

The Modelica Association Modelica 2006, September 4th – 5th

If we only had used XML...

Ulf Reisenbichler Hansjörg Kapeller Anton Haumer
Christian Kral Franz Pirker Gert Pascoli

Arsenal Research
Gie�nggasse 2, 1210 Vienna, Austria

phone +43�50550�6606, fax +43�50550�6595, e-mail: hansjoerg.kapeller@arsenal.ac.at

Abstract

The �rst part of this paper will provide a general
overview over XML technology and will discuss some
aspects of designing applications of XML in respect of
storing and retrieving data in a standardized and ef�-
cient way. This overview will focus on the essential el-
ements of XML needed for data modeling. The second
part will introduce a dynamic link library based imple-
mentation for XML data handling out of Dymola.
Consequently these considerations should lead into a
discussion of how to set up standardized applications
of XML for modeling and handling data in various do-
mains of engineering to bene�t from the capabilities
of XML technology for data exchange in general and
speci�cally for data handling in simulation environ-
ments like Dymola.

Keywords: XML; data modeling; data handling; data
interchange; XML schema; XSD

1 Introduction

Is there an answer to the recurring question of how to
store data for easy and ef�cient data handling and data
interchange? Do we have to continue to pick and poke
bits and bytes out of unreadable data chunks, or is it
possible to retrieve data much more convenient? Is
there a way to design a language to describe data and
data structures for our own specialized purposes? Will
anybody intuitively understand what we tried to for-
malize? The response to all of these questions would
be: Yes . . . if we only had used XML.
In addition to structure and interpretation of data, stor-
ing and retrieving data either in plain text or binary
formats will always cause explanatory effort of how
these data are stored � e.g. position of characters or
bytes. This fact necessitates the development of indi-
vidual parsing algorithms for each data format. Us-

ing the standardized structure of XML will place em-
phasis on the data itself and their coherency. XML
documents can be read and intuitively understood by
humans without any additional information as well as
processed by computers using already existing analy-
sis tools.
The objective of this paper is to motivate � once more
� the general use of XML for data handling [5]. The
development of ModelicaXML [3] � a representation
of Modelica [1] source code using XML � points out
that XML is the right concept. A brief theoretic out-
line will clarify terms and concepts without getting to
deep into theoretical computer science or formal syn-
tax and semantics. An interdisciplinary example will
demonstrate how to interface XML data sources out of
Dymola, and will show: Using XML is easy, intuitive
and the best investment for the future.

2 XML

2.1 History

XML (Extensible Markup Language) was derived
from the 1986 standardized SGML (Standard Gener-
alized Markup Language) going back to the late 60ies
GML (Generalized Markup Language). The XML 1.0
Recommendation was published �rst on 10th Febru-
ary 1998 by the World Wide Web Consortium (W3C).
The most current version XML 1.1 was published on
4th February 2004 [7], [8].
These recommendations were � more or less accu-
rate � realized within different applications of XML.
Thereby XML evolved over the past few years into a
widespread standard for handling data and documents.
Within this evolution various techniques and standards
for processing XML documents were developed and
implemented which can be easily adapted for speci�c
needs.

707

If We Only had Used XML...

The Modelica Association Modelica 2006, September 4th – 5th

2.2 General

The main idea of all markup languages is to sep-
arate the content of a document from its structure.
Whereas the �structure� can represent the formatting
of a document � as in (X)HTML ((Extensible) Hyper-
Text Markup Language) � or the informational content
of data within a document � as in e.g. MathML (Math-
ematical Markup Language), an XML based encod-
ing standard describing mathematical notation. The
inherent difference between these applications of the
concepts and the generalized standards of markup lan-
guages is that these standards are metalanguages. A
metalanguage like XML provides the opportunity to
formulate �new languages� following speci�c newly
de�ned rules in accordance to the restrictions given by
the standardized stipulations.
De�ning a �new language� is strictly speaking the only
task when creating an application of XML. This lan-
guage can be very simple or highly complex. All lan-
guages must have certain �meaningful� elements � the
tokens � and rules which describe the valid sequences
and hence restrict the possible combinations of these
elements � the syntactic rules or syntax. Mapping the
patterns generated by these rules to a structural model
and projecting the elements into this derived represen-
tation of the model will give a �sentence� of this lan-
guage.
Within XML the generated �sentence� would be the
resulting ��le� derived from the freely de�ned syntax
and tokens of the de�ned markup language, i.e. the
application of XML, representing the ruleset for gen-
erating and understanding documents following these
rules. But XML is not simply the resulting ��le�, it
is the sum of the concepts and utilization of the sur-
rounding technologies.

