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Abstract

An oscillation-free discretisation of conservation laws has
been implemented using Modelica.Fluid library [1] with a
novel logarithmic reconstruction technique. Roe’s approx-
imation flux is used in combination with it. The results
show that this logarithmic reconstruction has many advan-
tages: limiter-free, absence of spurious oscillations near
shock waves as well as third order of approximation to the
solution.
Keywords: Finite Volume Methods, Shock waves, Roe’s
Flux approximation, Logarithmic reconstruction

1 Introduction

This paper presents an implementation of the logarithmic
reconstruction method for hyperbolic partial differential
equations in conservation law form, as presented in [7], us-
ing Modelica.Fluid [1].
The main objective is to resolve numerically shock waves
avoiding spurious oscillations, limiters, artificial viscosity
or wave velocity estimators.

2 Problem Formulation

Scalar hyperbolic partial differential equations (HPDE’s)
are usually formulated in the following compact way

ut + f (u)x = 0 (1)

where u : Rn×R→ Rm is the solution and f : Rm → Rm is
the flux. The subindices represent partial derivation respect
to time (t) and space (x) variables. Some classical case stud-
ies in HPDE’s are

• Advection Equation where x ∈ [a,b], u : R×R→ R,
f ≡ I with boundary condition u(t,a) = g(t) and initial
value u(0,x) = h(x).

• Burgers’ Equation where x ∈ [a,b], u : R×R → R,
f (u) = 1

2 u2, boundary condition u(t,a) = g(t) (or pe-
riodic) and initial value u(0,x) = h(x).

• Euler System. If the section A of the pipe is constant
we have that x ∈ [a,b],

u =

 ρA
ρvA
ρe0A

 ,

f (u) =

 ρvA
(ρv2 + p)A

ρvh0A


boundary conditions and initial values for ρ,v and p.
The variables denote physical quantities as follows

ρ mass dentity
v fluid speed
e0 stagnation internal energy
h0 stagnation entalphy
p pressure

The stagnation internal energy is related to the specific
internal energy as

e0 = e+
1
2

v2,

and h0 satisfies
h0 = e0 +

p
ρ

.

A source term S(u) is included if the section A varies
gradually. In this case, the flow is called quasi-one-
dimensional. The conservation law takes the form

ut + f (u)x = S(u). (2)

This source term is defined as

S(u) =

 0
−p dA

dx +ρGA
−ρqA


where q is the thermal conductivity constant and G =
1
2 ρv|v|k 4

D , k the wall friction coefficient and D the
equivalent diameter of the duct. The source term can
also include effects related to temperature

S(u) =

 0
−p dA

dx +ρGA
−ρqA+ kA ∂2T

∂x2 + Q̇
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where T is temperature, k is the thermal conductivity
(considered constant along the pipe) and Q̇ is the heat
flow. The system is completed by equations that are
characteristic to the medium, that is

p = p(ρ,T ), e = e(ρ,T ).

The three equations of this system have physically rel-
evant names: mass, momentum and energy balance
equations. We will refer to them later on with those
names.

3 Numerical flux and reconstruction

3.1 Finite volume methods for HPDE’s
Consider now the semidiscretisation of (1) by means of fi-
nite volumes (FV). This method yields a system of ODE’s
that are numerically integrated in time. For a survey in FV-
standard notation, see also [2].
The method can be briefly summarised as follows. Consider
the domain Ω = [a,b], divided into n segments (xi,xi+1)
with a = x0 ≤ x1 < ... < xi < xi+1 < ... < xn+1 = b. We
use also as notation ∆xi = xi+1− xi and

xi+λ = λxi +(1−λ)xi+1 λ ∈ (0,1).

The so-called computing cells are therefore defined as

Ci = [xi−1/2,xi+1/2], i = 1, ...,n.

For the numerical integration in time, consider as state vari-
ables the averages

ūi(t) =
1

∆xi

Z
Ci

u(x, t)dx, (3)

where ∆xi = xi+1/2 − xi−1/2, the length of Ci. The main
objective now is to state the governing equations for this
averages. This is the process of semidiscretisation of the
HPDE. This method is inspired by the integral from of (1).
The semidiscretised ODE system is based on the construc-
tion of a flux approximation from the left and right states at
xi+1/2

f (u(xi+1/2, t))≈ f̂i+1/2(u
−(xi+1/2, t),u

+(xi+1/2, t)).

