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Abstract by geographically distributed design teams, con-
strained by the objectives of multiple stakeholders
In this paper, we combine modeling construcg§!d inundated by large quantities of design inferma
from SysML and Modelica to improve the suppofton. Accordingly, problems encountered during the
for Model-Based Systems Engineering (MBSE§Ystem development process generally have more to
The Object Management Group has recently devél@ With the organization and management of com-
oped the Systems Modeling Language (Om@exity than with the direct technological concerns
SysML™). This visual modeling language providd$at affect individual subsystems and specific phys
a comprehensive set of diagrams and constructs g8} science areas [1]. If engineers cannot efiitye
modeling many common aspects of systems engi@anage project complexity, they might overlook im-
neering problems, such as system requiremeritgftant design details and dependencies. Such mis-
structures, functions, and behaviors. Complemgntif@kes can compromise stakeholder objectives and
these SysML constructs, the Modelica language H&3d to costly design iterations or system failures
emerged as a standard for modeling the continuous According to the principles of model-based sys-
dynamics of systems in terms of hybrid discreteems engineering (MBSE) [2], engineers can over-
event and differential algebraic equation systeins. come these problems by replacing document-centric
this paper, the synergy between SysML and Mod#esign methods with model-based approaches for
lica is explored at three different levels: thdime representing and investigating their knowledge dur-
tion of continuous dynamics models in SysML; thiag system decomposition and definition. Models
use of a triple graph grammar to maintain a htan be used to represent formally all aspectssyka
directional mapping between these SysML cotems engineering problem, including the structure,
structs and the corresponding Modelica models; afuehction, and behavior of a system [3]. Additidpal
the integration of simulation experiments with athexperiments can be performed on models to elimi-
SysML constructs to support MBSE. Throughoutate poor design alternatives and to ensure thed-a
the paper, an example of a car suspension is vsefktred alternative meets the stakeholders’ objestiv
demonstrate these contributions. Models also facilitate collaboration by providing a

Keywords: SysML; Modelica; model-based systerf@mmon, unambiguous protocol for communicating

engineering; continuous dynamics; graph transfoflesign information.

mations To support MBSE, the Object Management
Group has recently developed the Systems Modeling
Language (OMG SysML™). SysML is a general-

1 Introduction purpose systems modeling language that enables sys-
tems engineers to create and manage models of engi-

1.1 Managing System Complexity with SysML  neered systems using well-defined, visual construct
[4]. Instead of developing SysML as an original de

Contemporary systems engineering projects aign, the OMG adapted the successful Unified Mod-
becoming increasingly complex as they are handleihg Language (UML) to the systems engineering
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field. UML is most commonly used during the dedifferential algebraic equation (DAE) systems that
velopment of large-scale, complex software for-varepresent the exchange of energy, signals, or other
ous domains and implementation platforms [5]. Temntinuous interactions between system components.
support an application base that extends beyornd sBfy relying on Modelica syntax and semantics, we
ware engineering, SysML reuses and extends a sdémonstrate how such DAE systems can be modeled
set of UML 2.1 constructs: with only a few extensions to the basic SysML con-
structs (see Section 4). SysML then serves as-an in

° !t extends UM.L classes mtojogks tegration framework in which detailed Modelica

* !t enablesrequweme.nts modt_allmg models can be related to other types of systemis eng
* it supportsparametric modeling . neering knowledge (see Section 6). The integration
o it extends UML dependencies idflocations  petween SysML and Modelica creates a significant
* it reuses and modifies UMactivities synergy: SysML benefits from the detailed Modelica
* it extends UML standard ports inlow ports semantics for representing DAE systems combined

Through these extensions, SysML is capable of rjth discrete events; Modelica benefits from the
resenting many common, yet essential aspectsbB“?ader information modeling context provided in

both system hardware and software. SysML, a context that is crucial for establishing fo
mal, unambiguous communications between systems
1.2 Modeling System Behavior with SysML engineers, disciplinary designers and systems ana-

lysts. To maintain consistency between the Mode-

The knowledge captured in a SysML model jica models _and their correspondin_g abstractions in
intended to support the specification, analysis, daySML, we introduce the use of triple graph gram-
sign, and verification and validation of any engmMars (TGGs) [6] to specify transformations between
neered system [4]. As a result, SysML is commorififye two forms of models (see Section 5).
used to model system requirements, tests, strgture
functions, behaviors, and their interrelationships.
Although all of these models are important for ensi?2 Related Work
ing project success, behavioral models are arguably
the most important. If the system does not befrave ~ The need to describe system behavior in terms
a way that satisfies stakeholder objectives, thés i of equations or constraints has been previously rec

