

The Modelica Association Modelica 2006, September 4th – 5th

MWorks: a Modern IDE for Modeling and Simulation of Multi-
domain Physical Systems Based on Modelica

FAN-LI Zhou, LI-PING Chen, YI-ZHONG Wu, JIAN-WAN Ding, JIAN-JUN Zhao, YUN-QING
Zhang

CAD Center, Huazhong University of Science and Technology, China
fanli.zhou@gmail.com, chenlp@hustcad.com, cad.wyz@gmail.com, jwdingwh@gmail.com,

zhaojj@hustcad.com, zhangyq@hustcad.com

Abstract

MWorks is a platform for modeling and simula-
tion of multi-domain physical systems. It is a modern
integrated development environment (IDE) integrat-
ing with visual modeling, translator, optimizer,
solver and postprocessor. MWorks implements all
the syntax and most semantics of Medelica 2.1.

This paper first describes the features of MWorks
as a modern IDE, and then gives the detailed descrip-
tions of special Modelica semantic implementation
in translator and self-adapting solving strategies in
solver of MWorks.
Keywords: IDE; Modeling and Simulation; Multi-
domain Physical Systems; Modelica

1 Introduction

MWorks is a general modeling and simulation
platform for complex engineering systems which
supports visual modeling, automatically translating
and solving, as well as convenient postprocessing.
The current version is based on Modelica 2.1 and
implements all the syntax and most semantics of
Modelica.

MWorks has features as follows:
a. With modern integrated development environ-

ment styles, it provides friendly user interfaces
such as syntax high-lighting, code assist etc.;

b. Based on object-oriented compiler framework, it
perfectly supports almost all the syntax and se-
mantics of Modelica;

c. Using self-adapting solving strategies, it can ag-
ilely solve differential equations, algebraic equa-
tions and discrete equations.

The version 1.0 of MWorks will completely sup-
port Modelica 2.2, and the current version is 0.8
which realizes the most semantics of Modelia 2.1.

2 Framework of MWorks

MWorks is a general modeling and simulation
platform which consists of studio, translator, opti-
mizer, solver and postprocessor.

The main process is similar to the described in
book of Peter Fritzson [1], shown in Figure 1.

Studio

Translator

Optimizer

Solver

Postprocessor

Modelica model

Flat equation set

Optimized solving
sequence

C code

Visual and text
modeling

Lexical, syntactical and
semantic analyses

Symbol reduction and
optimization

Collection of algorithms
and solving strategies

Plot or animation

Figure 1. Main process of MWorks

The studio is an integrated development environ-
ment which integrates the visual modeling interface
with other modules of MWorks. The translator is a
compiler of Modelica by which an equation system
of model will be generated after lexical, syntactical
and semantic analyses. The optimizer completes
symbol reduction based on graph theory and gives an

725

MWorks: a Modern IDE for Modeling and Simulation of Multi-domain Physical Systems Based on Modelica

The Modelica Association Modelica 2006, September 4th – 5th

optimized solving sequence. The C code of the
model will be emitted after compiling, analyzing and
optimizing. The simulation of model is driven by the
C code through calling the solver. The solver in-
cludes the collection of algorithms for algebraic
equations, ordinary differential equations, differen-
tial-algebraic equations and discrete equations. Its
core is the self-adapting solving strategies. The result
of the simulation is displayed on postprocessor in a
plot or animation way.

3 MWorks Studio: Visual Modeling
Environment and IDE

MWorks Studio is a visual modeling environment
which supports drag-drop modeling based on Mode-
lica Standard Library. It is also an integrated devel-
opment environment integrating with translator,
optimizer, solver and postprocessor.

As a developing tool, this studio provides many
modern IDE styles to promote the users’ conven-
iences just as Eclipse or Microsoft Visual Studio
does, such as real-time syntax highlighting, content
assist, code formatting, outlining etc..

The snapshot of MWorks Studio is shown as Fig-
ure 2.