The function f̂ is the so-called numerical flux approxima-
tion, and governs the evolution of ūi as follows

d
dt

ūi =
1
h

(
f̂i+1/2− f̂i−1/2

)
, i = 1, ...,n (4)

where the sign ± indicates the side of xi taken from the
reconstruction of u.
The focus now on lies exclusively on ūi and the numerical
flux approximation f̂i+1/2. The reason is that different prop-
erties of the conservation law are inherited by the numerical
simulation, depending on the reconstruction method for u±

and f̂i+1/2.
To show the reasons for requiring limiter-free, non-
oscillatory reconstruction and viscous-free flux approxima-
tion, two simpler approaches are presented before. One of
them is already implemented in Modelica.Fluid.

3.2 A primer approach
In [1] we find an approach to discretising the pipe example
presented before using Modelica. The discretisation uses
the following approximations

ūi = u(xi, t)∆xi (5a)

f̂i+1/2 = f (u−(xi+1/2, t)) (5b)

and piecewise constant reconstruction of u in Ci for the mass
balance and energy balance equations. The same setup is
used for the moment balance equation, except that the grid
used here is then staggered, see [6]. The argumentation pre-
sented in [6] is that staggering results in a velocity and pres-
sure fields that are physically meaningful (pp. 120). Spuri-
ous oscillations are not allowed as solutions in the velocity
field. It is also stated that the implementation is cumber-
some. This staggered-grid formulation is even more trou-
blesome for object-oriented modeling.
The example model of a distributed pipe found
in Modelica.Fluid.Components.Pipes, called
DistributedPipeFV, implements a non-staggered
grid, with the setup described above. The discretisation is
found in Modelica.Fluid.BaseClasses.Pipes.Flow1d FV.

3.3 Lax-Friedrichs numerical flux
The Lax-Friedrichs numerical flux is classically the easi-
est possibility of a numerical flux. This numerical flux is
unstable and needs a damping factor α to avoid spurious
oscillations. The numerical flux is defined as

f̂ LF
i+1/2 =

1
2
( f (u−(xi+1/2, t))+ f (u+(xi+1/2, t)))

− 1
2

α(u+(xi+1/2, t)−u−(xi+1/2, t)) (6)

The principal problem with this approach is that the pa-
rameter α has to be tuned to avoid unnecessary damping
of shock waves and corners. This parameter is related to
the traveling wave velocities and is in general difficult to
estimate them a priori. Furthermore, there is no easy way
to treat waves traveling in both left and right directions with
this scheme.
We want to avoid those artificial factors as much as possi-
ble. The cause of such spurious oscillations is a too coarse
estimations of u+ and u−.

3.4 Reconstruction of u

Another classical approach is to consider linear reconstruc-
tion of u in Ci, see [4, 12]. In this case,

u+ = ū+
∆xi

2
m+

and
u− = ū− ∆xi

2
m−

, where the slopes m+ and m− are estimated from the av-
erages ūi−1, ūi and ūi+1. This approach needs the so called
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limiter, simply a bounded function L(m). The reconstruc-
tion takes the form

u+ = ū+
∆xi

2
L(m+)

and
u− = ū− ∆xi

2
L(m−)

instead. The main advantage is that limiters avoid spuri-
ous oscillations, but the maximum approximation order of
reconstruction is two, if the limiter is constructed in an ap-
propiate way, see [4].
Higher order of approximation requires other techniques.

3.5 Oscillations in DistributedPipeFV
Consider the Sod problem, described in [12]. The Sod prob-
lem consists of a domain with a perfectly isolating mem-
brane in the middle that separates a zone with high pressure
and temperature of a zone with low pressure and temper-
ature. The dynamics of the fluid in the whole domain are
governed by Euler equations. At time t = 0, the membrane
is removed instantaneously. Further details about the con-
figuration are given later in Sec. 4.
The corresponding Modelica model is implemented with
two DistributedPipeFV models connected with adequate
initial conditions, depicted in Fig. 1. The reason for hav-
ing two pipes is that the Sod problem has initially waves
traveling in both left and right from the membrane. Since
we want to experiment with Lax-Friedrichs numerical flux
also, we need to specify two different α coefficients in two
different domains.

Figure 1: Sod problem model using two connected pipes

3.5.1 Original approach

The implementation of the original approach is in Model-
ica.Fluid.BaseClasses.Pipes.Flow1D FV. We present only
the dynamical equations of the model since this is the fo-
cus of this paper.
The implementation of equations (5) can be observed in the
listings 1 (mass and energy balance) and 2 (momentum bal-
ance).