useless regardless of its other aspects. ognized in the work on Constrained Objects (COB’s)
SysML currently depicts system behavior usirg: 8l COBs provide both a graphical and lexical
the following language constructs: representation of algebraic relationships that loan

used to tie design models to analysis models ia-a p
 Activity diagramsdescribe the inputs, outputsrametric fashion. These COBs recently servedas th
sequences, and conditions for coordinatingsis for the development of the SysML parametric
various system behaviors; diagrams [4]. By establishing a mapping between
e Sequence diagramglescribe the flow of COBs and SysML, the integration and execution of
control between actors and a system or #sigineering analyses (such as structural finite ele
components; ment analyses) within the context of SysML has
e State machine diagranse used for modelingbeen demonstrated [9]. This paper extends this past
discrete behavior through finite state transitiomork on COBs by focusing on the modeling and
systems; simulation of the continuous dynamics of systems as
e Parametric diagramsallow users to representdefined in Modelica models.

mathematical constraints amongst system Recently, Fritzson and Pop [10] have worked on
properties. the integration of UML/SysML and Modelica to

The first three of these modeling constructs promdigPvide support for modeling and simulating con-
causal behavioral modeling in terms of discref@uous dynamics. They have created a UML profile
events. The last one enables a user to model ed@ed ModelicaML that enables users to depict a
tions (called “constraints” in SysML) that estahlis™odelica simulation model graphically alongside
mathematical relationships between system propt¥IL/SysML information models. The ModelicaML

ties. In this paper, the focus is parametric dia- profile reuses several UML and SysML constructs,
grams and specifically on the representation of tH&!t also introduces completely new language con-
continuous dynamics of engineered systems witiiucts.  Such constructs are the Modelica class di

parametric diagrams. Such models are composed@M. the equation diagram, and the simulation dia-
gram.
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Nytsch-Geusen [11] developed a specialized ver- | pad car Definition

sion of UML called UML". This version is used in «requirement»
the graphical description and model-based develop- Car ReboundReq
ment of hybrid systems in Modelica. The author values text = “When
presents hybrid system models as Modelica models | | mass: Sl Mass = 1500 1 disturbed by 0.1 m,

.~ | the suspension shall
«satisfy» | settle to 5% of

that are based on DAEs combined with discrete state
suspension steady state in

transitions modeled with the Modelica statechart ex

tension. Using a UM editor and a Modelica tool WheelSuspensio; under 1 sec.”
that supports code generation, Modelica stubs ean b

automatically generated from UNLdiagrams so o Setﬂgﬁme, Time Sl.Mass
that the user must only insert the equation-baged b ’ : walueTypen
havior of the system in question. In this papke, t unit = kg
capabilities of ModelicaML and UML are further

extended by demonstrating the integration of con- coil shock
tinuous dynamics models with other SysML con- Coil Shock
structs for requirements, structure, and desigembj values values

tives, and by demonstrating the translation between | | springRate: Real dampingCoef: Real

SysML and Modelica through the use of TGGs. : :
Figure 1. The SysML car suspension model.

3 An Introduction to SysML: The

; 3.2 ML P i
Car Suspension M odel Sys roperties

A SysML property describes a part or character-
Before discussing the approach for modelingtic of a block and consists of a named value of a
Cont.inUOUS .dyna.miCS and simulations in SySML, thﬁ)ecrﬂed type In Figure 1, two important Catégs)r
section reviews some important SysML construcgs properties are depicted. The first kind of dp
and introduces the example prOblem used thrOUgh@Jb part property Part properties represent a sub-

this paper. system or component of a system and must be typed
by a block. Part properties can be depicted in the
31 SysML Blocks parts compartmenbf a block or using aomposition

