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Abstract

This paper describes a Modelica package for fixed-
point arithmetics and automatic fixed point code gen-
eration for embedded systems and FPGA applications.
Using Dymola [1] to investigate the dynamic behav-
ior of the original model a fixed point representation
is automatically generated. The model can then be
simulated, using fixed point arithmetics to verify the
fixed-point representation. Finally, code is generated
for the desired target. Either integer C code for em-
bedded systems or Mitrion-C code [2] for automatic
VHDL code generation for FPGA targets.
Keywords: fixed-point arithmetics; automatic code
generation; embedded system; DSP; FPGA; Mitrion-
C

1 Introduction

Hardware-In-the-Loop simulations are widely used
nowadays for design and testing of control systems
in industry. Typical devices for such HILs are Digi-
tal Signal Processors (DSP) and Field Programmable
Gate Arrays (FPGA). Typically, the development of
algorithms or models is done in high level languages,
not directly related to the target hardware. This is ad-
vantageous since the model keeps independent. But,
specific code generation for the target platform has to
be done.
Another important aspect is the following. During
the development phase, floating point arithmetics is
used for computations of algorithms and models. In
many cases, the tolerances, characteristics of the sys-
tem and performance of the target platform do not jus-
tify the use of such demanding floating point calcula-
tions. Furthermore, sometimes they are even an ob-
stacle to HILs, since the computations are slower than
required.
The possibility we explore in this paper is fixed-point
arithmetics for modeling. We describe in this paper an

aid platform for automatic code generation from Mod-
elica models using fixed-point arithmetics.
In a first step, Dymola generates a corresponding Mod-
elica model using fixed-point arithmetics. This model
is intended for bit configuration testing and result as-
sessment.
In a second step, the platform generates code in two
variants

1. C code using exclusively integer data types for
all variables with corresponding binary operation
implementation. This type of code is intended
mainly for DSP applications.

2. Mitrion-C code, using also integer data types, but
with different word lengths. This code is mainly
intended for FPGA applications.

As a scenario example, let us consider the task of de-
veloping an electrical control unit (ECU) for speed
control of a simple vehicle drive train using DSP. To
test different control strategies, a model of the closed
loop system is implemented in Modelica. The model
is depicted in Fig. 1.

Figure 1: Simple drive train with PI speed controller
in closed loop
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After some experimentation we find appropriate pa-
rameter settings and verify the functionality of the con-
troller. Our intention now is to realise the controller
using an DSP.
Manually transforming the equations for the PI con-
troller to a DSP program is a tedious and error prone
task. In the following, we will see how the Modeli-
caFixedPoint package can be used to perform this task
automatically.
Furthermore, the package provides error propaga-
tion analysis and fixed-point implementation of usual
mathematical functions based on Newton-Rapson or
table interpolation.

2 ModelicaFixedPoint package

The structure of ModelicaFixedPoint is presented in
Fig. 2.

Figure 2: Library structure.

The main function of the library, GenerateFixed,
is used for generation of the fixed-point representation
and code generation. GenerateFixed preforms the
4 main steps of the conversion

1. Fixed-point translation

2. Range analysis

3. Precision analysis

4. Code generation

The internal symbolic engine of Dymola preforms
symbolic manipulation of the original model and out-
puts a fixed-point converted model with all arithmetic
operations replaced by function calls. Some examples
of Modelica types and operations before and after con-
version are shown in listings 1 and 2.

Listing 1: Modelica types and fixedpoint types
/ / b e f o r e c o n v e r s i o n
I n t e g e r x ;
Rea l y ;

Boolean z ;

/ / a f t e r c o n v e r s i o n
F i x e d P o i n t I n t e g e r x ;
F i x e d P o i n t R e a l y ;
F i x e d P o i n t B o o l e a n z ;

The arithmetic operations are replaced by function
calls and a unique identifier is inserted for every func-
tion call. Type can here be either Real or Integer de-
pending on the types of the arguments, as example we
present the basic operations.

