

The Modelica Association Modelica 2006, September 4th-5th,2006

Domain Library Preprocessing in MWorks - a platform for Modeling
and Simulation of Multi-domain Physical Systems Based on Modelica

Wu Yizhong, Zhou Fanli, Chen Liping, Ding Jianwan, Zhao Jianjun
CAD Center, Huazhong University of Science and Technology

Wuhan, Hubei, China: 430074
Cad.wyz@gmail.com, Chenlp@hustcad.com

Abstract

Modeling and simulating with Modelica-based
platforms for multi-domain physical systems need
support of diversified domain libraries. Modelica
Standard Library (MSL) is a free, reusable library
released by Modelica Association, which comprises
definitions of basic classes belonging to many
domains such as mechanical, electrical, hydraulic,
control, multi-body, thermodynamics, etc. User can
also define or extend his special library. These
libraries usually are stored at disk with mo text
format (or binary encrypted format). They only
record text information of the defined classes, and do
not save their structured information. They will be
loaded when system starts up, and they can be reused
as extends classes or component instances when
modeling. When the current main class is being
checked or translated, the referenced classes
(including extends and component classes) from
domain library will be parsed first.
Loading mo format files involves searching of a
great many files from the library directory. At the
same time, lexical and syntax analysis is performed.
So the loading process is time-consuming. Likewise,
parsing the referenced classes from domain library
when parsing the current main class is also a time-
consuming process. So this paper studies a so-called
domain library preprocessing technology which can
greatly improves loading speed of domain library
and parsing speed of the main class. The idea of this
approach is that: parsing all the classes within
domain library once, building their structured
information of document object models, and then
saving them to a binary file. When the system starts
up, the binary file is automatically serialized to
construct structured information of the classes which
were defined originally in domain library. This
approach is implemented in MWorks – another
independent platform for modeling and simulation of
multi-domain physical systems based on Modelica
language.

Keywords: Modeling and Simulation; Modelica;
Domain Library; Preprocessing; Document Object
Model

1 Introduction

Modelica language has been developing rapidly
during these years[1]. Applications of modeling and
simulation based on Modelica have also been
emerging in endlessly. However, software imple-
ments based on Modelica language can be counted
on your fingers. Dymola[2] and MathModelica[3]
are currently the most two important and successful
commercial software. In addition, other Modelica-
based software which are been implemented include
OpenModelia[4], MOSILAB[5] and SCICOS[6], etc.
Having seen the daylight of Modelica simulation
language in future, we have been bending ourselves
to implementing an integrated development environ-
ment based on Modelica from 2003. And now our
work has come into being an alpha stage product –
MWorksV1.0a.
MWorks is another Modelica-based platform for
modeling and simulation of multi-domain physical
systems, which wholly integrating a modeler, a
translator, an optimizer, a solver and a postprocessor.
Like other platforms based on Modelica such as
Dymola, MathModelica, etc., MWorks requires
support of domain library including Modelica
Standard Library (MSL) and user’s special domain
library. These libraries can be reused after they are
loaded when system starts up. With the development
of Modelica language and the technology of multi-
domain physical system modeling and simulation,
MSL and user’s library become more and more
complex and larger increasingly. As we know[7],
MSL of Modelica2.1 have more than 3,100 defined
classes. And now in Modelca2.2 this number has
exceeded 4,300. This trend consequentially results in
the following two problems:

733

Domain Library Preprocessing in MWorks - A Platform for Modeling and Simulation of Multi-domain Physical Systems
Based on Modelica

The Modelica Association Modelica 2006, September 4th-5th,2006

1) Time cost becomes larger during the loading

process of domain library. When system starts
up, this process is executed automatically. If the
library becomes very, very complex and large,
the loading process may be unbearable.

2) Time cost becomes larger during the translating
process of the main simulation class. For loading
process does not construct document object
model (DOM), translating a model needs
building the structured information (i.e. DOM)
of the reused classes from domain library at first.