Library
Viewer

Model
Viewer

Edit
Area

Property
Table

Message
Area

Figure 2. Snapshot of MWorks Studio
The library viewer illustrates all predefined system

libraries, all loaded user libraries and other top mod-
els in the memory. The model viewer shows all
components of the current model. The edit area is
visual modeling, text modeling, icon-editing or in-
formation area, and the status is chosen by tag. The
property table displays all properties of selected ele-
ment in the model, and the properties can be edited
here. The message area displays all messages in the
checking, translating, or simulating, including status

and error messages. The error can automatically be
located by double clicking error message.

The auxiliary functions of real-time syntax high-
lighting, content assist, code formatting and outlining
are provided in the text modeling status.

4 MWorks Translator: Modelica
Compiler and Equations Generator

The tasks of translator are to perform lexical, syn-
tactical and semantic analyses for the model files and
generate equation systems for the models. They are
accomplished by three time parsing: lexical and syn-
tactical parsing, resolving of model and instantiation
of model.

The design and implementation of translator are
based on object-oriented framework, which is ob-
tained in the first parsing. The designs of all the se-
mantic mechanisms, which are implemented in the
second and third parsing, are also based on the
framework to perfectly support Modelica.

4.1 Three Times Parsing

Three times parsing should be done for a complete
translating of the main model for simulaton in
MWorks.

4.1.1 Lexical and Syntactical Analysis
The lexical and syntactical analysis is performed

in the first parsing by using ANTLR tool. The
ANTLR is a convenient, object-oriented, automotive
lexical and syntactical analysis tool [2]. The result of
the first parsing is Document Object Model (DOM)
tree that is object-oriented container presentation of
Abstract Syntax Tree (AST). The class hierarchy of
DOM in MWorks is shown as Figure 3.

The class hierarchy of DOM is abstracted from the
EBNF description of Modelica language specifica-
tion (MLS) [3]. Each class in the hierarchy is consis-
tent with the corresponding element in the EBNF.
Three main class groups are noticeable in the hierar-
chy. Element, expression and behavior are respective
abstract base class of the three groups. All operations
of the translator are based on the DOM, from seman-
tic checking to generating equation system.

4.1.2 Semantic Resolving
The semantic resolving based on DOM tree is the

main content of the second parsing, including col-
lecting information for checking types and resolving
extends clauses, modifications (general modifica-

726

F.-L. Zhou, L.-P. Chen, Y.-Z. Wu, J.-W. Ding, J.-J. Zhao, Y.-Q. Zhang

The Modelica Association Modelica 2006, September 4th – 5th

tions and redeclarations), outer-inner matches, con-
nect clauses, and so on. The realization of UBD (use

before declaration) is easy in the second parsing
based on DOM.

Figure 3. Class hierarchy of DOM

The implementation of semantic resolving is
mainly concentrated into three classes in DOM:
RegularClass, Component and ShortClass. Their re-
solving algorithms are as follows.
Algorithm 1: Resolving of Regular Class

1. Checking circular type definition (circular in-
heritance);

2. Validating type prefixes;
3. Resolving outer-inner (matching inner element

for outer element);
4. Resolving extends clauses (looking up the base

class);
5. Checking repeated names of the named ele-

ments;
6. Resolving member components (calling resolv-

ing of component);
7. Checking type restriction;
8. Deducing type prefixes;
9. Resolving modifications (collecting information

for modifications, including redeclaratoins);
10. Resolving connections (collecting information

for generating connection equations).
The nested classes are not resolved in the resolv-

ing of regular class, and they are resolved when they
are used as types, such as component types, refer-
ence types of short classes or base classes.
Algorithm 2: Resolving of Component

1. Validating component prefixes;

2. Looking up type of the component;
3. Resolving the type if unresolved (calling resolv-

ing of type);
4. Checking the validity of the type;
5. Considering redeclaration of the type;
6. Resolving type expression of the component