2.3 Components

This section will provide a synopsis of the basic con-
cepts and some components within XML technology
to demonstrate how they interact one with each other
unfolding the power of XML.

2.3.1 Elements

The token elements of XML are represented by the
characters enclosed in angle brackets, which mark the
characters surrounded by the combination of a start
tag <x> and the corresponding end tag </x> � with
`/' as symbol for ending the tag � as their content,
whereas x is the name of the token. The content of an

element may be solely character data or other elements
or both of them.
A token without content can be written as <x/>, the
empty element tag. Tokens can be speci�ed further
with attributes of the form attribute="value".
Attributes may only appear in start tags and empty el-
ement tags, e.g. <x attribute="value">, and
must be unique.

2.3.2 Documents

An XML document is the data structure which is nor-
mally denoted as XML �le when saved to a persistent
storage device. Combining the tokens to a document
only two structural conditions must be kept:

1. Every document must have a root element

2. All tags must be properly nested

These conditions will build the structural model of a
tree. This is often stated as being the syntax of XML.
But using a tree as structural model is not applying
syntactic rules to that model. The model only gives
the structure on which the syntax will operate. If a
document meets this condition, it is well-formed and
therefore an XML document. By de�nition a not well-
formed document is no XML document.
Beside this tree of tokens an XML document
can include other non token elements. Usually
an XML document starts with an XML decla-
ration of the form <?xml version="1.0"
encoding="UTF-8"?>. The attribute
version="1.0" is mandatory. The optional
attribute encoding="UTF-8" declares the used
character set and should always be used to ensure
correct cross locale processing. A comment can
be added between <!-- and --> outside the tags
anywhere in the document. There are some more
elements de�ned by the W3C recommendation but
will not be discussed here.

2.3.3 Parsers

The core piece of machine processing XML docu-
ments is an XML parser implementing all the features
needed for a speci�c task. None of the currently avail-
able parsers � such as Xerces, libxml, Saxon or Mi-
crosoft MSXML � is implementing all of the features
recommended by the W3C up to 100% [2]. While
parsing mechanisms can be very different, the inter-
face presenting the content of an XML document to
an application will follow one of the standard parsing

708

U. Reisenbichler, H. Kapeller, A. Haumer, C. Kral, F. Pirker, G. Pascoli

The Modelica Association Modelica 2006, September 4th – 5th

models, i.e. the Simple API for XML (SAX) [4] or
Document Object Model (DOM) [6].
The Simple API for XML is an event driven parsing
model. The underlying parsing algorithm informs an
application of certain events representing the structure
of an XML document through callbacks. These call-
backs will indicate the start and end of the document,
the start and end of an element, the content of the ele-
ments and others. As SAX simply takes the document
as a stream to read through without saving any content
in memory it is most commonly used in performance
critical applications or when parsing large documents.
The Document Object Model is the model of choice
for analysis and alteration of XML documents. The
parser will create a complete representation of the
document as a DOM tree in memory. This tree can
be traversed to retrieve information or may be trans-
formed in structure or content. DOM is, in contrast to
SAX, processing time intensive and memory consum-
ing when parsing the document, but once loaded into
memory � which is not possible with SAX as such �
all operations will not be very time consuming and the
results of these operations can be saved to a persistent
storage device.