) ] o ) association A composition association is depicted

The primary modeling unit in SysML is thesing a black diamond with a tail. The property
block ~ As described in chapter 8 of the SysMhame appears at the tail end of the associatian. F
specification [4], a block is a modular unit of yss example, the blockar in Figure 1 owns a part prop-

tem description. A block can represent anythingny namedsuspensionf typeWheelSuspension
whether tangible or intangible, that describes & sy The second kind of property isvalue property

tem. For instance, a block could model a syste value property appears in a blockialues com-
process, function, or context. When combined to- property app

gether, blocks define a collection of features theat partmentand represents a quantifiable characteristic

scribe a system or other object of interest. Hen% ae dblt(;c; ée'gMEZisusé iengtrk \\//::l?g'iy) s?s gnSLB;_b
blocks provide a means for an engineer to deco P y yp yb P

pose a system into a collection of interrelated Og_al_modellng_element (similar to a block) used to
acts assign the units of measure and dimension declared
J ' in its definition. For exampleCar in Figure 1 has a

_ AII_bIock declarations occur in Block Defin_i- value propertynasswhich is typed to the value type
tion Diagram (BDD). A BDD is used to define g pmasgo supply units of kilograms.

block features and the relationships between blocks

or other SysML constructs. Figure 1 depicts thgz yML Stereotypes

definition of a car and its suspension. A carbsio

ously composed of more subsystems and compo- A stereotypeis a UML construct used to create

nents, but Figure 1 is sufficient for the sake efd cystomized classifications of modeling elements.

onstration. SysML allows a modeler to omit elestereotypes are defined by keywords that appear in-

ments of the underlying information model that dejde of guillemets. These customization constructs

tract from the main intent of a diagram. extend the standard elements to identify more spe-
cialized cases important to specific classes ofiapp
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cations. Most SysML constructs have been defingdnality. SysML is a language for describing sys-
as UML stereotypes, and users are allowed to cret#ims engineering information and knowledge, but is
additional stereotypes to capture the specializzd by itself not executable—model execution is rele-
mantics of a particular application domain. An exated to an editing and execution tool. To beceffe
ample of a stereotype is illustrated in Figure 1e Thive, it is therefore important to establish seasle
stereotypexmoex»applied to theWheelSuspensitm connections between SysML and simulation tools.
value propertysettlingTime indicates that it is a Model reuse is another imperative for realizing sig

measure of effectiveness. nificant reductions in project resource expendgure
Finally, using a unified approach for representing
34 SysML Requirements continuous dynamics in SysML establishes a proto-

col for unambiguous communication of behavioral

A SysML requirementis used to represent a texinformation between designers operating in various
tual requirement or objective for a system, subsysagineering disciplines.

tem, or component. Requirements are shown with
the «requirement»stereotype and optionally have 4.2 M odelica asa Foundation
compartment for displaying text and identification
fields. Requirements are related to other modeling When creating a formal approach for represent-
elements using various dependencies such asatheing continuous dynamics in SysML, Modelica pro-
isfy andverify dependencies. vides a strong foundation. Modelica has emerged as
the language of choice for expressing continuous
dynamic system behavior. It is better structuned a
4 Modeling Continuous Dynamics in more expressive than most alternatives such as
SysML VHDL-AMS [14] or ACSL [15]. In addition, both
SysML and Modelica are similar in that they use
In this section, the approach to modeling coRase _model@ng elements _that adhere to the prirciple
g)f_ object-oriented modeling. Both languages also

tinuous dynamics in SysML is presented. The a del h h | .
proach builds on the initial modeling foundatiort-ouS"coUrage modael reuse through acausal equation-

lined in [12]. Rather than elaborating upon eveé?sed modeling. U.nfortunately, enough djffer(_ences
detail, only the most important modeling construcfiSt such that a direct one-to-one mapping is not

are discussed possible. Since SysML is intended to be a general
' modeling language, some of the specialized seman-
41 Objectives tics of Modelica do not have a direct equivalent in

SysML. To overcome these differences, our ap-
A model is valuable if it increases a decisioRroach has been to find a good balance between con-
maker’s ability to design a better system at an é{{e__rpng some |mpI|C|t Modelica semantlc_s into ex-
ceptable cost [13]. As explained later in thistiseg Plicit constraints in SysML or, when that is not pos
the continuous dynamics modeling constructs wiliPle, extending the SysML constructs through
provide value if they meet the following objectives St€reotypes.