Listing 2: Basic operations
/ / b e f o r e c o n v e r s i o n
a=u+v ;
b=u−v ;
c=u∗v ;
d=u / v ;

/ / a f t e r c o n v e r s i o n
a=Add Type Type ( u , v , opId1 ) ;
b= S u b t r a c t T y p e T y p e ( u , v , opId2 ) ;
c= M u l t i p l y T y p e T y p e ( u , v , opId3 ) ;
d= Div ide Type Type ( u , v , opId4 ) ;

Consider now the PI controller of the ECU example.
This controller is implemented in Modelica with the
following equations

ẋ =
u
T

y = k(x+u)

where x is the controller state variable, u is the input,
k is the proportional gain and 1/T is the integral con-
stant. Those equations converted to fixed point with
ModelicaFixedPoint are presented in listing 3. The op-
erator FixedPoint2Derivative is introduced to
perform time integration in Dymola, during assesment
of the fixed-point model.

Listing 3: Typical equations

d e r ( x aux )= F i x e d P o i n t 2 D e r i v a t i v e ( D i v i d e R e a l R e a l ( u , T , op1 ) ) ;
y= M u l t i p l y R e a l R e a l ( k , Add Rea l Rea l ( x , u , op2 ) , op3 ) ;

Range analysis
The proposed method uses a simulation based ap-
proach for determining ranges of variables and inter-
mediate results in the equations. Simulating the orig-
inal model and logging minimum and maximum val-
ues of all variables is important.This allows equation
traversing and thereby compute accurate ranges for all
intermediate results.
This method is more time consuming than methods
like interval arithmetics [6] and affine arithmetics [4],
but the resulting intervals are better.
ModelicaFixedPoint considers that every variable con-
sists of two parts: an integer part and a fractional
part. Both integer and fractional parts have a bit length
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that sum up to the total word length used for the vari-
able. The integer word length is denoted here by IWL,
the fractional word length by FWL and the total word
length by WL.
The range information is used to assign the needed IWL

to all variables and operations.

Precision analysis
Precision analysis is done in two different ways de-
pending on the target platform (DSP or FPGA).
The two main parameters in GenrerateFixed
are wordLength (target platform word length) and
RTOL (relative tolerance required for conversion). The
function dialog box is shown in Fig. 3.

Figure 3: Dialog box.

Specifying wordLength indicates that integer C
code is to be generated for a DSP target. The speci-
fied word length then sets a unique word length for the
entire system and the FWL is set to maximize precision
given by RTOL.
For FPGA targets the task becomes more complicated
due to the ability to use different WL in the system.
Our approach is to use a backward error propagation
scheme based on the error propagation analysis in sec-
tion 5 to determine all FWL and shift operations from
a user specified tolerance RTOL at the output of the
system.

The package FixedPointRoutines is also in-
cluded. This package contains fixed-point arithmetic
functions and records for simulation of fixed-point
Modelica code. The structure is shown Fig. 4.

3 Fixed-point scenario

Integer arithmetic operations execute much faster than
their corresponding floating-point operations because
of their simplicity. In the case of FPGA, silicon surface
area and power consumption are also significantly re-
duced using integer arithmetics. On the other hand,
DSP devices come normally with simple arithmetic

Figure 4: FixedPointRoutines.

logic units, missing completely hardware implemen-
tation of floating point arithmetics.

The achievable precision using integer arithmetics is
closely related to the architectural word length of the
target platform. In the case of DSP, the integer data
word size, typically 16, 24 or 32 bits, limits the pos-
sible precision. For FPGA, there is the possibility of
adapted word length for each operation. However, this
migth exceed practical limitations. A tradeoff must be
considered, minimizing the number of bits used while
not violating constraints on precision. Another inter-
esting aspect of the FPGA is parallelism. The pro-
grammable structure of the FPGA allows exploiting
independent computations, by implementing those in
parallel structures.

The target language for FPGA is Mitrion-C. This lan-
guage is a dataflow language with a syntax resembling
C, developed by Mitrionics AB in Lund. The gener-
ated Mitrion-C code is compiled into a configuration
of the Mitrion Virtual Processor. The Mitrion Virtual
Processor is a fine grain massively parallel softcore
processor which can be downloaded and ran on a vari-
ety of FPGA’s, see [2] for details.
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4 Fixed-point Arithmetics

From a hardware point of view, fixed-point arithmetics
is essentially integer arithmetics with bit shifting. Us-
ing integers to represent non-integer values is done by
considering an imaginary binary point as follows.
Consider the binary representation of an integer in
Natural Binary Code (NBC).