(expanding the type of the component type);
7. Deducing component prefixes;
8. Resolving modifications (collecting information

for modifications, including redeclaratoins).
The resolving of component is called when resolv-

ing its parent regular class.
Algorithm 3: Resolving of Short Class

1. Checking circular type definition (circular ref-
erence);

2. Validating type prefixes;
3. Looking up reference type;
4. Resolving the type if unresolved (calling resolv-

ing of type);
5. Considering redeclaration of the type;
6. Resolving type expression of the short class

(expanding the type of the short class);
7. Deducing type prefixes;
8. Resolving modifications (collecting information

for modifications, including redeclaratoins).
The resolving of short class is called when resolv-

ing the element that uses the short class as type of

727

MWorks: a Modern IDE for Modeling and Simulation of Multi-domain Physical Systems Based on Modelica

The Modelica Association Modelica 2006, September 4th – 5th

component, reference type of short class or base
class of regular class.

4.1.3 Instantiation
The semantic resolving prepares necessary infor-

mation for instantiation which is performed in the
third parsing. The purpose of instantiation is mainly
to generate equation system (continuous equations
and discrete events) for the main model.

Similar to the resolving, the implementation of in-
stantiation is concentrated into the same three classes
in DOM. The algorithms are as follows.
Algorithm 4: Instantiation of Regular Class

1. Merging modifications (defining valid modifiers,
including redeclarations);

2. Instantiating base classes (calling instantiation
of the base class);

3. Instantiating member components (calling in-
stantiation of the component);

4. Instantiating equation clauses to generate equa-
tions;

5. Instantiating algorithm clauses to generate
equations or definition of function (if regular class is
function the instantiation should be handled spe-
cially).

According to the regular class being container of
elements, the instantiation of regular class is the con-
sole of calling all element instantiations. Addition-
ally, it generates the direct equations of the regular
class itself.
Algorithm 5: Instantiation of Component

1. Dealing with component prefixes;
2. Looking up redeclarated component or type if

redeclaration is valid;
3. Looking up inner type if the component type is

outer;
4. Evaluating subscripts of component type if the

component is an array;
5. Merging modifications (defining valid modifiers,

including redeclarations);
6. Generating variables for built-in component

(considering array) or calling instantiation of type
for complex component.

The instantiation of component is mainly to gen-
erate variables for built-in component or to call the
instantiation of type for complex component.
Algorithm 6: Instantiation of Short Class

1. Looking up inner type if the reference type is
outer;

2. Merging modifications (defining valid modifiers,
including redeclarations);

3. Instantiating reference type (calling instantia-
tion of the reference type).

The instantiation of short class is mainly to call
the instantiation of the reference type.

4.2 Lookup Mechanism

Lookup is the most basic mechanism for Modelica
translating. The type resolving of component decla-
rations, extends clauses and import clauses depends
on standard static lookup, and the outer-inner match-
ing depends on dynamic lookup. Besides both of
them, the special lookup mechanisms are necessary
for supporting modification and array. All of the
lookup mechanisms are implemented as appropriate
interfaces in DOM class hierarchy.

The static lookup mechanism, which is described
in the Modelica language specification, is induced as
two virtual interfaces of DOM class NamedElement
and one top static interface of the root context class.
The two virtual interfaces are lookup_type() and
lookup_comp(), and the static interface is lookup-
_type_from_top(). The interface lookup_type() is
used in the lookup of component type, base type or
reference type of short class; The interface lookup-
_comp() is called in the lookup of component in ex-
pression or modification; The interface lookup_type-
_from_top() is specially designed for the lookup of
import package or class.

The dynamic lookup, i.e. matching of outer and
inner, is very complicated because of the freedom of
the situation and kind of the outer element. The outer
element may appear anywhere in model, and may be
type or component. The implementation of the match
depends on stack of both of type and component in
the resolving and instantiation of the main model.