Apparently, simulating a realistic complex model
could consume a lot of time for translating the
correlative classes from domain library ever built.
To resolve these problems, we put forward and
implement the so-called domain library preprocess-
ing technology in MWorks platform. The basic idea
of this approach is that: We save all the document
object model information of domain libraries through
serializing binary DOM files only once when
MWorks is set up or starts up for the first time.
Afterwards, MWorks will load these DOM files
every time during it starts up. Because the DOM file
is only one binary file, loading it becomes very
quickly. And also because the DOM file includes
enough structured information of all the classes
within domain library, DOM building processes of
extends classes or component referenced classes of
the current complex simulation class will be skipped.
So through domain library preprocessing, simulating
a complex model which reuses a lot of classes from
the domain library will become very quickly even at
the first time.
The next paragraphs of this paper will expatiate upon
this approach in detail.

2 Traditional library loading and
class translating processes

2.1 Traditional library loading

Traditional library loading process is a reading and
pre-checking process of a series of mo text files
according to the directory defined in system register
table or MODELICAPATH environment variable.
Usually, software based on Modelica loads the basic
Modelica Standard Library including Modelica,
ModelicaAdditions, MultiBody, etc. The traditional
library loading process only performs the lexical and
syntactical analyses, and then builds the tree
structure of domain classes according to the mo file
and directory structure, package and nested classes
structure. Because the loading files are text format,

its directory structure is complex and the process
needs lexical and syntactical analyses, traditional
library loading process is time-consuming. As our
statistics, loading all the classes of Modelica2.1
needs more than 5 minutes through using lexical and
syntactical analyzing tool ANTLR.
In addition, building tree control of domain library is
also a waste-time process, for this process needs
generate icons of the loading classes, which
correspond to the images of tree nodes. The image of
each tree node is created by drawing the icon
annotation of the corresponding class. For this
process involves creating and drawing geometric
entities, as our statistics, building all the tree nodes
of Modelica2.1 needs more than 8 seconds. Even if
we adapt the method by saving the images to
temporary bitmap files, this process still needs about
5 seconds.

2.2 Traditional class translating

As we mentioned above, loading process of domain
library only pre-checks the classes but does not
construct structured information which are necessary
for the main class translating.
Traditional class translating process usually includes
three steps: 1) Lexical and syntactical checking. This
step usually depends on professional translating tool
such as ANTLR. At the same time, this checking
process will create abstract syntax tree (AST) of the
main class. 2) Semantic resolving based on AST. It
is to check types and resolve extends clauses,
modifications (including re-declarations), outer or
inner matches, connect clauses, and so on. 3)
Equation system generating. The semantic resolving
prepares necessary information for instantiation
which is performed. The purpose of instantiation is
mainly to generate equation system (continuous
equations and discrete events) for the main class.
Because the main class may include quite a number
of components and extends classes, translating it
needs checking referenced classes of the components
and extends classes, then generating their ASTs
recursively. So if the main class includes a great
many components or extends which are referenced
from domain library, this checking process of the
referenced classes could take long time.

3 Document object model (DOM) of
Modelica class

As an immediate expression of program language,
abstract syntax tree (AST) is adopted abroad to storage

734

Y.-Z. Wu, F.-L. Zhou, L.-P. Chen, J.-W. Ding, J.-J. Zhao

The Modelica Association Modelica 2006, September 4th-5th,2006

structured information of class. But building AST of
Modelica code is a very complicated task, for Modelica
language has a complex syntax structure. Moreover,
translating operation based on AST is more complex.
For example, in Modelica language we can use the
keyword “final” to constrain element or class being
modified further, as the following code:

final class Volt
 String quantity = “Voltage”;
 String unit = “Volt”;
 String displayUnit = “V”;
end Volt;