(bn,bn−1, . . . ,b2,b1,b0) =
n

∑
j=0

b j ·2 j, ∀b∈ {0,1}. (1)

Now, using the same set of bits to represent a non-
integer value can be done by placing a binary point
between i−1 and i. Thus

(bn, . . . ,bi+1,bi,bi−1, . . . ,b0) =
n

∑
j=0

b j ·2 j−i. (2)

The fixed-point representation in (2) with the binary
point between i− 1 and i is said to have i bits of pre-
cision. By q we denote the value in NBC, i.e. the
value seen by the arithmetic unit. The smallest repre-
sentable number is the so-called the resolution of the
representation and is equal to 2−i. We define integer
word length, IWL = (n + 1)− i, and fractional word
length, FWL = i. The word length, that is, the total
number of bits used, is denoted by WL and is equal to
n+1.

Converting a floating-point number y to fixed-point
representation q is done by

q = b2i · yc, i,q ∈ Z, y ∈ R, (3)

where b·c denotes rounding towards floor.

The basic operations on fixed-point numbers; addi-
tion, subtraction, multiplication and division, are im-
plemented using ordinary integer operations and bit
shifting. The bit shifts (left shift and right shift) of
a fixed-point number q are

(q << i) = q ·2i (4)

and
(q >> i) = q ·2−i. (5)

Bit shifting is used extensively to align binary points
and to rescale variables. The shift operators are used to
rescale both the inputs of an operation and the output.
Consider a binary operation op on two fixed-point
variables q1 and q2, called operands. The implementa-
tion of such operation is

Op(q1,q2,s) =
(
(q1 << s1)op(q2 << s2)

)
<< s3 (6)

where op ∈ {+,−,∗,/}, or equivalently

Op(q1,q2,s) =
(
(q1 ·2s1)op(q2 ·2s2)

)
·2s3 . (7)

Clearly, associating a 3-tuple of shifts s = {s1,s2,s3}
with an operation we define the syntax of the basic op-
erations. For readability reasons we will use the sym-
bol for left shift, <<, followed by si to denote shifts.
When si > 0, the shift is left and when si < 0 the shift
is right.
For addition and subtraction the binary point must be
aligned before the operation. There will be a loss
of precision in the result when right shifting is used.
Thus, it is preferable to use left shifts when possible.
However, right shifts may sometimes be needed in or-
der to avoid overflow. Adding or subtracting numbers
with very large difference in magnitude does not mean
any problem. The smaller one will naturally be numer-
ically insignificant compared to the larger one.

Multiplication and division are more difficult to im-
plement. Multiplying two fixed-point variables each
having WL number of bits will generate a result having
2WL number of bits. This is likely to cause an over-
flow.
Using the shift operators on the variables prior to
the fixed-point multiplication, one could shift the
operands so that no overflow can occur. For the sit-
uation above, the secure shiftings correspond to right
shifting each of the operands by WL/2 bits prior to the
operation. This reduces of course the final resolution
of the result.
Division has a similar problem. Dividing two variables
with FWL fractional bits generates a result having no
fractional bits. Here we loose resolution unnecessarily.
One solution is to right shift the denominator prior to
the division, keeping as much precision as possible.

For operations other than the basic binary ones, there
are often no straight forward implementation. Con-
ditional operations such as {<,≤,>,≥,==, 6=} are
an exception. These operations on fixed-point num-
bers are the same as their floating-point counterparts
although the binary points of the operands must be
aligned before evaluation. This alinement of binary
points can reduce resolution and therefore cause the
wrong conditional branch to be evaluated.
For other functions we use linear interpolation in ta-
bles or Newton-Raphson iterations to evaluate the re-
sult, as mentioned earlier. With information on the
range of the variable and the result, tables cover-
ing the entire range with appropriate resolution are
generated. Development of interpolation tables and
Newton-Raphson iterations is currently ongoing.
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In order to use fixed-point arithmetics efficiently one
need to find appropriate shifts, and WL in case of
FPGA, for all variables and operations. The automatic
floating-point to fixed-point conversion problem can
then be summarized as finding IWL and FWL for all
variables and respective appropriate shifts for all op-
erations such that no overflow occurs, quantization er-
rors are kept low and the total WL is kept as low as
possible.

