step towards integrating tools

developed in the formal methods community into the in-

dustrial system design and modeling workflow of cyber-

physical systems.
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