Listing 1: Mass and Energy Balance
/ / Mass and e ne rg y b a l a n c e
f o r i i n 1 : n loop

i f s t a t i c t h e n
. . .
e l s e

d e r (m[ i ] ) = m flow [ i ] − m flow [ i + 1] + ms f low [ i ] ;
d e r ( mXi [ i , : ] ) = mXi flow [ i , : ] − mXi flow [ i + 1 , : ] + msXi f low [ i , : ] ;
d e r (U[ i ] ) = H flow [ i ] − H flow [ i + 1 ] + Qs f low [ i ] ;

end i f ;
end f o r ;

Listing 2: Momentum Balance
/ / Momentum Balance

f o r i i n 2 : n loop
F p [ i ] = ( medium [ i −1] . p−medium [ i ] . p)∗A i n n e r ;
F f [ i ] = −dp [ i ]∗A i n n e r ;
( i f dynamicTerm t h e n d e r ( m flow [ i ])∗ l e n g t h / n e l s e 0 ) =

F p [ i ] + F f [ i ] + ( I f l o w [ i−1]− I f l o w [ i + 1 ] ) / 2 ;
end f o r ;

In this approach, the boundary conditions are easily in-
cluded: the ports port a and port b are considered the
nodes 0 and n + 1 of the discretisation, and included when
the array index of the component medium is less than 1 or
larger than n.
The result is depicted in Fig. 2, and the spurious oscillations
appear clearly in the two shock waves.

Figure 2: Spurious oscillations on top the shock waves in
the Sod problem

3.5.2 Lax-Friedrichs Flux and upwinding

Lax-Friedrichs flux avoids oscillations and is easy to imple-
ment. With some tuning of the α factor, this flux can yield
better results. The sine qua non condition of LF-flux is that
the shock waves are traveling in one direction.
The implementation is presented in the listings 3 and 4.

Listing 3: Mass and Energy Balance (LF)
/ / Mass and e ne rg y b a l a n c e

f o r i i n 2 : n−1 loop
i f s t a t i c t h e n
. . .
e l s e

d e r (m[ i ] ) = m flow [ i ] − m flow [ i + 1 ] + ms f low [ i ]
+ a l p h a∗(−m flow [ i −1]+2∗m flow [ i ]−m flow [ i + 1 ] ) ;

d e r ( mXi [ i , : ] ) = mXi flow [ i , : ] − mXi flow [ i + 1 , : ] + msXi f low [ i , : ]
+ a l p h a∗(−msXi f low [ i −1, :]+2∗msXi f low [ i , :]−msXi f low [ i +1 , : ] ) ;

d e r (U[ i ] ) = H flow [ i ] − H flow [ i + 1 ] + Qs f low [ i ]
+ a l p h a∗(−H flow [ i −1]+2∗H flow [ i ]−H flow [ i + 1 ] ) ;

end i f ;
end f o r ;

Listing 4: Momentum Balance (LF)

f o r i i n 2 : n−1 loop
F p [ i ] = ( medium [ i −1] . p−medium [ i ] . p)∗A i n n e r

+ a l p h a∗(−medium [ i −1] . p+2∗medium [ i ] . p−medium [ i + 1 ] . p)∗A i n n e r ;

F f [ i ] = −dp [ i ]∗A i n n e r ;
( i f dynamicTerm t h e n

d e r ( m flow [ i ])∗ l e n g t h / n e l s e 0 ) = F p [ i ] + F f [ i ]
+ ( I f l o w [ i−1]− I f l o w [ i + 1 ] ) / 2 ;

end f o r ;

Notice that the main difference is the added terms multi-
plied by α. The results are depicted in Fig. 3, before the left
shock wave bounces agains ambient1, and in Fig.4 after
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the wave bouncing. As we already mentioned, the spurious
oscillations appear since α is negative in pipe4.

Figure 3: Lax-Friedrichs Flux with α = −0.1 in pipe4 and
α = 0.1 in pipe5. (Before first bouncing.)

Figure 4: Lax-Friedrichs Flux with α = −0.1 in pipe4 and
α = 0.1 in pipe5. Spurious oscillations appear in pipe4 after
the reflexion of a small shock wave at the left boundary.