For all the class is defined as final, its property
variables (quantity, unit, displayUnit) are also looked
as final. Just to say they all can not be modified. The
prefix deduction of AST needs traverse all nodes of the
class Volt to define which elements need be set final
property. Another more troublesome thing is that we
must add nodes to AST or find particular node to
modify its properties. So, we put forward and design
the so-called ModelicaDOM, i.e. Modelica document
object model, which is a type of container structure.
DOM (Document Object Model) is developed from
XML (eXtensible Markup Language). DOM is defined
formally as [8]: “Document Object Model of a type of
document is a platform-independent and language-
independent interface. It allows program or script to
access or modify the content, structure and style of the
document”.
ModelicaDOM is a container in physical structure
while stores the tree information of Modelica-based
document in logical structure. We design the class
ModelicaDOM and implement its construct function
and other access functions which are supplied to access
the inner data of its objects.
Relative to AST, ModelicaDOM has the following
advantages:
(1) ModelicaDOM is an object-oriented expression

style. Its nodes of container could be objects of a
class or objects of derived classes of the class.

(2) Logical structure of the syntax tree with
ModelicaDOM is simpler. For Modelica2.1, We
can conveniently storage all its grammar
information. According to grammar, a regular class
can include information of seven types of elements:
imports, extends, nested classes, components,
equations, algorithms and modification information.
So the definition of regular class should comprise
container of this elements. Contrasting with AST,
the number of classes which need be designed in
ModelicaDOM hierarchy decreases about one third.

(3) Access operation of ModelicaDOM is simpler and
more efficient. Finding some element or modifying
data of some element is very convenient and
quickly. For example, if we want to modify the

data of a component, we can search and get the
object pointer of the component class firstly, then
modify the corresponding data through interfaces
of the class. However in AST, these operations
often need traverse the whole tree in order to find
and modify the data.

So as a replacer of AST, ModelicaDOM, document
object model of a defined class includes all
information of the class in structured data format.
DOM of a class can be built after the checking
process of class. And it is the base of generating
equation system of the class.
We designed the class hierarchy of ModelicaDOM
according to Modelica semantics like fig. 1.

Fig.1 class hierarchy of ModelicaDOM
The RegularClass class in the hierarchy is one of the
most important classes. RegularClass class has the
following eight derived classes: Model, Class, Package,
Block, Record, Type, Function and Connector classes.
Thereinto, the “RegularClass” class is a common class
which is usually used to define a simulation model. It
contains about seven kinds of information: imports,
extends, nested classes, components, equations,
algorithms and modifications. In MWorks,
“RegularClass” class is designed as following:
class RegularClass :
{
public:

. . .
//vector pointer of import classes
vector<ImportClass*>* pImpClasses;
//vector pointer of import packages
vector<ImportPackage*>* pImpPackages;
//vector pointer of extends classes
vector<Extends*>* pBases;
//vector pointer of nested classes
vector<ClassBase*>* pNestedClasses;
//vector pointer of components
vector<Component*>* pComponents;
//vector pointer of annotations
vector<Annotation* * pAnnotations;

735

Domain Library Preprocessing in MWorks - A Platform for Modeling and Simulation of Multi-domain Physical Systems
Based on Modelica

The Modelica Association Modelica 2006, September 4th-5th,2006

//container pointer of equations
BehaviorContainer* pEquaContainer;
//container pointer of initial equations
BehaviorContainer* pInitEquaContainer;
//container pointer of algorithms
BehaviorContainer* pAlgoContainer;
//container pointer of initial algorithms
BehaviorContainer* pInitAlgoContainer;
//pointer of modifications of this class
ClassModif* pClassModif;

 . . .
};
But according to Modelica2.1, there are other classes
(enum class and short class) excluding the regular class.
So we design the class “Classbase” as the base class of
these three classes, which defines all the same
properties and same operations of these classes. And
Classbase will be the base class of all node objects of
the container of ModelicaDOM.