5 Error propagation

Error propagation analysis has to be done to solve the
fixed-point conversion problem, and assign FWL to
variables and operators. For further theory details, see
[3].
A throughout error analysis would require a priori
knowledge of all shifts and FWL. For simplicity, we
assume that all intermediate results can be stored,
eliminating the the risk of overflow. Clearly and
in practice, this assumption is relevant and valid for
Mitrion-C code only.
For addition and subtraction the function implementa-
tion is eq. (7). Multiplication and division are some-
what different.
For multiplication, the possibility of storing the inter-
mediate result eliminates the shifting of the operands
before the operation. Instead, the result has to be
shifted to the appropriate FWL.
For division, the assumption avoids shifting the de-
nominator. Hence, only the numerator and the result
are shifted to the appropriate FWL at the output.

Conversion
The conversion to fixed-point causes an error, the so
called conversion error or quantization error, denoted
by δ. We have

|δ| = |y− ỹ| , δ ∈ R. (8)

where y is the floating-point value before conversion
and ỹ is the recovered floating-point value after con-
version. From [3], the conversion error is bounded by

|δ| < 2−i. (9)

Defining
∆ = sup |δ| = sup |y− ỹ| , (10)

the results of the error propagation analysis will be
presented.

Addition and subtraction

Addition and subtraction have the same error propa-
gation properties. Considering the absolute error for
addition we have

∆R = ∆1 +∆2 = 2−i1 +2−o +2−i2 +2−o. (11)

where i is the resolution of the operand and o = FWL

is the resolution of the result.

Multiplication
Considering the relative error for multiplication, we
have∣∣∣∣∆R

R

∣∣∣∣ = sup
∣∣∣∣δR

R

∣∣∣∣ =
∣∣∣∣2−i1

y1

∣∣∣∣+ ∣∣∣∣2−i2

y2

∣∣∣∣+ ∣∣∣∣ 2−o

y1y2

∣∣∣∣ (12)

where yi is the largest value taken by each variable re-
spectively.

Division
Again considering the relative error we have∣∣∣∣∆R

R

∣∣∣∣ =
∣∣∣∣2−i1

y1

∣∣∣∣+ ∣∣∣∣2−i2

y2

∣∣∣∣+ ∣∣∣∣2−i2+o

y1

∣∣∣∣ . (13)

The error propagation is different from the multiplica-
tion.

6 Code generation

The information gained in the fixed-point conversion
and analysis is used to generate code for different tar-
get platforms. In this paper we mainly focus on gener-
ating integer C code typically used in DSP’s. But, also
Mitrion-C code for FPGA’s is possible with appropiate
error propagation analysis.
For easy interaction with standard generic integration
routines, all variables are categorized and mapped to a
set of vectors, as in table 1. All right-hand-side equa-
tions are gathered in one function, called rhs-function.
This encapsulation allows code portability.
This encapsulation and code generation is used in
cases where only a subsystem is intended for fixed-
point representation. Then we substitute that particu-
lar part of the system with a function call and the rest
of the system is treated as usual.

To avoid unnecessary computations, constants are
shifted according to the fixed-point representation and
evaluated during the code generation.

Generation of integer C code

Currently, the generated C code supports a format for
easy interaction with Dymola to make it easy to vali-
date the functionality of the generated code. Different
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x state variables

x dot derivatives of state variables
w auxiliary variables
u input variables
y output variables
p parameters

Table 1: Table of categorized variables

DSP targets could require different structures, mainly
of the function call, i.e. the body of the function would
remain the same.
The syntax of the Modelica interface to the rhs func-
tion is in listing 4.

Listing 4: Modelica Interface
/ / Model ica i n t e r f a c e
f u n c t i o n Name

i n p u t I n t e g e r n ;
i n p u t I n t e g e r t ;
i n p u t I n t e g e r x [ : ] ;
i n p u t I n t e g e r x d o t [ : ] ;
i n p u t I n t e g e r w [ : ] ;
i n p u t I n t e g e r u [ : ] ;
i n p u t I n t e g e r y [ : ] ;
i n p u t I n t e g e r p [ : ] ;
i n p u t I n t e g e r idemand ;
o u t p u t out w [ s i z e (w , 1 ) ] ;
o u t p u t o u t x d o t [ s i z e ( x do t , 1 ) ] ;
o u t p u t o u t y [ s i z e ( y , 1 ) ] ;
e x t e r n a l ”C ” ;
a n n o t a t i o n ( I n c l u d e =”# i n c l u d e<Name . c >”);

end Name ;

and the function itself in listing 5.