3.6 Logarithmic reconstruction

Logarithmic reconstruction is a technique recently devel-
oped mainly by A. Schroll in the papers [8, 9, 7] with ex-
amples in [10]. Schroll’s scheme is called LDLR, standing
for Local Double Logarithmic Reconstruction. LDLR is as
a natural generalisation of A. Marquina’s hyperbolic recon-
struction presented in [5]. LDLR has also the advantage
over other approximations of higher order (as those studied
by S. Serna and A. Marquina in [11], based on their own
variant of the weighted ENO schemes) that shock and rar-
efaction waves are resolved correctly without any estimates,
thresholds or heuristics.
When using LDLR for reconstruction, u is represented as a
piecewise logarithmic function. In particular, the left state
u+ and the right state u− at xi+1/2 are estimated as

u± = ui + c3∆xiη
±(c1)+ c4∆xiη

±(c2) (7)

where

η
+(t) =− log(1− t)+ t

t2

and

η
−(t) =− (t−1) log(1− t)− t

t2

with appropriate constants c1,c2,c3 and c4 for third order
convergence.
The computation of the constants is relatively simple. We
describe the computation in the following algorithm

1. Calculate

d1 =
ūi− ūi−1

∆xi−1
,d2 =

ūi+1− ūi

∆xi
. (8)

2. The coefficient c1 is obtained from

c1(d1,d2) = (1− tol)
(

1+ tol− 2|d1|q|d2|q + tol
|d1|2q + |d2|2q + tol

)
where tol = 0.1∆xq

i and typically q = 1.4. This factor q
controls the local variation, and the larger q the smaller
the local variation.

3. The constants c2,c3 and c4 are calculated from

c2 =
c1

c1−1

c3 =
(c1−1)(d2(1− c2)−d1)

c2− c1

c4 = d1− c3.

4. Using (7) we can now calculate u−.

The procedure for u+ is very similar. The only difference is
that d1 and d2 are defined instead as following

d1 =
ūi+1− ūi

∆xi
, d2 =

ūi+2− ūi+1

∆xi+1
.

3.7 Roe’s numerical flux and upwind
schemes

Upstream and downstream propagation is used in upwind
schemes. This is intrinsic and physically meaningful infor-
mation contained in the HPDE. The cornerstone is to de-
compose the flux difference at xi+1/2 as f̂ +− f̂− = W+ +
W−, according to the physics of the Euler equations.
Consider the left and right states of u (as defined for Euler
system) at xi+1/2. Define Roe’s averages as (we drop the
subindex for simplicity in this case)

ρ̃
2 = ρ

+
ρ
− (9a)

ṽ =

√
ρ+v+ +

√
ρ−v−√

ρ+ +
√

ρ−
(9b)

h̃ =

√
ρ+h+

0 +
√

ρ−h−0√
ρ+ +

√
ρ−

(9c)

ã2 = (γ−1)(h̃−1/2ṽ2). (9d)
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Using Roe’s averages and the differences

∆p = p+− p−, ∆ρ = ρ
+−ρ

−, ∆v = v+− v−,

we can estimate the traveling wave velocities as follows

λ1 = ũ− ã (10a)
λ2 = ũ (10b)
λ3 = ũ+ ã. (10c)

These travel velocities have associated wave forms, esti-
mated as

W1 =

 1
ũ− ã

h̃− ũã

 (11a)

W2 =

 1
ũ
1
2 h̃

 (11b)

W3 =

 1
ũ+ ã

h̃+ ũã

 (11c)

and associated strengths, estimated as

a1 =
1

2ã2 (∆p− ρ̃ã∆u) (12a)

a2 =
1
ã2 (ã2

∆ρ−∆p) (12b)

a3 =
1

2ã2 (∆p+ ρ̃ã∆u). (12c)

(12d)

With all this information, we can decompose the traveling
waves, according to velocities λi. In a compact notation we
can write

W+ = ∑
λi>0

aiWi (13a)

W− = ∑
λi≤0

aiWi (13b)

with i = 1,2,3. For more complex schemes considering
contact traveling waves, see [4, 12].

3.8 LDLR Stencil and Roe’s Flux
The LDLR is symmetric as long as the numerical flux keeps
symmetry. The following dependency graph shows the de-
pendency of dūi

dx on ūi, i = 1,2, ...,n.

dūi

dx

f̂i+1/2

�

f̂i−1/2

-

u+
i+1/2

�

u−i+1/2

-

u+
i−1/2

�

u−i−1/2

-

ū{i+2,i+1,i}
?

ū{i+1,i,i−1}
?

ū{i+1,i,i−1}
?

ū{i,i−1,i−2}
?

We observe that
dūi

dx
depends on ūi+2, ūi+1, ūi, ūi−1 and ūi−2.

