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Abstract 

Integral analysis is a common technique used in 
the solution of many thermo-fluid problems.  While 
previous applications of integral analysis techniques 
focused on the solution of boundary layer problems, 
the techniques are applicable to a wider range of 
analyses.  This paper describes a formulation in 
Modelica for integral analyses in thermo-fluid appli-
cations. Following a brief overview of integral 
analysis, a sample Modelica implementation is dis-
cussed along with numerical simulations that illus-
trate the model usage in thermo-fluid applications. 
Additional applications and usage scenarios of the 
integral analysis formulation are briefly discussed.  
Keywords: integral analysis; thermal; fluid 

1 Introduction 

Heat transfer and fluid flow phenomena are 
governed by partial differential equations (PDEs) for 
conservation of mass, momentum, and energy.  
There are no general, closed-form solutions for these 
coupled, nonlinear PDEs.  While analytic solutions 
are available for a small class of problems with spe-
cial boundary conditions, more general analyses with 
PDEs require numerical approaches, such as discre-
tization and differencing, to resolve the spatial and 
temporal dynamics.   

In contrast to the PDE approach, lumped pa-
rameter modeling is formulated by conservation of 
spatially-integrated quantities.  Thus, the temporal 
dynamics in the relevant conservation equations are 
retained resulting in ordinary differential equations 
(ODEs) for the conservation laws of a lumped con-
trol volume.  It is still possible to obtain spatial dy-
namics with lumped parameter models by explicitly 
introducing networks of control volumes.  Lumped 
parameter models typically are relatively easy to 
formulate, computationally-efficient, and can use 
standard ODE numerical solvers for simulation.  The 
Modelica Thermal library [1] is a lumped parame-
ter formulation for heat transfer, and Modelica has 

been used extensively in thermo-fluid applications 
(c.f. [2]-[5]). 

In applications where spatial resolution is im-
portant, a hybrid modeling approach that combines 
aspects of the PDE and lumped parameter formula-
tions may be appropriate.  Integral analysis is one 
such technique that has been used to solve a variety 
of thermal and fluid problems [6].  The integral 
analysis technique was first proposed by von Kar-
man [7] and Polhausen [8] for boundary layer solu-
tions and is sometimes referred to as the Von Kar-
man-Polhausen method.  This method has been used 
extensively for boundary layer problems [9] and 
provides reasonably accurate results when compared 
with the exact solutions of the governing PDEs with 
considerably less computational expense and com-
plexity.  Integral analysis typically involves the fol-
lowing steps: 

• Casting the governing PDEs in integrated 
form 

• Choosing representative spatial profiles with 
unknown coefficients for the appropriate 
variables (usually temperature and velocity 
in thermo-fluid problems) 

• Solving for the coefficients as a function of 
the relevant boundary conditions   

This technique can be used for both transient and 
steady state problems and provides the benefits of a 
lumped parameter formulation with some additional 
information regarding spatial distribution without 
resorting to the solution of PDEs.   

This paper describes the implementation of an 
integral analysis formulation for thermo-fluid appli-
cations in Modelica.  To illustrate the steps for deriv-
ing an integral analysis formulation, sample formula-
tions for various geometries are shown along with 
example problems illustrating the approach in nu-
merical simulations for simple thermal and thermo-
fluid problems with conduction and convection heat 
transfer.  More advanced applications of the resulting 
models for combined heat and mass transfer simula-
tions are illustrated via a model of heat exchanger 
fouling. 
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2 Integral Analysis Formulation 

This section outlines an integral analysis formu-
lation for thermal problems.  It should be noted that 
the implementations are geometry-specific due to the 
functional form of the spatial distribution and that 
different basis functions could be chosen for a given 
geometry.  The implementations described in this 
section are meant to serve as sample formulations to 
illustrate the use of integral analysis techniques in 
Modelica models and should not be considered uni-
versal, de facto implementations.   

2.1 Planar Geometry 

As mentioned previously, integral analysis for-
mulations are most relevant for simulations where 
additional information regarding spatial distribution 
is important.  Consider the schematic in Figure 1 
showing a wall with planar geometry.    The wall 
could be modeled in Modelica with the lumped pa-
rameter formulations shown in Figure 2.  The two 
representations reflect different modeling philoso-
phies regarding the placement of the capacitance and 
flow elements.  Each formulation yields a lumped 
estimate for the temperature distribution in the wall 
via the mass-averaged temperature computed in the 
capacitance conservation of energy.  Depending on 
the boundary conditions, geometry and properties of 
the wall, transient nature of the boundary conditions, 
and number of capacitances used, the lumped pa-
rameter formulation may give a good representation 
of the actual temperature distribution in the wall.  In 
lumped parameter formulations, higher fidelity rep-
resentations of the temperature distribution can be 
realized by networks of lumped capacitances.  Rather 
than adding additional capacitances to provide a bet-
ter representation of the spatial temperature distribu-
tion, an integral analysis formulation can be used.   
This section gives an overview of the derivation of 
an integral analysis formulation for planar geometry. 