Special lookup mechanisms are imported to sup-
port the resolving of modification and the evaluation
of array subscripts. The imported interface is to
lookup replaced type or component for resolving
modification and lookup modifier in the modifier
container for evaluating value of array subscripts.
The modifier container is built in the resolving of
modification. Not only array subscripts but also all
parameters, their values are evaluated by looking up
modifier when the evaluation is necessary.

According to these lookup mechanisms, many
Modelica semantics get perfectly implemented, such
as circular extends check and complex redeclaration
semantics.

728

F.-L. Zhou, L.-P. Chen, Y.-Z. Wu, J.-W. Ding, J.-J. Zhao, Y.-Q. Zhang

The Modelica Association Modelica 2006, September 4th – 5th

4.3 Modelica Semantic Mechanisms

To support modeling and simulation of complex
engineering physical systems, Modelica defines
complex semantics, and it can be abstracted as the
following basic mechanisms: type, extends, general
modification (except redeclaration), redeclaration,
outer-inner, connect, array and algorithm mechanism.

Some of these mechanisms are very complex, es-
pecially, some of them may cause couple effects. For
examples, the couple influence of redeclaration and
out-inner must be considered everywhere in imple-
menting translator.

The core of the type mechanism is type checking,
in which the short class and array should be consid-
ered. The type resolving is done in the second pars-
ing and the type checking is finished in the third
parsing.

The extends mechanism is easily realized based on
lookup mechanism.

The implementation of modification is done by
collecting modification to build modifier container in
the resolving and merging modifiers to define valid
modifiers in the instantiation.

The process of matching of outer-inner is similar
to the modification, which is realized by operations
in both resolving and instantiation.

It is handled according to the steps described in
Modelica specification to translate connect clauses to
direct equations.

Array is also very complicated. Comparing with
general programming languages, Modelica allows
variables as subscripts, and must translate the array
to single equation for solving, especially, it allow
applying modification to array. If no constraints were
set to modification of array, the compiling would be
extremely complicated, such as modification to array
subscripts. MWorks chooses appropriate simplifica-
tion just like Dymola does.

Algorithm in model is not same as equation, and
the flow analysis should be done for its generating
equations. Though function is a class with special
algorithm, but generating equations for the algo-
rithms in function is thoroughly different from the
algorithms in model. The functions are directly trans-
lated into C functions.

Based on DOM class hierarchy, these mechanisms
have been dealt with well, and the couple mecha-
nisms are also considered.

5 MWorks Solver: Collection of Al-
gorithms and Console of Solving
Strategies

The solver of MWorks includes two primary mod-
ules: collection of algorithms and console of solving
strategies. In fact, the optimizer shown as Figure.1
should be a part of the solver. Here it is skipped, and
its implementation for MWorks is described in the
paper [4].

Solver provides different basic algorithm alterna-
tives for users to select appropriate one. For exam-
ples, users can select one-step method series or
multi-step method series for ODE/DAE problems.
The different basic algorithms for differential equa-
tion and algebraic equations are collected in solver.

The consistent interface framework is designed for
solver to conveniently call different basic algorithms.
Each basic algorithm can be easily integrated into the
solver by simply encapsulating it according to the
template. Now, a series of algorithms for different
kinds of equations have been collected in the solver,
such as SUNDIALS [5].

It is the task of console of solving strategies to
solve continuous-discrete hybrid problem. Solver
controls the solution of problem based on basic algo-
rithms according to information collected in transla-
tor.

The solving of continuous-discrete hybrid problem
in Modelica is according to the principle of synchro-
nous data flow [6]. All the events are collected in the
third parsing, and solver will monitor them in the
simulation.