2.3.4 Evaluation

XML provides two levels to evaluate the structural cor-
rectness of documents. A document is well-formed if
the structural standard requirements of XML are met,
i.e. the document simply must be parseable. To meet
the stronger constraint of being �valid� the document
must pass a check against additional restriction rules.
These additional rules can be de�ned either as Doc-
ument Type De�nitions (DTD) or as XML Schema
De�nitions (XSD) each representing constraints upon
what elements may appear in a document, their rela-
tionships to each other or what types of data are repre-
sented by them [12]�[16]. DTD will not be discussed
here as XSD is the much more powerful and most re-
cent standardized schema de�nition.
Figure 1 shows a simple well-formed XML document,
with token elements projected onto an XML tree struc-
ture. Some of these tokens contain other tokens and
some contain values. Intuitively humans will construct
a hypothesis of the structural rules, i.e. the syntax, and
the �meaning�, i.e. the semantics, of these tokens.
The semantic content of these elements is the assigned
value determined by the token. In this example values
are only assigned to the tokens which are leaves in re-
lation to the tree structure, i.e. which terminate their
branch of the tree. On the other hand the interaction of

Figure 1: motor.xml

terminal and non terminal elements is bearing intrin-
sic semantic information, i.e. this �tokenized� struc-
ture re�ects the meaning of the syntactically de�ned
branches. To give a precise de�nition of this restric-
tions on values and possible syntactic sequences of the
tokens � either for humans or machine processing �
and to further check this de�nitions against an XML
document an XSD document can be set up (�g. 2),
which then will verify the content of this XML doc-
ument by the validating mechanism of the parser.

The XML Schema de�nition language opens the pos-
sibility to declare XML elements in terms of type de-
�nitions. These element declarations, when applied
to an actual XML document, represent the abstract
concept of type and token. The type of a token will
restrict sequences of tokens and de�ne their content.
The limited number of components in this example
will only sketch the potential of the XML Schema
de�nition language, but illustrates the principles of
its conception. The XML element with the name
motor is a complexType which may only contain
a sequence of the elements type, stator and

709

If We Only had Used XML...

The Modelica Association Modelica 2006, September 4th – 5th

Figure 2: motor.xsd

rotor, and has an attribute named serial. Within
the sequence the occurrence of the elements is fur-
ther restricted by the numbers given in the attributes
minOccurs and maxOccurs, i.e. typemay, while
stator and rotor must occur exactly one time.
These are purely syntactic rules. The attribute type
now gives the additional information about the content
of the elements. The elements stator an rotor are
of the same type activepart, which represents on
his part a sequence of material and slots, and the
required attribute part. This new subordinated struc-
tural sequence is also de�ned purely syntactically, but
the succession of elements assigns a meaning to the
whole branch, which could be denoted as syntactico-
semantic rule. The element named type has no at-

tribute type and therefore can have any content being
a value as it is a terminal element lacking any further
branching.

Additionally, �g. 2 illustrates the concepts
of XML namespaces and quali�ed names.
An XML namespace is de�ned with the at-
tribute xmlns relating an URI reference, e.g.
http://www.w3.org/2001/XMLSchema, to
XML elements, which then build up a collection of
names belonging to this namespace. A namespace
may be de�ned in any XML element � not only
in XSD schemas � incorporating all subordinate
elements into this namespace. To delimit the scope of
the speci�ed namespace a pre�x, xmlns:prefix,
may be assigned to qualify only certain elements as
belonging to this namespace. The resulting quali�ed
name of the element, prefix:name, binds the local
name of the element to the speci�c namespace thus the
same name can be used within different namespaces.

An XML Schema may also be compound of differ-
ent schemas which can be de�ned as import into
a schema. The imported schemas must each de-
�ne their own namespace and may have a given
schemaLocation. These namespaces and their
pre�xes are de�ned in the root element schema, here:
xsd: the namespace of the XML Schema de�nition
itself, material: the namespace of a schema de�n-
ing different �materials� (�g. 3) and format: the
namespace of a schema de�ning different number for-
mats (�g. 4).

In �g. 2 the two syntactically de�ned elements
named material � one child to activepart
and the other child to winding � are represented
by different types, i.e. material:magnetic and
material:conductor, speci�ed in �g. 3.
The xsd:simpleType named magnetic
of the base type xsd:string underlies the
xsd:restriction that its content can only be
one value out of the xsd:enumeration containing
IronSheets and CastIron � correspondingly
material:conductor. A simple type is always
a terminal element, but its value and therefore its
semantic content may be restricted.

The values of an element or an attribute may also
be restricted using a given pattern like a regu-
lar expression or assigning a simple type like one of
the built in data types of the XML Schema de�ni-
tion language, e.g. xsd:integer, xsd:string
or xsd:float.