 

 

 
 
 
 
 
 
 
 

 
 

Figure 1.  Planar geometry schematic 

 
(a) Single capacitance 

 
(b) Dual capacitance 

 

Figure 2.  Lumped formulations, planar wall 
 

Again consider the geometry in Figure 1.  The 
first step in the derivation is to assume the form of 
the temperature profile.  Assuming the distribution is 
one dimensional in the z direction, consider the fol-
lowing distribution: 

     ( ) ( ) ( tzTtzTtz )ss ,,, 1+T =  (1) 
where Tss is the steady-state temperature distribution 
for a conductive planar wall and T1 is some assumed 
temperature deviation: 
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Note that a polynomial form has been assumed for 
the temperature deviation but that other forms are 
possible.   

The next step in the derivation is to determine 
the unknown coefficients in the temperature profile 
in terms of the appropriate boundary conditions.  
Applying the temperature and heat flow boundary 
conditions at z=0 and z=δ(t) and using the properties 
of the steady-state solution yields: 
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Consistent with the initial construction of the tem-
perature distribution, there is no contribution from 
the T1 term at steady state (i.e. when qa=qb).   

Though the derivation is in terms of the bound-
ary temperatures, consider a typical interface prob-
lem where one of the boundary temperatures is un-
known.  By combining the integral formulation 
above with an overall energy balance for the volume, 
the boundary temperature can be determined in addi-
tion to the mean temperature.  The overall energy 
balance for the volume based on the mass-averaged 
mean temperature Tm yields:    

z 

Ta
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δ
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 ( ) ( )tqtq
dt

dU
ab −=  (5) 

where 
  (6) mvTmcU =
An equation for Tm can be derived from the defini-
tion of a mass-averaged temperature: 
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Using the assumed temperature distribution and per-
forming the integration leads to the following equa-
tion: 
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The first term in the equation above is the mean tem-
perature from the steady-state profile while the sec-
ond term is the transient deviation from steady-state.  
Note that the deviation term contributes only in non-
steady situations and becomes more important when 
the thickness of the volume increases and the thermal 
conductivity and surface area decrease, essentially 
the conditions which contribute to a measurable tem-
perature gradient across the wall. 

Figure 3 shows a Modelica implementation of a 
planar volume based on the integral analysis deriva-
tion presented above.  The model uses the standard 
thermal connectors from the Modelica Thermal 
library.  The integral formulation differs somewhat 
from the generic HeatCapacitor model in the 
Modelica Thermal library in that the model is not 
a volume element in the standard sense. The Heat-
Capacitor model is a single port volume model 
that is connected to heat flow elements and provides 
a temperature on its lone connector from its internal 
conservation of energy equation.  The multiport inte-
gral planar volume is a combined volume and flow 
element since it contains a conservation equation that 
determines a connector temperature similar to a vol-
ume element in addition to providing a connector 
heat flow like a heat flow element based on the heat 
conduction through the volume that follows from the 
assumed temperature distribution.  A conceptual rep-
resentation of the integral analysis control volume is 
shown in Figure 3c to illustrate visually the direc-
tionality of this component.  This schematic shows 
how the planar volume from the integral formulation 
is connected to a flow element on one side (connec-
tor b) and a capacitance element on the other (con-
nector a).  Because of its directional nature, it is im-
portant to connect the integral component carefully 
to surrounding components to ensure a consistent, 
complete model. 

 
(a)  Diagram 

 
(b)  Code excerpt 

 
(c)  Conceptual representation 

Figure 3.  Modelica implementation of planar volume 
with integral analysis formulation 

2.2 Cylindrical Geometry 

The general approach used in the previous sec-
tion can be applied to other geometries given appro-
priate choices for the temperature distributions.  For 
cylindrical geometry with a one-dimensional tem-
perature distribution in the radial direction, assume 
the following temperature distribution: 
 ( ) ( ) ( trTtrTtrT ss ,,, 1+ )=  (9) 
where the steady state temperature distribution is 
given by: 
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The choice of the deviation profile is again user and 
problem specific but could be assumed to have the 
same form as Eq. (3) in the radial direction.  The fi-
nal form of the integral analysis for cylindrical coor-
dinates follows from the same process outlined for 
planar geometry:  apply BCs to determine the coeffi-
cients in the deviation profile, use lumped conserva-
tion of energy in conjunction with mass-averaged 
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temperature distribution, etc.  The details of the deri-
vation are omitted as they are similar to that in the 
planar analysis but with some slightly messier alge-
bra due to the radial geometry. 