6 Example

Here an example is given to show the visual mod-
eling and simulation in MWorks. The visual model
of the example is shown as Figure.1, and the text
model is as follows (annotations are skipped),
model Circuit
 Modelica.Electrical.Analog.Sources.SineVoltage AC(V=110,
freqHz=5);
 Modelica.Electrical.Analog.Basic.Ground G;
 Modelica.Electrical.Analog.Basic.Resistor R1(R=10);
 Modelica.Electrical.Analog.Basic.Resistor R2(R=100);
 Modelica.Electrical.Analog.Basic.Capacitor C(C=0.01);
 Modelica.Electrical.Analog.Basic.Inductor L(L=0.1);
equation
 connect(AC.p, R1.p);
 connect(R2.p, R1.p);
 connect(R2.n, L.p);

729

MWorks: a Modern IDE for Modeling and Simulation of Multi-domain Physical Systems Based on Modelica

The Modelica Association Modelica 2006, September 4th – 5th

 connect(L.n, C.n);
 connect(AC.n, C.n);
 connect(G.p, AC.n);
 connect(R1.n, C.p);
end Circuit;

The following is the equations generated by the
translator. There are 34 variables and 34 equations
excluding parameters and constants.
model Circuit
 parameter Real AC.offset = 0;
 parameter Real AC.startTime = 0;
 parameter Integer AC.signalSource.nout = 1;
 parameter Integer AC.signalSource.outPort.n =
AC.signalSource.nout;
 parameter Real AC.signalSource.amplitude[1] = AC.V;
 parameter Real AC.signalSource.freqHz[1] = AC.freqHz;
 parameter Real AC.signalSource.phase[1] = AC.phase;
 parameter Real AC.signalSource.offset[1] = AC.offset;
 parameter Real AC.signalSource.startTime[1] =
AC.startTime;
 constant Real AC.signalSource.pi = Modelica.Constants.pi;
 parameter Real AC.signalSource.p_amplitude[1] =
AC.signalSource.amplitude[1]*1;
 parameter Real AC.signalSource.p_freqHz[1] =
AC.signalSource.freqHz[1]*1;
 parameter Real AC.signalSource.p_phase[1] =
AC.signalSource.phase[1]*1;
 parameter Real AC.signalSource.p_offset[1] =
AC.signalSource.offset[1]*1;
 parameter Real AC.signalSource.p_startTime[1] =
AC.signalSource.startTime[1]*1;
 parameter Real AC.V = 110;
 parameter Real AC.phase = 0;
 parameter Real AC.freqHz = 5;
 parameter Real R1.R = 10;
 parameter Real R2.R = 100;
 parameter Real C.C = 0.01;
 parameter Real L.L = 0.1;

 Real AC.v;
 Real AC.i;
 Real AC.p.v;
 Real AC.p.i;
 Real AC.n.v;
 Real AC.n.i;
 Real AC.signalSource.outPort.signal[1];
 Real AC.signalSource.y[1];
 Real G.p.v;
 Real G.p.i;
 Real R1.v;
 Real R1.i;
 Real R1.p.v;
 Real R1.p.i;
 Real R1.n.v;

 Real R1.n.i;
 Real R2.v;
 Real R2.i;
 Real R2.p.v;
 Real R2.p.i;
 Real R2.n.v;
 Real R2.n.i;
 Real C.v;
 Real C.i;
 Real C.p.v;
 Real C.p.i;
 Real C.n.v;
 Real C.n.i;
 Real L.v;
 Real L.i;
 Real L.p.v;
 Real L.p.i;
 Real L.n.v;
 Real L.n.i;

equation

 AC.v=AC.p.v-AC.n.v;
 0=AC.p.i+AC.n.i;
 AC.i=AC.p.i;
 AC.signalSource.y[1] = AC.signalSource.outPort.signal[1];