4 Preprocess of domain library in
MWorks

When MWorks system starts up, it will execute the
OnStartup() function automatically like the following
code in C++:
//using MFC
void CMainframe::OnStartup(vector<ClassBase*>
& vClasses;)
{/*vClasses is the container of ModelicaDOM, i.e.

vector of pointer of Classbase*/

/*getting ModelicaPath, these paths were set by
user*/

vector <string> vPaths = GetModelicaLibPaths();
//foreach path do

for(int i=0; i<vPath.size(); i++)
{

string sPath = vPath[i];
//search DOM file from work directory
string sDOMFile = GetDOMFile(sPath);
//if the Dom file exists

 if(sDOMFile != “”)
 {

/*read the Dom file, construct vector of Classbase
objects*/

DOMSerilize(sDOMFile, vClasses, DOM_READ);
 }

/*if DOM file does not exist, execute domain
library preprocessing*/

 else {
/*load mo files in sPath, and build vClasses

roughly*/
 vClasses = LoadPath(sPath);

/*rebuild vClasses again, set the pointer value of
referenced classes*/

RebuildDOM(vClasses);
/*generate a DOM file name according to work

dir*/
string sDOMFile=GenerateDOMFileName(sPath);
//save DOM information to sDOMFile
DOMSerilize(sDOMFile,vClasses,DOM_WRITE);

}
//create icons of domain library tree nodes
……

}
From above, GetModelicaLibPaths() function gets
paths of Modelica library which will be loaded. If there
exists MODELICAPATH environment variable, the
paths will be extracted from this variable. If not, system
will search the registered table of Windows to get paths
from the key “Modelica_Lib_Paths” which was set
while MWorks installing.
The function GetDOMFile(sPath) will get a DOM file
according to the const string sPath and the work
directory of MWorks. For an example, if sPath is
“C:\\MWorks\\Library\\Modelica” and the work
directory is “C:\\MWorks\\work”, this function will
return “C:\\ MWorks\\work\\Modelica.DOM”.
The code of creating icons of domain library tree nodes
is leaved out. This process is just like the vClasses
created. When the tree nodes is building according to
the vClasses, it will search the icon images from a
bmps file, if the file does not exists, it will generate an
icon from the icon annotation of the class. At the same
time saving the icon image to a bmps file. For all icons
are saved to one bmps file only if system starts up once,
the icons of domain tree nodes will be created very
quickly through reading the image from the bmps file,
without creating images through constructing
geometric entities and drawing them.
From the code above, preprocess of domain library
includes three stages: library loading, ModelicaDOM
building and serializing. This process is usually
performed when MWorks starts up or software is
installed. It can also be performed via loading library
command. It is performed only once, and results in
generating a DOM file.

736

Y.-Z. Wu, F.-L. Zhou, L.-P. Chen, J.-W. Ding, J.-J. Zhao

The Modelica Association Modelica 2006, September 4th-5th,2006

4.1 Loading of domain library

Like 2.1, MWorks loads all mo files including
structured entities and non-structured entities according
to the specified library directory through executing the
function LoadPath(). At the same time, MWorks
performs lexical and syntactical analysis for the loaded
files.
In addition, MWorks will build the DOM information
roughly when checking, that is to say, it build all the
nodes of the DOM container and set their main
information. For there could exist inner reference
relationships among the classes in domain library, the
pointer of referenced classes of a class could not be all
obtained when the class is constructing. Only after all
the classes are constructed, these pointers information
can be obtained.

4.2 Rebuilding of DOM

The LoadPath() function only created the DOM
structure roughly, its detailed data are obtained through
RebuildDOM() function after loading process.
As mentioned above, DOM of a class includes all
structured information of the class. DOM of the domain
library contains all structured information of all classes
defined in the domain library. In MWorks, they are
linked as an object-oriented container structure like the
following fig.2 shows.