e Enable the integration of continuous dynamies3 M ode Declaration
models into broader SysML models;
e Facilitate the execution (i.e., simulation) of When modeling continuous dynamic system be-
these continuous dynamics models; havior, a modeler must first declare the model that
e Encourage model reuse; represents the system of interest. This involves
e Facilitate efficient stakeholder communicatiorspecifying the blocks and properties needed to de-
compose the system to an appropriate level of ab-
. ! 'Sraction. The level of abstraction is determigd
priate b_alance between the benefits expecte_d fr amount of detail needed to perform an acceptabl
deve]opmg a quel and the costs of encoding tem analysis. This declaration approach isoanal
required information. gous to creating Modelica classes that own compo-
Model integration is essential for managing Sysents and variables typed to other class defirstion
tem complexity through recognition and establish- To illustrate model declaration, Figure 2 displays

me(rjlt | of fdep?_ndenue; and. assc;uaﬂgnﬁ pEtW declaration of a continuous dynamics model of a
models of continuous dynamic system behavior a ss-Spring-Damper (MSD) system. This model

other models of system behavior, structure, or fung e ysed in Section 6 to perform a behavioral
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bdd MSD Definition J

MSD

MechJunction

values
time: Time

values
s: Sl.Position
f: Sl.Force

mass

n1‘ nz‘ nB‘

Mass

Spring

constraints
{{Modelica} s =j.s;
v = der(s);
a = der(v);
m*a=jf}
{s =-0.1; } «initial»

parts
j: MechJunction

values
s: Sl.Position
m: Sl.Mass
v: Sl.Velocity
a: Sl.Acceleration

spring

«constraint»
MechNode

values
k: Real

Damper
damper

constraints

{{Modelica} j1.s = j2.s;

j1.s=j3.s;
j1.f+j2.f+3.f=0;}

values
d: Real

parameters
j1: MechJunction
j2: MechJunction
j3: MechJunction

round

SteadyStateDetector

detect

values
ssTime: Time

Figure 2. BDD of théViSD continuous dynamic system

analysis on the car suspension model from Figur
The MSD system is composed of a mass, spri
damper, fixed position (i.e. ground fixture), and
detector that determines system settling time.
block MSD represents the declaration of the MS
system while the other blocksMéss Spring

Damper SteadyStateDetectdfixed andMechJunc-

behavior model.

To illustrate the declaration of a model interface,
Figure 2 depicts a block nam&techJunction This
is a reusable block that encapsulates position and
force value properties corresponding to translation
across and through variables. To define the inter-
faces for each component BSD, the appropriate
number of part properties are declared for each-com
ponent and then typed techJunction For exam-
ple, Masshas one part properptyped toMechJunc-
tion.

45 DAE-Based Internal Behavior

To define a model's DAE-based internal behav-
ior, Modelica relies on equations declared in the
equation clause of a given class. Similarly, tkis
accomplished by placing SysMtonstraintson a
given block. A constraint is simply the representa
tion of an equation that constrains a block's value
properties. Constraints appear between braces and
are displayed in a block’s constraints compartment.
€16 model initial conditions, a constraint can be as-
r%ﬁagned thecinitial» stereotype. This stereotype is an
Tg\dension to SysML,; it can only be assigned to con-

faints and implies that the constraint only holds
ue at the beginning of a simulation.

Usages of constraints and tiaitial» stereotype

tion) represent the definitions of the system comp@t€ Shown in Figure 2. The internal behavior & th

nents.

Upon declaring the necessary models, th%
properties must be identified. Figure 2 depicts tlg
declaration of both the part and value properti
MSD is attributed with themass spring damper
ground anddetectpart properties typed to thdass 46
Spring Damper Fixed and SteadyStateDetector
block definitions, respectively. Whil®1SD has no

block Massis defined using four regular constraints
and one initial constraint. Note that the constsai
§<plicitly refer to the Modelica language, but athe

ntax could be used according to the modeler’s pre
fred executable language.

Energy and Signal Flow between System
Components

value properties, most of the block definitions to 14 model the flow of energy through a system
which its part properties are typed contain valygq jts components, a means of interaction must be

properties.