Thus, treatment of the boundary conditions is needed for
dū1

dx
and

dūn

dx

Boundary Conditions Consider i = 1 in Eq. (4). To com-
pute dū1

dx we need the values of f̂1+1/2 and f̂1−1/2, con-
structed from the available data and the boundary condi-
tions. We use the ghost cell approach to solve this problem.
The ghost cell technique is applied by extending the domain
beyond the boundary with new cells. The amount of those
new cells is as many as needed to use the same central nu-
merical approximation.
In our case, to compute dū1

dx we would need u3,u2,u1,u0 and
u−1 because of the size of the stencil. We have added two
ghost cells u0 and u−1. Their value has to be design to meet
the boundary conditions. For simplicity, we just consider
u0 = u−1 = u(a, t) for this study.
The same reasoning is also valid for i = n, where two ghost
cells un+1 and un+2 are to be introduced. In the same fash-
ion, we consider u(b, t) = un+1 = un+2.
Clearly, this approximation means a loss of accuracy at the
boundaries, where the order of approximation drops. Of
course, more sophisticated numerical schemes may be de-
rived to meet higher approximation orders, using the two
new degrees of freedom introduced.

3.9 Source term discretisation
Even though we don’t explore the source term in this paper,
we provide a way of handling the source term for complete-
ness.
The semidiscretised system considering source term S takes
the form

d
dt

ūi =
1
h

(
f̂i+1/2− f̂i−1/2

)
+Si, i = 1, ...,n. (14)

To model the term Si, we use the speeds obtained by Roe’s
numerical flux. The decision is then taken using λ1 and λ3
from Eq. (10)

Si =


S(u+

i−1/2), λ1 > 0
λ1S(u−i−1/2)−λ3S(u+

i+1/2)

λ1−λ3
, λ1 ≤ 0≤ λ3

S(u−i+1/2), λ3 < 0

.

(15)
In case we include thermodynamical effects in Si, we have
to estimate the temperature gradient. It is important then to
use a scheme with at least third order. This is important to
keep the convergence order, since LDLR approximation is
of third order, [7].

4 Applications
We will explore now the results of the LDLR implemen-
tation with Roe’s flux using Modelica.Fluid. For details of
the implementation, see section 5. We come back first to the
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two pipe problem presented in Fig. 1, and then some other
examples showing different aspects of the approach.
In all experiments, the chosen medium was
IdealGases.SingleGases.CH3COOH from
Modelica.Media. The length of the pipes is 10
cm and 20 cm the larger ones. The discretisation used
is 10 cells/cm, that is, 100 cells for the short pipes and
200 for the large pipes. As before, the high pressure and
temperature zone has ph = 3 · 105 Pa and Th = 600 K. The
low pressure and temperature zone has pl = 1.5 · 105 Pa
and Tl = 300 K.

4.1 Two pipe Sod problem

Figure 5: Oscillation-free LDLR solution and Roe’s flux of
the two pipe Sod problem

Figure 6: Steady State of the Two pipe Sod problem with
LDLR and Roe’s Flux.

With this scheme, the right upwinding and the logarithmic
reconstruction makes the solution oscillation-free. We ob-
serve in particular that steady state is reached without any
trouble, depicted in Fig. 6. This is not possible with the
original approach or the Lax-Friedrichs flux in the general
case. Fig. 5 depicts the solution given by the new scheme at
the same time point depicted in Fig. 2 and Fig. 3.

4.2 One pipe Sod problem
We want to establish now how is the behavior of the ghost
cell implementation of the boundary conditions and connec-
tors. For that, we simulate the model depicted in Fig. 7.

Figure 7: Model for boundary condition testing.

Figure 8: Simulation result of the comparison model

The model has a large pipe that undergoes the same condi-
tions as two series connected pipes. The pressure and tem-
perature profiles are then compared. Optically, the solution
is not distinguishable, as depicted in Fig. 8.
When plotting the difference, depicted in Fig. 9, we observe
the differences. In both temperature and pressure, the dif-
ference is around two orders of magnitude less than the vari-
ables. This difference causes traveling waves that does not
influence very much the behavior of the system. Further-
more, this difference goes to zero as the number of discreti-
sation intervals is increased.

4.3 Symmetry
For testing symmetry of the LDLR with Roe’s approxima-
tion, we simulate the model depicted in Fig. 10. Simply two
pipes in parallel and one of them with interchanged connec-
tions.
Fig. 11 shows the result of the simulation. Notice that the
index of the left graph goes from 0 to 1 while the right graph
goes from 1 to 0.

4.4 Three pipe problem
Three pipe problem is a very interesting application for
boundary condition testing. The connection of three pipes
at a point is challenging because of the mass balance in an
infinitesimal volume at the connector.
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Figure 9: Difference between single pipe and two series
pipe.