Modelica

Multibody

ModelicaAdditons

UserGuide Blocks

…

Constants

O
verV

iew

R
eleaseN

otes

C
ontact

M
odelicaLicen

……

Blocks

…

Heatflow1D

…

Multibody

…

 ……

UserGuide

…

 …… World
Examples

…

Fig.2 ModelicaDOM of domain library (Modelica2.1)
The container of fig.2 expresses the tree structure of
domain classes like fig.3 shows:

Fig.3 tree structure of domain library(Modelica2.1)

4.3 Serializing of DOM - Saving

Serializing of DOM involves two aspects: saving DOM
information into DOM files and loading DOM files to
construct DOM data structure. And the former is the
main task of preprocessing of domain library. This is
realized by the function DOMSerialize() whose third
parameter mode is set DOM_WRITE.
After the DOM of one path in domain library has been
constructed, they can be serialized into one DOM
binary file according to DOM data. This process can be
described as the following pseudo-code:
function

DOMSerialize(vector<ClassBase*>vModels,
string sDOMFileName, int mode =
DOM_WRITE)

{
if(mode == DOM_WRITE)
{
 ofstream fs(sDOMFileName, ios::binery);
 //write the number of saved classes
 fs << vModels->size();
 //write data of each class
 foreach(pModel in vModels) {
 //write the type of class
 fs << pModel->GetType();
 //write data of class in detail

pModel->WriteToDOMFile(fs);
}
else {//DOM_READ

…
}

}

737

Domain Library Preprocessing in MWorks - A Platform for Modeling and Simulation of Multi-domain Physical Systems
Based on Modelica

The Modelica Association Modelica 2006, September 4th-5th,2006

The function WriteToDOMFile() is virtual function
of ClassBase class, which is implemented in the
same functions of its derived classes RegularClass,
ShortClass and EnumClass. From the class hierarchy
of ModelicaDOM, this function of RegularClass is
implemented through its derived classes Model,
Class, Package, Block, Record, Type and Connector.
We give the function code of RegularClass as an
example:
void RegularClass::WriteToDOMFile(ofstream &ofs)
{

//save import classes
ofs << pImpClasses->size()；
for(int i=0; i<pImpClasses->size(); i++)
{

 ofs << (*pImpClasses)[i]->GetFullName();
 }

..
//save extends classes
ofs << pBases ->size();
for(int i=0; i< pBases ->size(); i++)
{

 (* pBases)[i]->Write(ofs);
 }

//save nested classes recursively
ofs << pNestedClasses->size();
for(int i=0; i<pNestedClasses->size(); i++)
{
 pNestedClasses[i]->WriteToDOMFile(ofs);
}
//save components
ofs << pComponents ->size();
for(int i=0; i< pComponents ->size(); i++)
{

 (*pComponents)[i]->Write(ofs);
 }

..
}

5 Library loading, and class
translating in MWorks

5.1 Library loading in MWorks

As another aspect of serializing, loading is the reverse
operation of saving which is implemented through the
function DOMSerialize() with the third parameter mode
being DOM_READ. In MWorks, library loading
process can be described as the following pseudo-code:
function DOMSerialize(vector<ClassBase*>vModels,

string sDOMFileName, int mode = DOM_WRITE)
{

if(mode == DOM_WRITE)
{
 ……
}
else { //DOM_READ

ifstream ifs(sDOMFileName, ios::binery);
//read the number of classes ever saved
ifs >> num;

for(i =0; i<num; i++)
{

 //read type of class
ifs >> type;
//Create object of the class
ClassBase * pModel ;
if(type == “shortclass”)

pModel = new ShortClass();
 else if(type == “enumclass”)

pModel = new EnumClass();
 else if(type == “class”)

pModel = new Class();
 else if(type == “model”)

pModel = new Model();
 ……

pModel->ReadFromDOMFile(ifs);
//append to vModels
vModels->append(pModel);

}//end for
}//end of else

}
The function ReadFromDOMFile() is executed in the
same order with saving like the following code:
void RegularClass::ReadFromDOMFile(ifstream &ifs)
{

//read import classes
int nImpSize;
ifs >> nImpSize;
for(int i=0; i<nImpSize; i++)
{
 string sImpName;
 ifs >> sImpName;