For exampldylass contains a value

propertym typed to the value typ®l.Mass

44 Modd Interface

To interact with other models, a given mod
must have a well-defined interface. Models used

behavior generally interact using exposedossand
Since across and throu
variables are the only means of interaction, th
should be encapsulated inside of reusable bloaks
are typed to the part properties of another blo
These part properties are then exposed to other Vnstrai
tem components and subsystems. This type of int
face is similar to the usage of Modelica connectors

through variables [16].

provided to the interface part properties descriined
Section 4.3. Generally, the flow of energy in a-sy
tem is described using the equivalent of Kirchteff’
circuit laws: at a connection, all across varialdes
qual, while all the through variables add up tmze

hile this is modeled implicitly in Modelica using
Bnnectclauses our SysML modeling approach ex-
"}B(flcitly models the interaction with reusabt®n-
traint blocks As defined in the SysML specifica-

n [4], a constraint block is a specialized foofn

e SysML block and is intended to package com-
only used equations in a reusable, parameterized
'shion. Constraint blocks can be identified bg th
nt»stereotype that appears in their name-
gﬁéee compartment. To use the definition of a con-
straint block, another block or constraint block ca
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declare aconstraint propertyand assign the type to a
constraint block. Using a SysMparametric dia-
gram the parameterssed in the definition of the
constraint can be bound to the properties of amothe
block or constraint block usinbinding connectors

A binding connector implies @ure equalitycon-
straint between two objects. If the objects arg pa
properties, then all of the sub-properties beloggm
each part are equal. It is this difference betwtben

par MSD J

mass: Mass detect: SteadyStateDetector

‘ j: MechJunction ‘ ‘ Jj: MechJunction ‘

T
UJ UJ
j1: MechJunction  j2: MechJunction
n1: MechNode

j3: MechJunction

L]

j3: MechJunction

semantics of SysML binding connectors and Mode-
lica connections that necessitates the inclusioanof n2: Mechode

.. . . j1: nction j2: nction
explicit node constraint block in SysML. L Me T eton e

Figure 2 shows the definition of a constraint
spring: Spring damper: Damper
‘ j1: MechJunction }» 4{ j1: MechJunction

block namedviechNode This constraint block has

three parameteiq, j2, andj3 of type MechJunction

The across and through variables of these parameters [ Mechuncton | [2: Mechuncton |
are subject to the three packaged constraintdthat ‘ |
scribe Kirchhoff's circuit laws for a translational | |
mechanical system. MSD owns three constraint
properties typed tdMechNodeto enable the interac- 3: MechJunction
tion of its part properties. Figure 3 displaysaag []

metric diagram that depicts the part interactionsa
result of binding usages dfechJunction

j1: MechJunction  j2: MechJunction
n3: MechNode

ground: Fixed

Jj: MechJunction

Figure 3. Parametric diagram of tkSD model.

5 SysML and Modelica Integration

Currently, system engineering problems afgodel into. S_ysML syntax to represent dependencies
solved using a wide range of domain-specific mod@nd associations with other system models
ing languages. Moreover, it is unlikely that agsén While SysML is a valuable integration tool,
unified modeling language will be able to model imuch of that value could be detracted if engineers
sufficient detail the large number of system aspecoust manually transform domain-specific models
addressed by current domain-specific languagego SysML and vice-versa. In the case of continu-
One should not “reinvent the wheel” by creating ayus dynamics models, we need an approach for ac-
all-encompassing systems engineering language @amplishing automated, bidirectional transforma-
pable of modeling and simulating every aspect oftians between the SysML and Modelica languages.

system. On the other hand, managing a large num- Many methods exist for completing model trans-

ber of models in different languages also poseb-prégrmations between two or more modeling languages
lems, including communication ambiguity and th@netamodels). Two common transformation tools
preservation of information consistency. To allevgre OMG’s Queries/Views/Transformations (QVT)

ate these problems, a model integration framewsrki7] and TGGs [6].

needed for managing the various modeling languages The QVT specification provides a set of lan-

used to solve systems engineering problgms. guages for querying a source model that complies
SysML can provide an answer to this need fQfith a source metamodel and transforming it into a
model integration. Using SysML, a modeler ca@rget model that complies with a target metamodel.