Figure 10: Model used for symmetry testing.

In this particular application, the wave interference can be
viewed for inviscid or low viscosity fluids, if the length of
the pipes are different. In fig. 12 is depicted the system
modeled. Fig. 13 shows the pressure and temperature pro-
files when the traveling wave bounces in the short pipe. We
observe in the larger pipe how the shock pressure wave is
still traveling farther.
The profiles after the shock wave bounces at the end of the
larger pipe is presented in Fig. 14.

5 Implementation details

5.1 Structure
The structure of the Modelica code follows the same depen-
dency shown before. The parts of the code can be identified
with the following diagram (from reconstruction to deriva-
tive)

ūi
log- u+

i+1/2,u
−
i+1/2

W+,W−
- f̂i+1/2

- d
dt

ūi

The function RoeWaves computes the traveling waves
W+,W− from the reconstruction scheme. The func-
tion logarithmicminus computes the approxima-
tion u−i+1/2 from the averages ui and its companion
logarithmicplus computes u+

i+1/2 from the averages
ui, see listing 5.

Figure 11: Solution of the symmetry test.

Figure 12: Three pipe model for testing of boundary condi-
tions for several connections.

Figure 13: Solution after the traveling wave in the short pipe
bounces.

Figure 14: Solution after the traveling wave bounces at the
large pipe.
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At last, the approximations contained in the arrays
f1p,f2p,f3p and f1m,f2m,f3m, that are equated to
the derivatives d

dt ūi, see listing 6 and 7

Listing 5: Roe’s Flux with logarithmic reconstruction

( f1p [ i ] , f2p [ i ] , f3p [ i ] , f1m [ i ] , f2m [ i ] , f3m [ i ] ) =
RoeWaves (
{l o g a r i t h m i c m i n u s ( medium [ i + 1 ] . d ,

medium [ i ] . d ,
medium [ i −1] . d , l e n g t h / n , q ) ,

l o g a r i t h m i c m i n u s ( medium [ i + 1 ] . d∗v [ i +1 ] ,
medium [ i ] . d∗v [ i ] ,
medium [ i −1] . d∗v [ i −1] ,
l e n g t h / n , q ) ,

l o g a r i t h m i c m i n u s ( medium [ i + 1 ] . d∗medium [ i + 1 ] . u + medium [ i + 1 ] . d∗(v [ i + 1 ] ) ˆ 2 / 2 ,
medium [ i ] . d∗medium [ i ] . u + medium [ i ] . d∗(v [ i ] ) ˆ 2 / 2 ,
medium [ i −1] . d∗medium [ i −1] . u + medium [ i −1] . d∗(v [ i −1 ] ) ˆ 2 / 2 ,
l e n g t h / n , q )} ,

{ l o g a r i t h m i c p l u s ( medium [ i + 2 ] . d ,
medium [ i + 1 ] . d ,
medium [ i ] . d , l e n g t h / n , q ) ,

l o g a r i t h m i c p l u s ( medium [ i + 2 ] . d∗v [ i +2 ] ,
medium [ i + 1 ] . d∗v [ i +1 ] ,
medium [ i ] . d∗v [ i ] ,
l e n g t h / n , q ) ,

l o g a r i t h m i c p l u s ( medium [ i + 2 ] . d∗medium [ i + 2 ] . u + medium [ i + 2 ] . d∗(v [ i + 2 ] ) ˆ 2 / 2 ,
medium [ i + 1 ] . d∗medium [ i + 1 ] . u + medium [ i + 1 ] . d∗(v [ i + 1 ] ) ˆ 2 / 2 ,
medium [ i ] . d∗medium [ i ] . u + medium [ i ] . d∗(v [ i ] ) ˆ 2 / 2 ,
l e n g t h / n , q )} ,

1 . 4 ) ;

Listing 6: Mass Balance with Roe’s Flux

d e r (m[ i ] ) = − ( f1p [ i −1] + f1m [ i ] ) ∗A i n n e r + ms f low [ i ] ;
d e r ( mXi [ i , : ] ) = mXi flow [ i −1, : ] − mXi flow [ i , : ] + msXi f low [ i , : ] ;
d e r (U[ i ] ) = − ( f3p [ i −1] + f3m [ i ] ) ∗A i n n e r + Qs f low [ i ] ;

Listing 7: Momentum Balance with Roe’s Flux

( i f dynamicTerm t h e n
d e r ( m flow [ i ])∗ l e n g t h / n e l s e 0 ) = −(f2m [ i ]+ f2p [ i −1])∗A i n n e r

+ F f [ i ] + ( I f l o w [ i−1]− I f l o w [ i + 1 ] ) / 2 ;

5.2 Including connectors and boundary con-
ditions

The ghost cells u−1 = u0 are implemented in medium a,
at the right boundary. At the left boundary, the ghost cells
un+1 = un+2 are implemented in medium b. Then, they
are connected to the discretisation using the semiLinear
operator and adequate relations for m flow variables, see
listing 8.