2.3 Comments 

The integral analysis formulation results in an 
approximate method for solution of the geometry-
specific PDEs.  Integral conservation of energy is 
maintained as in the lumped parameter formulation.   
However, some pieces of information used in the 
solution of the original PDEs are no longer applied, 
such as the slope boundary conditions at the inter-
faces, since the temperature distribution is assumed.  
While this method allows the modeler additional 
flexibility in terms of the temperature distributions 
and the specifics of the applications of the integral 
analysis principles, some care is required to ensure 
that the physics of the problem are consistent with 
the assumed distributions and the resulting formula-
tion.  The assumption of a temperature distribution 
throughout the layer leads to some practical limita-
tions on model usage.  For example, simulations 
dominated by an evolving thermal penetration depth 
would require reformulation since the temperature 
distribution does not extend through the thickness of 
the material and thus would not satisfy the assumed 
temperature distribution.  The thermal penetration 
depth δt scales based on the following equation: 

 tt αδ ~  (11) 

where α is the thermal diffusivity of the material.  
Setting δt=δ yields a relationship between the ge-
ometry, material properties, and simulation time 
scale from which the suitability of an integral analy-
sis formulation can be evaluated.  In general, the in-
tegral analysis formulation becomes increasingly 
applicable as the material thickness decreases, ther-
mal diffusivity increases, and relevant time scale 
over which the boundary conditions change increases 
relative to the penetration depth time scale. 

3 Simulation Results 

Having developed some sample integral analy-
sis formulations, this section provides some numeri-
cal examples to exercise the formulations.  All simu-
lations are performed with Dymola [10]. 

3.1 Planar Wall 

Consider the simple test shown in Figure 4 for a 
planar wall of constant thickness.  The wall is sub-

jected to a constant temperature on one side and a 
constant heat flow on the other side.  This test, while 
extremely simple, provides a nice example to illus-
trate the utility of the integral analysis formulation.  
Figure 5 shows the mean and boundary temperatures 
from simulations of a constant thickness wall with 
properties of iron and stainless steel [6] at a fixed 
boundary temperature of 293K.  Note that the tem-
peratures in the iron simulation are only slightly 
higher than the prescribed wall temperature due to 
the high thermal conductivity of iron.  Since the 
thermal conductivity of stainless steel is about 1/5th 
that of iron, there is a larger temperature difference 
across the wall.  In addition, the iron wall reaches 
steady state much more quickly than the stainless 
steel wall.  While the deviation between the mean 
and boundary temperatures is modest in these sample 
simulations, the boundary temperature becomes in-
creasingly elevated relative to the mean temperature 
as the material becomes less conductive.  To accu-
rately resolve these potentially-large temperature 
differences across the wall with a lumped parameter 
formulation, a network of lumped volumes would be 
required.  Similar behavior is achieved with only a 
single capacitance using the integral analysis formu-
lation.  While this simple example is interesting, ap-
plications where the heat and/or mass flow are sensi-
tive to the boundary temperature showcase more 
clearly the utility of the integral analysis formulation 
and will be presented in the next sections. 

 

 
Figure 4.  Planar wall, fixed heat flow and temperature 
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Figure 5.  Simulation results, iron and stainless steel 
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3.2 Planar Wall with Convection 

Figure 6 is a simple test similar to that in Figure 
4 but with convection heat transfer calculated from 
the wall boundary temperature.  The planar wall, 
modeled as stainless steel [6], is again subjected to a 
fixed temperature on one side.  The other side is ex-
posed to airflow at a constant velocity with a dy-
namic temperature given by the ExpSine compo-
nent in the Modelica Blocks library [1].   