abstract a domain-specific language to a level thato QVT languagesRelationsand Core, are used
permits its interaction with other system modéier

example, a Modelica model is an excellent way to
capture hybrid discrete/DAE-based system behaviP
but is not capable of modeling system structure

requirements. Using the modeling approach outline
in Section 4, a modeler can abstract a Modelica

r ! Dependencies and associations are UML constructs
[ expressing types of relationships between inforonati
djects.
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to declaratively model the relationships between Embodded Plus SyshL OpenModelica / MDT

source and target metamodels at different levels of

fidelity. TheOperational Mapping$anguage is then SysML. Smuttn Resuls

used to perform imperative transformations based on p—

the relationships depicted in ti@ore or Relations S| Modelic

languages. Overall, QVT is a powerful and widely v

accepted model transformation tool; however, the o Sonineus Jodelia

imperative nature of th®perational Mappingdan- | Dv"amis Model

guage hampers bidirectional transformations. ] \
TGGs are similar to QVT in intent but are de- ooy eol) - (Emonodsica ol

clarative by nature. Accordingly, TGGs are particu VIATRA Transformation Framework

larly useful for completing complex, bidirectional SyeMLaModeioa

model transformations. In a TGG, the metamodels Graph Transformation

for the source and target languages are defined as

graphs. The mapping between the two languages is L et L et L] e

then represented as a set of graph transformation Representation Mode! Representation

rules applied to a third graph: eorrespondence  Figure 4. Functionality of the SysML-to-Modelica

graph For example, a SysML block would be re- transformation Eclipse plug-in.

lated to a Modelica class using a correspondence

entity namedblock2classwith one relation pointing MSD can be used to simulate and predict the behav-
to theblock entity (in the SysML metamodel graphjor of a car suspension alternative. This sectien
and one to theclass entity (in the Modelica scribes how a continuous dynamics model can be
metamodel graph). By querying a model space cQBtated to other relevant design information in
taining SysML or Modelica models, transformationsysmL: binding of model parameters in raodel
are performed until the model space complies wigdntext defining an experiment performed on a
the specified TGG. model in asimulation defining a measure of effec-
Due to the declarative, bidirectional nature dfveness as the result of a simulation; and usimg a
TGGs, one set of graph transformation rules can &fstracted simulatiorin the context of design opti-
used to transform SysML models into Modelica andization.
vice-versa. Although a TGG is used for this trans-
formation, others have shown that QVT is equalfl Defining the Model Context
expressive and capable [18]. The TGG and graph
transformation rules have been encoded in the Visua In systems engineering, a continuous dynamics
Automated Model Transformations (VIATRA) [19]model is always used in a particular model context.
framework. VIATRA enables modelers to creat@/ithin this model context the elements of the gyste
models in a declarative fashion and use pattern réffucture are bound to the corresponding eleménts o
ognition to complete graph transformations in a sé&e analysis model. In current practice, engineers
quential fashion using machines. To demonstratet always distinguish between the physical stmectu
this TGG, a Java plug-in for Eclipse has been ifit system topology and the corresponding system
plemented to transform SysML models developed Bghavior. For instance, it is common practicese u
the Embedded Plus (E+) modeling environment in €lectric circuit diagram as the representatmn f
Modelica models using the OpenModelica [20] condlefining both the circuit topology as well as the b
piler (OMC) and Modelica Development Toolindravior of the circuit in a SPICE simulation. As sys
(MDT) plug-in for Eclipse. The functionality of thistems become more complex there often is a need to
plug-in is depicted in Figure 4. represent a system by multiple simulation models,
corresponding to different levels of abstraction or
different disciplinary perspectives. The use of an
6 Modeing Simulationsin SysML explicit model context as suggested here facibtate
the preservation of consistency amongst all theasep
In the context of model-based systems engine&#le models.
ing, models and simulations allow systems engineers To relate the structure to the behaviomadel
to investigate and predict the behavior of systém aontextblock is defined with two part properties: one
ternatives without the need for physical prototgpinusage of the system model and one usage of the
For example, a continuous dynamics model ofamalysis model. If mathematical relationships be-
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yond simple equivalence exist between the known
elements of the system model and the corresponding
elements of the analysis model, additional constrai
blocks can also be defined. Finally, a parametiae d
gram of the model context block is created to bind
the known system elements to the corresponding
analysis elements.