Listing 8: Ports and Ghost cells
/ / P o r t medium models f o r g h o s t c e l l s
p o r t a . p = medium a . p ;
p o r t b . p = medium b . p ;
p o r t a . h = medium a . h ;
p o r t b . h = medium b . h ;
p o r t a . Xi = medium a . Xi ;
p o r t b . Xi = medium b . Xi ;

/ / Boundary c o n d i t i o n s
p o r t a . H flow = s e m i L i n e a r ( p o r t a . m flow , p o r t a . h , medium [ 1 ] . h ) ;
p o r t b . H flow = s e m i L i n e a r ( p o r t b . m flow , p o r t b . h , medium [ n ] . h ) ;
p o r t a . mXi flow = s e m i L i n e a r ( p o r t a . m flow , p o r t a . Xi , medium [ 1 ] . Xi ) ;
p o r t b . mXi flow = s e m i L i n e a r ( p o r t b . m flow , p o r t b . Xi , medium [ n ] . Xi ) ;
p o r t a . m flow = m flow [ 1 ] ;
p o r t b . m flow = −m flow [ n ] ;

The traveling waves at x = 1− 1/2 are called f1p a,
f2p a, f3p a, f1m a, f2m a, f3m a and those
at x = n + 1/2 are called f1p b, f2p b, f3p b,
f1m b, f2m b, f3m b. Their implementation of their
computation is in listing 5. Their incorporation into the
mass, momentum and energy balance is in listing 10.

Listing 9: Connectors in Roe approximation
. . .

/ / p o r t a
( f1p a , f2p a , f3p a , f1m a , f2m a , f3m a ) =

RoeWaves (
{l o g a r i t h m i c m i n u s ( medium [ 1 ] . d ,

medium a . d ,
medium a . d ,
l e n g t h / n , q ) ,

l o g a r i t h m i c m i n u s ( medium [ 1 ] . d∗v [ 1 ] ,
medium a . d∗v [ 1 ] ,
medium a . d∗v [ 1 ] ,
l e n g t h / n , q ) ,

l o g a r i t h m i c m i n u s ( medium [ 1 ] . d∗medium [ 1 ] . u + medium [ 1 ] . d∗(v [ 1 ] ) ˆ 2 / 2 ,
medium a . d∗medium a . u + medium a . d∗(v [ 1 ] ) ˆ 2 / 2 ,
medium a . d∗medium a . u + medium a . d∗(v [ 1 ] ) ˆ 2 / 2 ,
l e n g t h / n , q )} ,

{ l o g a r i t h m i c p l u s ( medium [ 2 ] . d ,
medium [ 1 ] . d ,
medium a . d , l e n g t h / n , q ) ,

l o g a r i t h m i c p l u s ( medium [ 2 ] . d∗v [ 2 ] ,
medium [ 1 ] . d∗v [ 1 ] ,
medium a . d∗v [ 1 ] ,
l e n g t h / n , q ) ,

l o g a r i t h m i c p l u s ( medium [ 2 ] . d∗medium [ 2 ] . u + medium [ 2 ] . d∗(v [ 2 ] ) ˆ 2 / 2 ,
medium [ 1 ] . d∗medium [ 1 ] . u + medium [ 1 ] . d∗(v [ 1 ] ) ˆ 2 / 2 ,
medium a . d∗medium a . u + medium a . d∗(v [ 1 ] ) ˆ 2 / 2 ,
l e n g t h / n , q )} ,

1 . 4 ) ;
. . .