ImportClass*pImpClass=
new ImportClass(sImpName);

pImpClasses->push_back(pImpClass);
 }

..
//read extends classes
int nExtendsSize;
ifs >> nExtendsSize;
for(int i=0; i< nExtendsSize; i++)

738

Y.-Z. Wu, F.-L. Zhou, L.-P. Chen, J.-W. Ding, J.-J. Zhao

The Modelica Association Modelica 2006, September 4th-5th,2006

{
 Extends * pExtends = new Extends();

 pExtends ->Read(ifs);
 pBases->push_back(pExtends);
 }

//read nested classes recursively
int nNestedClassSize;
ifs >> nNestedClassSize;
for(int i=0; i<nNestedClassSize; i++)
{
 ClassBase * pClass = new ClassBase();
 pClass->ReadFromDOMFile(ifs);
 pNestedClasses->push_back(pClass);
}
//read components
int nComSize;
ifs >> nComSize;
for(int i=0; i< nComSize; i++)
{
 Component * pComp = new Component();

 pComp->Read(ifs);
 pComponents->push_back(pComp);
 }

..
}
From these pseudo-codes we can see, MWorks lookups
the DOM file which contains the structured information
of domain library from the installed directory first.
Only if this process fails (DOM files does not exist), it
will load domain library and execute preprocessing. If
DOM file exists, MWorks will perform serializing
process: loading but not parsing the DOM file, then
rebuilding the DOM structured information of domain
library in the memory.

5.2 Class translating process in MWorks

In MWorks, translating process of main class can be
described as the following pseudo-code:
void RegularClass::Translating(EquationSystem & es)
{
 //generate equations of this class

 //container pointer of equations
 pEquaContainer->GenerateEquSys(es);
//container pointer of initial equations
 pInitEquaContainer->GenerateEquSys(es);
//container pointer of algorithms
 pAlgoContainer->GenerateEquSys(es);
//container pointer of initial algorithms
pInitAlgoContainer->GenerateEquSys(es);
//pointer of modifications of this class
pClassModif->GenerateEquSys(es);

//generate equations of extends classes recursively
for(int i=0; i< pBases ->size(); i++)
{

 string sClassName=(*pBases)[i]->GetFullName();
 ClassBase * pClass = GetClass(sClassName);
 if (pClass == null) {//does not build
 pClass = BuildDOM(sClassName);
 }
 pClass->Translating();
 }

//neglect nested classes
//generate equations of components
for(int i=0; i< pComponents ->size(); i++)
{
 Component *pComp = (*pComponents)[i];
 string sCompClass = pComp->GetClassName();
 ClassBase * pClass = GetClass(sCompClass);
 if(pClass == null) {
 pClass = BuildDOM(sCompClass);
 }
 pClass->Translating();

 pComp->GenerateEquSys(es);
 }
 ……
}
The function BuildDOM() involves getting the path
from full-name of the class, loading it with
LoadPath() function and rebuilding DOM with
Rebuilding() function.
As we know, first step of translating the main class is
to build DOM of the class. And building the DOM of
main model will lookup or construct DOM of its
extends classes and component classes which usually
referenced from the domain library. Because the
domain library has been loaded when system starts
up and DOM of the library has been constructed, this
process only needs looking-up of DOM referenced
classes. And this process only needs getting pointers
to the DOM of domain library.

5.3 Generating Fulltext of Class from DOM

As a Modelica-based platform, MWorks has five
views which express five aspects of the class
respectively: Fultext view, Icon view, Diagram view,
HTML view and Simulation view. The Icon view and
the HTML view express icon and HTML information
of the class and their information is obtained from
the pAnnotations variable of the class and the base
classes recursively. The Diagram view expresses
diagram entities, components blocks and connect
among components of the class, so its information
comes from the pAnnotation variable of the main
class and its base classes recursively, pComponents
and connect part of pEquaContainter of the main
class. The Fulltext view is mo text expression of the
main class. Because we have adopted domain library
preprocessing, the mo text information of the classes