710

U. Reisenbichler, H. Kapeller, A. Haumer, C. Kral, F. Pirker, G. Pascoli

The Modelica Association Modelica 2006, September 4th – 5th

Figure 3: material.xsd

Figure 4: formats.xsd

2.3.5 Retrieving data

Besides others, XPath (XML Path Language) is a
standard query language for data retrieval within an
XML document [11]. XPath expressions represent
a speci�c node or node set within an XML doc-
ument. Evaluating an XPath expression against a
document, a parser will return all matching nodes
for the structural description given. The expression
/motor/rotor/slots/quantity/text()
which de�nes the complete path to the second
<quantity> node in �g. 1 will return the value,
i.e. 40, of the node using the XPath function text().
The expression //slots/quantity/text() �
with �//� meaning get all nodes matching within the
document no matter where they are � will return 48
and 40. The complete XPath language gives much
more possibilities for creating query expressions, but
these very basic expressions illustrate the intuitive
understanding and the simplicity of XPath.

2.3.6 Displaying data

To present data in an actually human readable
format, a parser may transform an XML docu-
ment into a HTML document using the Extensible
Stylesheet Language (XSL) [9], [10], [17]. XSL
uses XPath to retrieve data out of the XML doc-
ument, which will be displayed after transforming
a template into the resulting HTML representa-
tion. Figure 5 shows a minimal stylesheet dis-
playing the xsl:value-of the Xpath expression
/motor/stator/material in a minimal HTML
document.

Figure 5: motor.xsl

All kinds of documents for validating (XSD) and for-
matting (XSL) can be bound to the XML document
within itself (�g. 6). These �les may be distributed
over the www. If the parser (within a browser) is in-
terpreting all documents and transformations correctly
the XML document will be self-testing, self-validating
and self-formatting.

Figure 6: Connected documents

2.4 XML-Document Design Guidelines

Designing a complete markup language for a speci�c
application area will be, in any case, a laborious task.
The components introduced in the previous sections
imply the elementary principles for designing the base
units of such an application, i.e. the typed elements
represented by tokens when building up a document.
Types can either be represented by a terminal element
or another structural element. Grouping the structural
elements will end up in the complete document.

711

If We Only had Used XML...

The Modelica Association Modelica 2006, September 4th – 5th

Figure 7: Content centric XML

The design of the elements is intimately connected
with the speci�c application of XML. If the main fo-
cus of a metalanguage is put on adding information to
the �pure� content of a document, as in (X)HTML, this
will be a content centric approach.
If the structure and the values of the data themselves
will be focused, as if XML is used for data handling,
this will be a data centric approach. The XHTML code
snippet in �g. 7 illustrates what should be avoided
when using XML for data handling. The paragraph
element <p> contains besides its structural sub ele-
ment <table> other character data which are �val-
ues� in a stricter sense. Comparably the attributes
border and bgcolor contain values not specifying
their structural information but assigning additional
content to their �real value�.
When following the data centric approach a clear dis-
tinction of what is or can have a value and how the data
are structured must be made when formalizing and
hence abstracting the real world. Thus the structural
elements, i.e. non terminal tokens, should strictly re-
�ect the conceptual context of the data. Values should
exclusively be represented by the content of terminal
elements and never within attributes. Attributes may
be used to identify elements within the structural re-
lation or specify external references not directly re-
lated to concepts within a speci�c document. This will
transform �g. 7 to � for example � �g. 8.

This will lead to a strict structural de�nition of the val-
ues within a document, and will give clearly de�ned
and simple XPath expressions when retrieving data.

3 Dymola XML

3.1 XML Engine

The architecture of the XMLEngine environment
(�g. 9) is designed as a scalable �open� system of

Figure 8: Data centric XML

components which can be used out of multiple appli-
cations. The central unit within this environment is
the dynamic link library XMLEngine.dll. It is imple-
mented in C++ and can be used directly by applica-
tions dynamically loading the library and calling the
interface methods.

The XMLEngine library has no internal parser and
therefore must be bound to an external parser. The
current implementation uses Xerces 2.6 and its XPath
module Xalan 1.9 interfaced by the dynamic link li-
brary Xerces.dll binding the XML functionality to the
application.