AC.signalSource.outPort.signal[1]=AC.signalSource.p_offset[1
]+(if time<AC.signalSource.p_startTime[1] then 0 else
AC.signalSource.p_amplitude[1]*Modelica.Math.sin(2*AC.sign
alSource.pi*AC.signalSource.p_freqHz[1]*(time-
AC.signalSource.p_startTime[1])+AC.signalSource.p_phase[1])
);
 AC.v=AC.signalSource.outPort.signal[1];
 G.p.v=0;
 R1.v=R1.p.v-R1.n.v;
 0=R1.p.i+R1.n.i;
 R1.i=R1.p.i;
 R1.R*R1.i=R1.v;
 R2.v=R2.p.v-R2.n.v;
 0=R2.p.i+R2.n.i;
 R2.i=R2.p.i;
 R2.R*R2.i=R2.v;
 C.v=C.p.v-C.n.v;
 0=C.p.i+C.n.i;
 C.i=C.p.i;
 C.i=C.C*der(C.v);
 L.v=L.p.v-L.n.v;
 0=L.p.i+L.n.i;
 L.i=L.p.i;
 L.L*der(L.i)=L.v;
 R1.p.v = AC.p.v;
 R2.p.v = AC.p.v;
 R2.n.v = L.p.v;

730

F.-L. Zhou, L.-P. Chen, Y.-Z. Wu, J.-W. Ding, J.-J. Zhao, Y.-Q. Zhang

The Modelica Association Modelica 2006, September 4th – 5th

 C.n.v = AC.n.v;
 G.p.v = AC.n.v;
 L.n.v = AC.n.v;
 R1.n.v = C.p.v;
 AC.p.i+R1.p.i+R2.p.i = 0;
 L.p.i+R2.n.i = 0;
 AC.n.i+C.n.i+G.p.i+L.n.i = 0;
 C.p.i+R1.n.i = 0;
end Circuit;

The result is displayed in the postprocessor, shown
as Figure. 4.

7 Conclusions

MWorks is a modern IDE for modeling and simu-
lation of multi-domain physical systems based on
Modelica. All the syntax and most semantics of
Modelica 2.1 have been implemented. The current
version of MWorks can validly deal with some prob-
lems based on Modelica Standard Library. The com-
ing version 1.0 of MWorks will completely support
Modelica 2.2.

References

[1] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1.
Wiley-IEEE Press, 2003.

[2] http://www.antlr.org/
[3] http://www.modelica.org/documents/Modelic

aSpec21.pdf
[4] Ding Jianwan, Chen Liping, Zhou Fanli. A

Component-based Debugging Approach for
Detecting Structural Inconsistencies in De-
clarative Equation based Models. Journal of
Computer Science & Technology, 2006,
21(3):450-458

[5] A. C. Hindmarsh, P. N. Brown, K. E. Grant,
S. L. Lee, R. Serban, D. E. Shumaker, C. S.
Woodward. SUNDIALS: Suite of Nonlinear
and Differential/Algebraic Equation Solvers.
ACM Transactions on Mathematical Soft-
ware, 2005, 31(3):363-396.

[6] Otter M., Elmqvist H., Mattsson S.E.. Hybrid
Modeling in Modelica based on the Synchro-
nous Data Flow Principle. 1999 IEEE Sym-
posium on Computer-Aided Control System
Design, CACSD'99, Hawaii, August 22-27,
1999:151-157.

731

MWorks: a Modern IDE for Modeling and Simulation of Multi-domain Physical Systems Based on Modelica

http://www.antlr.org/
http://www.modelica.org/documents/ModelicaSpec21.pdf
http://www.modelica.org/documents/ModelicaSpec21.pdf

	1
	1 Introduction
	2 Framework of MWorks
	3 MWorks Studio: Visual Modeling Environment and IDE
	4 MWorks Translator: Modelica Compiler and Equations Generator
	4.1 Three Times Parsing
	4.1.1 Lexical and Syntactical Analysis
	4.1.2 Semantic Resolving
	4.1.3 Instantiation

	4.2 Lookup Mechanism
	4.3 Modelica Semantic Mechanisms
	5 MWorks Solver: Collection of Algorithms and Console of Solving Strategies
	6 Example
	7 Conclusions