Listing 5: C interface
/ / C i n t e r f a c e
i n t Name ( i n t n , i n t t , i n t ∗x , i n t s i z e x ,

i n t ∗x do t , i n t s i z e x d o t , i n t ∗w,
i n t s i ze w , i n t ∗u , i n t s i z e u ,
i n t ∗y , i n t s i z e y , i n t ∗p , i n t s i z e p ,
i n t idemand , i n t ∗out w , i n t s i z e o u t w ,
i n t ∗o u t x d o t , i n t s i z e o u t x d o t ,
i n t ∗ou t y , i n t s i z e o u t y ){

/∗ BODY OF FUNCTION ∗ /
}

The main body of the function is the section contain-
ing the equations for computing the auxiliaries, deriva-
tives and outputs of the system. The basic operations,
addition, subtraction, multiplication and division, uses
basic integer operations and the appropriate shifts are
inlined in the code according to the syntax in (6). The
integer C code of the equations in listing 3 can be seen
below in listing 6.

Listing 6: Integer operations in C
/∗ Compute d e r i v a t i v e s ∗ /
x d o t [ 0 ] = ( ( u [ 0 ] ) / ( p[1]>>15)<<10);

/∗ Compute o u t p u t s ∗ /
y [ 0 ] = ( ( p [0] >>16)∗((( x [ 0 ] ) + ( u[0]>>1))>>15)<<1);

Conditional operators and the IfThenElse-statement
are also inlined with appropriate shifts. Essential for
the conditional operators are that the binary points are

aligned before evaluation. Hence, also here, shift op-
erations are inlined in the code. An example can be
seen in listing 7.

Listing 7: Conditional operations in C
/ / Computing ” z = i f x<y t h e n x−y e l s e y−x ;”

w[ 0 ] = ( ( ( ( x[0]>>6)<(x [ 1 ] ) ) = = 1 ) ? ( ( ( x[0]>>6)−
( x [ 1 ] ) ) ) : ( ( ( x [1 ] ) − ( x [0] > >6)))) ;

A C library for special fixed-point functions is under
development for functions such as min, max and abs.
Also for these functions, except for abs, the binary
point must be aligned prior to the evaluation. This can
be solved by having the appropriate shifts inlined in
the function call. For other functions, such as trigono-
metric functions and square root, code for linear inter-
polation tables or Newton-Raphson iterations schemes
will be generated. This is still in the development
phase although successful implementation of linear in-
terpolation using only integer arithmetics have been
implemented using Modelica.

Generation of Mitrion-C code

Although the syntax of Mitrion-C resembles that of C,
the generated code is quite different. This is mainly
due to the possibility of having a mixture of different
word lengths in the system. This allows us to allocate
resources (word length of the data path) were they are
needed the most.
The result of this is that it is no longer possible to in-
line any operations or shifts. Instead a unique function
is generated for every operation. All shifts and word
length declarations are hard coded in these functions.

7 Examples

7.1 Speed control with PI controller

Using the library presented in this paper lets us au-
tomatically generate a fixed-point model of a PI con-
troller using various word lengths. Simulating the sys-
tem using the fixed-point PI controller we can verify
the functionality of the controller and also get hints
regarding the word length needed to fulfill the specifi-
cations.
After some simulations, depicted in Fig. 5, we con-
clude that a word length of 8 bits is enough for our
application. This results in a smaller/cheaper DSP for
the ECU instead of the one originally intended. Also,
integer C code for the controller is automatically gen-
erated.
For Modelica users this is a familiar way of working,
implementing systems and algorithms at high abstrac-
tion levels by drag and drop of predefined components
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Figure 5: Plot of reference speed and measured speed
using PI controllers.

in a diagram or manually typing Modelica code. With
this library we aim to keep this way of working while
extending it by automatically generating fixed-point
code for external computational devices. The follow-
ing example is the opposite situation: plant realisation
with fixed point arithmetics.