 

 
Figure 6.  Planar wall with transient convection 
 
Figure 7-Figure 8 show results from the tran-

sient convection simulations with varying frequency 
for the prescribed fluid temperature fluctuations, 
0.001 and 0.01 Hz respectively.  The top plot in each 
figure shows the input fluid temperature, and the bot-
tom plot gives the fixed, mean, and interface metal 
temperatures from the integral analysis.  As the wall 
is heated by the warmer fluid, a temperature gradient 
is again established across the wall.  Unlike the fixed 
heat flow simulations in the previous section, the 
convective heat flow boundary condition is calcu-
lated from the interface temperature and, along with 
the fluctuating fluid temperature, adds additional 
transient dynamics.  It is interesting to note the way 
in which the fluid temperature fluctuations are re-
flected in the mean and interface temperatures.  
While the mean temperature also exhibits some 
characteristics of the input temperature oscillations, 
they are damped out by the capacitance of the wall.  
The interface temperature, however, is significantly 
more oscillatory, as is to be expected.  As the fre-
quency of the oscillations increases in Figure 8, the 
mean temperature hardly reflects any of the oscilla-
tions despite the high frequency oscillations in the 
interface temperature.  By introducing some notion 
of the temperature distribution within the volume, 
the integral analysis formulation provides a mecha-
nism for a higher fidelity representation of both the 
spatial distribution in the volume (i.e. the difference 
between the mean and interface temperatures) and 
the differences in transient response (i.e. fast re-
sponse at the interface and damped response in the 
mean).   
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Figure 7.  Simulation results, frequency=0.001Hz 
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Figure 8.  Simulation results, frequency=0.01Hz 
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3.3 Simulation with Mass/Heat Transfer 

While the previous examples contained only 
heat transfer physics for a layer of constant thick-
ness, the original derivation allowed for dynamic 
geometry resulting from heat and mass transfer.  The 
example in this section simulates the fouling layer 
build-up and subsequent thermal degradation com-
mon in industrial heat exchangers.  Since the fouling 
caused by deposition of particulates and condensa-
tion of vapor phase materials is highly-sensitive to 
the interface temperature between the fouling layer 
and the gas [11], an integral analysis formulation is 
used to represent the dynamics of the fouling layer. 

Figure 9 shows a simple test model for simulat-
ing the effects of a deposition layer in a pipe.  The 
inner pipe wall is assumed to be at a constant tem-
perature, and the deposition layer is modeled using 
the cylindrical integral analysis formulation outlined 
in Section 2.2.  The model consists of standard con-
vective heat transfer based on the Sieder-Tate Nus-
selt number correlation for pipes [6] and a boundary 
layer formulation for thermally-induced particulate 
mass transfer [12].  Material properties for air are 
used for the flowing medium in the pipe, and the 
deposition layer is assumed to have the material 
properties of asphalt [6].     

 

 
Figure 9.  Pipe deposition layer with heat and mass 

transfer 
 
Figure 10 shows simulation results for the pipe 

deposition model.  The model was simulated with a 
fixed mass flow rate and inlet gas temperature.  The 
simulations show the slow degradation in heat trans-
fer performance as the deposition layer grows, thus 
providing an additional thermal resistance between 
the hot gas and the cool pipe wall.  This degradation 
is evidenced by the increasing gas exit temperatures 
and alternatively by the decreasing effectiveness ε, 
defined in the following way for constant mass flow 
conditions: 

 
wallingas

outgasingas

TT
TT
−

−
=

,

,,ε  (12) 

 

Note the difference between the mean layer 
temperature and the interface temperature.  Since the 
flowing medium interacts with the layer at the inter-
face temperature for both the heat and mass transfer 
dynamics, it is important to capture this elevated in-
terface temperature relative to the mean.  Further-
more, since the elevated interface temperature and 
subsequent thermal degradation result from the dy-
namic layer thickness, it is also important to capture 
the transient nature of the layer growth.  The integral 
analysis formulation allows a higher fidelity repre-
sentation of the spatial temperature distribution in 
the layer without the need for a network of heat 
transfer components to represent the layer.    

350

370

390

410

430

450

470

490

510

0 50 100 150 200 250 300

Time [hr]

Te
m

pe
ra

tu
re

 [K
]

Gas Inlet
Gas Exit
layer interface
layer mean
pipe wall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200 250 300

Time [hr]

Ef
fe

ct
iv

en
es

s 
[-]

0.00

0.06

0.12

0.18

0.24

0.30

La
ye

r T
hi

ck
ne

ss
 [m

m
]

effectiveness
delta

 

Gas Inlet 

Gas Exit 

interface 

mean 

wall 

Figure 10.  Pipe deposition simulation results 

4 Conclusions 

This paper illustrates an extension of the appli-
cation of the Modelica language to thermo-fluid 
problems using an integral analysis approach.  The 
sample formulations presented here give details re-
garding the development and implementation of the 
integral analysis approach in Modelica for different 
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geometries.  This approach allows the computational 
benefits of a lumped parameter formulation with ad-
ditional details regarding the temperature distribution 
across the volume.  In particular, the integral analysis 
formulation is especially useful for problems with 
interface dynamics, particularly those which require 
accurate resolution of the interface conditions to ob-
tain the appropriate dynamic physical response.   
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