739

Domain Library Preprocessing in MWorks - A Platform for Modeling and Simulation of Multi-domain Physical Systems
Based on Modelica

The Modelica Association Modelica 2006, September 4th-5th,2006

in the domain library was lost. So if we want to show
the full-text of these classes, the mo text of each
class must be reconstructed from the DOM structure.
Generating process of the fulltext of a class is similar
as the saving process from DOM information to
DOM file. And the distinguish from saving is that it
prints the DOM information to its original mo text
string while saving process saves all the property
data of the class to a binary file. As an example, the
import class information pImpClasses converts to mo
text like the following code:
void RegularClass::ToString(string & sText)
{
 //print pImportClass to string

for(int i=0; i< pImpClasses->size(); i++)
{

 sText += “import “;
 sText += pImpClasses[i].GetFullName();
 sText += “;\n”;

}
……

}

6 Conclusions

We have implemented a modern IDE for modeling
and simulation of multi-domain physical systems
based on Modelica - MWorks. It has a larruping
feature of domain library preprocessing, which
improves loading speed of library and translating
speed of the simulation model rapidly. But from
other point of view, domain library preprocess needs
much larger memory space. In other words, we
sacrifice space complexity to gain time saving. The
following is time and space consuming contrast:
Time contrasting: for Modelica2.1, using a computer
with its CPU being 2.4Gmps, memory being 512M,
loading mo text file needs more then 300s, while if
we adopt preprocessing, loading the DOM file only
needs 6s.
Space contrasting: with the same computer, loading
without building DOM structure only needs 11M,
while through preprocessing the occupied memory
will reach to or exceed 100M.
In addition, for the DOM file saves the structured
information but not in mo text format, classes in the
library can be encrypted easily through the pre-
processing.

7 Acknowledgement

The paper was supported by project of Chinese
National Science Foundation Committee (60574053),
Chinese 863 high tech project (2003AA001031) and
Chinese 973 project (2003CB716207).

References

[1] Modelica, http://www.modelica.org/, 2006.
[2] Dynasim. Dymola, http://www.dynasim.se/,

2006
[3] MathCore. MathModelica,

http://www.mathcore.se/, 2006
[4] OpenModelica Fritzson, P., et al. The Open

Source Modelica Project. in Proceedings of
The 2th International Modelica Conference,
18-19 March, 2002. Munich, Germany.

[5] C. Nytsch-Geusen et. al., Fraunhofer Institutes,
Germany: MOSILAB: Development of a
Modelica based generic simulation tool
supporting model structural dynamics in
Proceedings of The 4th International Modelica
Conference, 7-8 March, 2005. Hamburg-
Harburg, Germany.

[6] M. Najafi, S. Furic, R. Nikoukhah, Imagine;
INRIA-Rocquencourt, France: SCICOS: a
general purpose modeling and simulation
environment in Proceedings of The 4th
International Modelica Conference, 7-8 March,
2005. Hamburg-Harburg, Germany.

[7] Peter Fritzson, Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
Wiley-IEEE Press, 2004

[8] Document Object Model (DOM). http://www.
w3. org/DOM/, 2006

740

Y.-Z. Wu, F.-L. Zhou, L.-P. Chen, J.-W. Ding, J.-J. Zhao

http://www.dynasim.se/
http://www.mathcore.se/

	1
	1 Introduction
	2 Traditional library loading and class translating processes
	2.1 Traditional library loading
	2.2 Traditional class translating
	3 Document object model (DOM) of Modelica class
	4 Preprocess of domain library in MWorks
	4.1 Loading of domain library
	4.2 Rebuilding of DOM
	4.3 Serializing of DOM - Saving

	5 Library loading, and class translating in MWorks
	5.1 Library loading in MWorks
	5.2 Class translating process in MWorks
	5.3 Generating Fulltext of Class from DOM

	6 Conclusions
	7 Acknowledgement