Figure 9: Architecture of the XMLEngine environ-
ment

712

U. Reisenbichler, H. Kapeller, A. Haumer, C. Kral, F. Pirker, G. Pascoli

The Modelica Association Modelica 2006, September 4th – 5th

3.2 Dymola

Following the object oriented approach of Modelica,
the programming language incorporated into the sim-
ulation environment Dymola, the idea of strict sepa-
ration of code (models) and data (parameters) re�ects
this attempt for data handling. Using XML documents
opens the possibility to store and retrieve primitive
data types as well as highly complex data objects in
a �exible way.
If a de�ned application of XML is used as base for
data exchange, the import of precalculated data, for
e.g. a thermodynamic model, and the export of results,
e.g. state variables, for any calculation and simulation
tool, following these standardized rules, is guaranteed
to work correctly with minimum effort.
Dymola is bound via the static link library dymo-
laxml.lib for MS-Visual C or libdymolaxml.a for GNU
C to the XMLEngine environment. The XML query
language XPath is used to import data from XML doc-
uments and to export data into prede�ned template
documents. The integration of the XMLEngine en-
vironment into Dymola in cooperation with the scal-
ability and �exibility of XML opens a wide range of
possibilities for data handling and data exchange.

3.3 Interdisciplinary Application Example

An interdisciplinary example (containing mechanics,
electrical engineering and thermodynamics, �g. 10)
taken from drive engineering will demonstrate how
to retrieve parameter values from an XML document
and how to save results to a �le using a prede�ned
XML document template. The single aspects of this
example and the corresponding parameter values are
re�ected by the structure of the elements in the under-
lying XML document (�g. 11). The different elements
are combined via connectors forming the entire model
(�g. 10).

� �thermalModel� represents the thermodynamic
activity in a permanent magnet DC motor

� the permanent magnet DC motor is as such an
electromechanical model

� the electric source represents an electrotechnical
application

� the mechanical load is characterized by pure me-
chanical equations

Having de�ned the data in an XML document � and
not within each single sub model � different aspects

Figure 10: Interdisciplinary application example

of the entire model may be simulated loading the data
from � and manipulating the data in � an external data
source. By changing the parameter sets � in the now
�centralized� data source � it will be possible to an-
alyze for example the thermal stress within the �eld
windings of different motor types (�g. 15). More ele-
gantly different parameter sets may de�ned directly in
the XML document and selected within Dymola. This
approach is illustrated here by the �load_data� element
(�g. 11) to operate several workloads of the motor.
The Dymola XML Library is using the Modelica
standard external function interface to load and access
data from an XML document. For loading data
into a model �rstly the parser must be initialized
to obtain a handle for further processing (�g. 12):
domParserHandle := createDOMParser(
ParserName)
The next step is loading the XML document as DOM
tree representation into memory, using the handle of
the previously created parser: DocumentHandle
:= loadDocument(domParserHandle,
FileName)
When initializing the parser and loading documents
within the same model this must be done in an ini-
tial algorithm to ensure strict algorithmic processing
order.
Now having a handle to a document retrieving and
changing of the data is possible using XPath expres-
sions. In this model the parameters and the initial con-
ditions for the complete characterization of the sys-
tem of differential equations will be retrieved from
the DOM trees residing in memory. The XML docu-
ment template for storing the results of the simulation
will be loaded for later use. To obtain a single result
value when evaluating an XPath expression against the

713

If We Only had Used XML...

The Modelica Association Modelica 2006, September 4th – 5th

Figure 11: IDE.xml

loaded document the handle of the document and the
XPath expression has to be given over to the corre-
sponding function:
getReal(DocumentHandle, XPath)

This function returns the �rst result matching the
XpathExpression (�g. 13).
All functions are also available for Integer, Boolean
and String values. All �get� functions are also
available in versions evaluating the second XPath
expression starting at the result from a context
node's XPath result: getRealFromContext(
DocumentHandle, ContextNodeXPath,
XPath)

Changing data values in previously loaded documents
one of the �set� function will be called specifying the
document, the location as XPath expression and the
new value:

Figure 12: Initial algorithm

setReal(DocumentHandle, XPath,
newValue);
Finally the changed template document will be saved
to disk calling (�g. 14):
saveDocument(DocumentHandle,
newDocumentName);
The following simulation results refer to the above
mentioned DC machine operated at continuous duty
with intermittent periodic loading. The load torque
is alternating between no load (0Nm, 24s) and load
(80Nm, 36s) periodically. In �g. 15 the temperature
rise of the DC-machine �eld winding and in the hous-
ing is depicted. In a new simulation procedure these
�nal values can be used as new initial values.