In the lower portion of Figure 5, the block

par ModelContext J

mcCar: Car

msd: MSD

‘ mass: Sl.Mass ‘

‘ mass.m: Sl.Mass

carMass: Sl.Mass

massRel: MassRelation

m: Sl.Mass

ModelContexis defined as owning usagesMED,
Car, and a constraint block nambthssRelation In
Figure 6, a corresponding parametric diagram is rigyre 6. Parametric diagram of thiedelContext
shown establishing a relationship between the MSD

and car masses. Inside of this parametric diagra}m : :

) ' |¥ne of the simulation.

msd.mass.ns defined as one quarter of the mass 0 ) ) ) o
mcCar.massby connecting them to the appropriate To make the semantics of a simulation explicit in

parameters on the constraint propeniyssRel SysML, we have defined @simulation»stereotype.
As is illustrated in Figure 5, this stereotype riegs

the inclusion of dime property, which represents the
simulation time;startTimeand stopTimeproperties;
%nd asimModelblock. The meaning of the stereo-
Jype is then that all the properties in tsiemModel

6.2 Modeingthe Simulation

A simulation is an experiment performed on

computational model [21]. Before a simulation c

be _performed_, f[he experiment needs to be complet@tf ﬁ_\i’:;“ejaﬁgtgstﬁa{uﬁgosqtet:zceﬁfm? i:)ars-rllggeelto de-
defined: the initial values and boundary values, tﬁl ps 2 simulation experiment inipfashiorﬁ)thagis
outputs to be observed, and _potenUaIIy t.he proc pendent of any pgrticular simulation solver. In
steps one shouild go through in the experiment, e. dition, note that Modelica semantics differ from
time traces of external inputs). From a modeli ’ X ) ) - L
: sML semantics which require the explicit defini-
perspectlvg, all of'these aspects can be capture tion of a local simulation tirr?e ropert t% which a
the model itself or in extensions of the model niedi . : " " prop b yb d
using the same Modelica/SysML constructs glime-varying system properties can be bound.
scribed in Section 4. One can therefore assunie . ! .
the “model” as defined in the model context isyulltgg Abstracting the Simulation
specified — all the parameters_ are t_)ound to. values A simulation as defined in the previous section
and the set of SySt‘?m equations is r.]c.m'smgu'gﬁ'owsasystems engineer to define an experinment i
Under those assumptions, the only additional infor

mation that needs to be provided is the start awd éNh'Ch the system behavior can be observed. How-

éver in systems engineering, simulations are often
—— — used to make decisions. In that case, the same ex-
bdd Simulation Definition J
«simulation»

periment is often performed on multiple variatiarfis
SuspensionSimulation

the same system — the design or decision alterna-
tives. It then becomes important to abstract this
simulation formally by clearly defining the inputs
(the properties that can take on different valuemf

«constraint»
S&H

constraints
{{Modelica} when time >= t then

values
startTime: Time =0

stopTime: Time = 5 input = output; ! !

time: Time end when; } one simulation run to the next), and the outpuis (t
kinput: Real H h t f t tt th d H IflE)
dinput. Real parameters properties that are of interest to the design,irfer

ssTimeOutput; Time input:
output:

time: Time
sample&hold t Time
simModel
ModelContext
massRel

msd mcCar|

stance, a measure of effectiveness that drives a de
sign optimization). The relationship between irgput
and outputs of the simulation can then itself be-co
sidered as a model. Unlike the model of the system
this input-output model is an algebraic relatiopshi
albeit a very complex one that requires running the
entire simulation to compute the outputs from the
inputs. When abstracting (or “wrapping”) a simula-
tion in this fashion in support of decision makiitg,

is justifiable to assume that the outputs of tineusd-
tion are scalar quantities (decisions can only bden

«constraint»
MassRelation

constraints
{{Modelica} m = 0.25*carMass }

parameters
m: Sl.Mass
Car carMass: Sl.Mass

MSD

Figure 5. BDD of thé&uspensionSimulatidsiock.
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par SuspensionSimulation J bdd Analysis Definition J -
SuspensionAnalysis
‘ stopTime: Time ‘ ‘ time: Time averifyr._._ | «requirement»
sim ‘ N ReboundReq
1Alternative
«simulation» -
ModelicaSimulation WheelSuspension
t: Time time: Time
values
sample&hold: S&H startT_ume: T_|me =0 §
stopTime: Time = 5 coil
output: input: time: Time Coil Shock
kinput: Real
dinput: Real values values
ssTimeOutput: Time springRate: Real = 50000 dampingCoef: Real = 2500
‘ ssTimeOutput: Time ‘ simModel.msd: MSD

Figure 8. BDD of the&suspensionAnalysigock.