/ / p o r t b
( f1p b , f2p b , f3p b , f1m b , f2m b , f3m b ) =

RoeWaves (
{l o g a r i t h m i c m i n u s ( medium b . d ,

medium [ n ] . d ,
medium [ n−1] . d ,
l e n g t h / n , q ) ,

l o g a r i t h m i c m i n u s ( medium b . d∗v [ n ] ,
medium [ n ] . d∗v [ n ] ,
medium [ n−1] . d∗v [ n−1] ,
l e n g t h / n , q ) ,

l o g a r i t h m i c m i n u s ( medium b . d∗medium b . u + medium b . d∗(v [ n ] ) ˆ 2 / 2 ,
medium [ n ] . d∗medium [ n ] . u + medium [ n ] . d∗(v [ n ] ) ˆ 2 / 2 ,
medium [ n−1] . d∗medium [ n−1] . u + medium [ n−1] . d∗(v [ n−1 ] ) ˆ 2 / 2 ,
l e n g t h / n , q )} ,

{ l o g a r i t h m i c p l u s ( medium b . d ,
medium b . d ,
medium [ n ] . d ,
l e n g t h / n , q ) ,

l o g a r i t h m i c p l u s ( medium b . d∗v [ n ] ,
medium b . d∗v [ n ] ,
medium [ n ] . d∗v [ n ] ,
l e n g t h / n , q ) ,

l o g a r i t h m i c p l u s ( medium b . d∗medium b . u + medium b . d∗(v [ n ] ) ˆ 2 / 2 ,
medium b . d∗medium b . u + medium b . d∗(v [ n ] ) ˆ 2 / 2 ,
medium [ n ] . d∗medium [ n ] . u + medium [ n ] . d∗(v [ n ] ) ˆ 2 / 2 ,
l e n g t h / n , q )} ,

1 . 4 ) ;

. . .

Listing 10: Boundary Conditions
/ / Mass and Energy Ba lance
. . .
/ / s i d e a

i f s t a t i c t h e n
. . .
e l s e

d e r (m[ 1 ] ) = − ( f 1 p a +f1m [ 1 ] ) ∗A i n n e r + ms f low [ 1 ] ;
d e r ( mXi [ 1 , : ] ) = mXi flow [ 1 , : ] − mXi flow [ 2 , : ] + msXi f low [ 1 , : ] ;
d e r (U[ 1 ] ) = − ( f 3 p a +f3m [ 1 ] ) ∗A i n n e r + Qs f low [ 1 ] ;

end i f ;
. . .

/ / s i d e b
i f s t a t i c t h e n
. . .
e l s e

d e r (m[ n ] ) = − ( f1p [ n−1] + f1m b )∗A i n n e r + ms f low [ n ] ;
d e r ( mXi [ n , : ] ) = mXi flow [ n , : ] − mXi flow [ n + 1 , : ] + msXi f low [ n , : ] ;
d e r (U[ n ] ) = − ( f3p [ n−1] + f3m b ) ∗A i n n e r + Qs f low [ n ] ;

end i f ;
. . .

/ / Momentum Balance
i f lumped dp t h e n

. . .
e l s e

. . .
( i f dynamicTerm t h e n d e r ( m flow [ 1 ] )∗ l e n g t h / n / 2 e l s e 0 ) =

−(f2m [ 1 ] + f 2 p a )∗A i n n e r + F f [ 1 ] + ( I f l o w [1]− I f l o w [ 2 ] ) / 2 ;
. . .
( i f dynamicTerm t h e n d e r ( m flow [ n ])∗ l e n g t h / n e l s e 0 ) =

( f2m b+ f2p [ n−1])∗A i n n e r + F f [ n ] + ( I f l o w [ n−1]− I f l o w [ n + 1 ] ) / 2 ;
. . .

end i f ;

Finally, the numerical scheme is incorporated
to DistributedPipeFV by extending from
Flow1D FV Log instead of Flow1D FV.

Listing 11: LDLR in DistributedPipeFV
model D i s t r i b u t e d P i p e F V ” D i s t r i b u t e d p i p e model w i th o p t i o n a l w a l l ”

e x t e n d s Flow1D FV Log (
Qs f low = h e a t . Q flow ,
ms f low= z e r o s ( n ) ,
msXi f low= z e r o s ( n , Medium . nXi ) ) ;

. . .

end D i s t r i b u t e d P i p e F V ;
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6 Conclusions and Future Work
We have shown how the logarithmic reconstruction and ap-
propriate upwinding captures shock waves without spuri-
ous oscillations. The numerical performance of these FV
schemes is not more complicated than the originals used in
Modelica.Fluid library, in terms of implementation and are
more reliable. The CPU time observed was similar.
Some further investigations have to be done for time inte-
gration. The control of the Courant-Friedrichs-Lax number
is critical for an even better capture of shock waves. This
CFL number has to be controlled using special numerical
integration schemes. Special Runge-Kutta methods have
been developed and investigated, with successful results,
in [3].
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