4 Conclusions

Separating simulation models and data can be very
convenient when using XML documents and XPath
expression for storing, retrieving and manipulating

714

U. Reisenbichler, H. Kapeller, A. Haumer, C. Kral, F. Pirker, G. Pascoli

The Modelica Association Modelica 2006, September 4th – 5th

Figure 13: Motor speci�cation

Figure 14: Storing simulation data

Figure 15: Simulation results

data. Additionally, XML technology provides the op-
portunity of modeling data in a standardized way. The
resulting application of XML, i.e. the speci�c meta-
language, can be designed independently from the use
in certain models and therefore provide a consistent
basis of terminology and structured data representa-
tions for various domains of engineering.

References

[1] Fritzson P., Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1. Piscat-
away, NJ: IEEE Press, 2004,

[2] Harold, E. R., SAX Conformance Test-
ing, XML Europe 2004 Conference,

715

If We Only had Used XML...

The Modelica Association Modelica 2006, September 4th – 5th

http://www.idealliance.org/papers/dx_xmle04/
papers/03-06-02/03-06-02.pdf

[3] Pop A., Fritzson P., ModelicaXML: A Modelica
XML Representation with Applications, Proceed-
ings of the 3rd International Modelica Confer-
ence, pp. 419-430, 2003

[4] The SAX project, home page,
http://www.saxproject.org

[5] Tiller M., Implementation of a Generic Data
Retrieval API for Modelica, Proceedings of the
4th International Modelica Conference, pp. 593�
602, 2005

[6] World Wide Web Consortium (W3C), Document
Object Model (DOM), http://www.w3.org/DOM

[7] World Wide Web Consortium (W3C), Ex-
tensible Markup Language (XML) 1.0 (Third
Edition), W3C Recommendation 04 February
2004, http://www.w3.org/TR/2004/REC-xml-
20040204

[8] World Wide Web Consortium (W3C), Ex-
tensible Markup Language (XML) 1.1,
W3C Recommendation 04 February 2004,
http://www.w3.org/TR/2004/REC-xml11-
20040204

[9] World Wide Web Consortium (W3C), Ex-
tensible Stylesheet Language (XSL), Version
1.0, W3C Recommendation 15 October 2001,
http://www.w3.org/TR/xsl

[10] World Wide Web Consortium (W3C), The Ex-
tensible Stylesheet Language Family (XSL),
http://www.w3.org/Style/XSL

[11] World Wide Web Consortium (W3C), XML
Path Language (XPath), Version 1.0, W3C
Recommendation 16 November 1999,
http://www.w3.org/TR/1999/REC-xpath-
19991116

[12] World Wide Web Consortium (W3C), XML
Schema Part 0: Primer Second Edition,
W3C Recommendation 28 October 2004,
http://www.w3.org/TR/2004/REC-xmlschema-
0-20041028

[13] World Wide Web Consortium (W3C), XML
Schema Part 1: Structures Second Edition,
W3C Recommendation 28 October 2004,

http://www.w3.org/TR/2004/REC-xmlschema-
1-20041028

[14] World Wide Web Consortium (W3C), XML
Schema Part 2: Datatypes Second Edi-
tion,W3C Recommendation 28 October 2004,
http://www.w3.org/TR/2004/REC-xmlschema-
2-20041028

[15] World Wide Web Consortium (W3C),
XML Schema 1.1 Part 1: Struc-
tures,W3C Working Draft 30 March
2006, http://www.w3.org/TR/2006/WD-
xmlschema11-1-20060330

[16] World Wide Web Consortium (W3C),
XML Schema 1.1 Part 2: Datatypes,W3C
Working Draft 17 February 2006,
http://www.w3.org/TR/2006/WD-
xmlschema11-2-20060217

[17] World Wide Web Consortium (W3C),
XSL Transformations (XSLT), Version
1.0, W3C Recommendation 16 November
1999, http://www.w3.org/TR/1999/REC-xslt-
19991116

716

U. Reisenbichler, H. Kapeller, A. Haumer, C. Kral, F. Pirker, G. Pascoli