detect.ssTime: Time

dinput: Real damper.d: Real
par SuspensionAnalysis J
kinput: Real spring k: Real suspensionAlternative:

sim: ModelicaSimulation WheelSuspension
Figure 7. Parametric diagram $fispensionSimulation. ‘ ssTimeOutput: Time | | «moe» settingTime: Time ‘
based on scalars because vectors cannot be rank- dinput: Real }Smckdamping%efi Rea'\
ordered [22]). Sometimes this requires that one in —
clude additional modeling elements in the contirsuou Kinput: Real coll.springRate: Real

dynamics model to define these scalar measures of
effectiveness. For instance, in the BDD in Fighre  Figure 9. Parametric diagram $fispensionAnalysis
and the corresponding parametric diagram in Figure

7, the suspension simulation has been abstracted ?ﬁneasures of effectiveness. Whenever there is @ nee

an input-output model with inputs as the decision. rgpeated_ eyaluatipn of the simulation With diff.
variables,dInput and kinput (bound to the damping ent inputs, 1t Is deswgble to embe_d the S|m_ulat_|on
and stiffness of the suspension), and an outpthaseXp“C'tly in an analysis context as is shown ig-Fi
measure of effectivenesssTimeOutpufthe steady- es.

state time of the mass-spring-damper system). The

output has been bound to a model property through a . .

sample and hold constraint propersample&hold / Discussion and Closure

making explicit that the output takes on the vabfie

the time-varying propertydetect.ssTimevhen the In this paper, we have introduced an approach
simulation time equalstopTime In general, more for combining SysML and Modelica in a synergistic
complex models may be necessary to relate scdaghion. No single language or formalism can possi

outputs to time-varying simulation properties. bly capture all of the knowledge and information
needed to solve systems engineering problems.

While Modelica is well-suited for describing the-dy
namic behavior of complex systems, it offers no

Once a simulation has been abstracted into $#PPort for relating that behavior to stakeholder r
input-output model, it can be used in support af-arfluirements. S|m|la(ly, SysML allows one to define
lyzing system alternatives with respect to stakeéol the high-level relationships between requirements
requirements and measures of effectiveness, a4 functional, physical and operational architessu
illustrated in Figures 8 and 9. Analyses generaf®j & System, but lacks the detailed semantics pe ca
verify that a system alternative meets a certas sjire for instance geometry. Itis therefore criitiat
tem requirement, which can be modeled explicit§@Pabilities are developed for relating in a formal
using the«verify» dependency. A parametric dia ramework the dlfferent knowledge rgpres_entatlons
gram of that block can be used to connect the systePmmonly employed in systems engineering prob-
alternative to the simulation, as is illustratedFig- €ms. SysML provides the foundation for making a
ure 9. Instead of binding the simulation inputsl adi'St step in that direction. The general-purpasel
outputs directly to the corresponding value prapsrt @daptable nature of the language enables system en-
of the system alternative, one could also define @ifi€ers to interrelate their preferred knowledge- re
optimization problem in which the stiffness anffsentations. In addition, formal metalevel magpin
damping are optimized with respect to one or mo#é described by TGGs provide a promising founda-

6.4 Embedding a Simulation into an Analysis
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tion for bidirectional mappings between the differe [3]
knowledge representations.

Using the modeling approaches described in this
paper, engineers will be more capable of managi[ﬂ
system complexity through the modeling of depend-
encies between continuous dynamic system behavior
and other system aspects. Additionally, the mappin
of SysML to Modelica and the resulting transforma®]
tion abilities enable engineers to describe thgs- s
tems at a higher level of abstraction while stilim
taining the benefits of executable knowledge repié]
sentations.

In this paper, the intent has been to take advan-
tage of SysML'’s adaptability and to make a step t[)]—]
wards the unification of various modeling formal*
isms. While the continuous dynamics modeling ap-
proach described in this paper builds on the Mode-
lica language, it still maintains a certain langeiag
independence thanks to the general, declarative na-
ture of Modelica. TGGs could be developed to m
SysML to the syntax of other languages, with t
restriction that when mapping to a causal, procadur
modeling language, a compiler must be used to as-
sign causalities and sort the equations.

The ongoing efforts towards the unification qu
engineering knowledge representations in SysML aré
exciting steps for the systems engineering commu-
nity. Utilizing and increasing the abilities of SyL
promises to improve the current state of systems en
gineering and bring to fruition the benefits of MBS

[10]
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