7.2 ServoMotor with FixedPoint

This example explores the plant realisation using fixed
point arithmetics. The situation is a simple electric
drive used to place a inertia at a given angle. The sim-
ple model of electric drive is depicted in Fig. 6. The
model consists of an ideal EMF device with shaft in-
ertia and electric inductance and resistance.
We provide the model with the load and a gearbox for
better precision on the load. The system is encapsu-
lated in a model with inputs and output as depicted in
Fig. 7.
Finally, we choose a PID regulator to control the angle

Figure 6: Electric Drive Model

Figure 7: Electric Drive and load

of the load and set it to the reference. The final model
is depicted in Fig. 8.

Figure 8: PID regulator to position the inertia to build
the servo drive

The question now is if there is a cheap and fast fixed-
point representation of the system, good enough to use
with the PID regulator in hardware. After Fixed-point
trasnalation, we get with the tool the system in Fig. 9.
The first attempt is done analysing
servoMotorWithLoad model within the time
interval [0,1] and for 8, 16 and 24 bits. The result of
the simulations in Dymola are depicted in Fig. 10.
We observe that even though we have more precision,
the steady state is never really reached. The solution
becomes oscillatory.
The first though may be that the number of bits of
the fixed point representation is not high enough to
make the system reach steady state. This is not the
case. What is happening is that the precision analysis
is tightly adjusting the fixed-point representation to the
time interval and span interval of every variable.
It is possible to resemble the correct dynamics of the
system with just 8 bits. The result is depicted in
Fig. 11. The only difference is that we performed the
precision analysis in the time interval [0,100] instead.
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Figure 9: Fixed Point version of the motor with load.

Figure 10: Simulation result with model analysed in
time interval [0,1]

We can see the C code generated for the example also
in listing 8. Notice the implementation of the fixed-
point operations using shifts. This implementation can
be also encapsulated to generate code to link with ex-
ternal fixed-point libraries.

Listing 8: C function generated
/∗ BODY OF THE FUNCTION ∗ /
/∗ Compute A u x i l i a r y v a r i a b l e s ∗ /

i f ( idemand == 3) {
w[ 0 ] = 0 ;
w[ 1 ] = 0 ;
w[ 2 ] = 0 ;
w[ 3 ] = 0 ;
w[ 4 ] = 0 ;
w[ 5 ] = 0 ;
w[ 6 ] = 0 ;
w[ 7 ] = ((32 > >4)∗(((((m>>4)∗(r >>3))>>4)∗(r >>3))>>4)<<2);
w[ 8 ] = ( ( motor emf k >>3)∗(x[1]>>4)<<1);
w[ 9 ] = ( ( g e a r b o x r a t i o >>3)∗(d e r l o a d w a u x >>4)<<2);
w[ 1 0 ] = ( (w[ 8 ] ) − ( ( ( motor Jm J >>3)∗(w[9]>>4)))<<1);
w[ 1 1 ] = ( − ( ( ( g e a r b o x r a t i o >>4)∗(w[10] > >3)))) ;
w[ 1 2 ] = ( ( motor Ra R >>3)∗(x [1]>>4));
w[ 1 3 ] = ( ( u [0 ] ) − (w[12] >>5));
w[ 1 4 ] = ( ( g e a r b o x r a t i o >>4)∗(x[0]>>3)<<1);
w[ 1 5 ] = ( ( motor emf k >>3)∗(w[14]>>4)<<1);
w[ 1 6 ] = ( (w[13] ) − (w[15] >>2));
w[ 1 7 ] = ( ( g e a r b o x r a t i o >>4)∗(x[2]>>3)<<1);
w[ 1 8 ] = ( − ( ( (w[10]>>7)+(w [ 1 1 ] ) ) ) ) ;
w[ 1 9 ] = 0 ;

}

/∗ Compute d e r i v a t i v e s ∗ /
i f ( idemand == 2) {

x d o t [ 0 ] = ( ( ( ( g e a r b o x r a t i o >>4)∗(w[8 ] > >3) ) ) / ( ( (w[ 7 ] ) +
( ( ( ( ( motor Jm J >>3)∗( g e a r b o x r a t i o >>4)>>3)>>3)
∗( g e a r b o x r a t i o >>4))<<4))>>1)<<7);

x d o t [ 1 ] = ( (w [ 1 6 ] ) / ( motor La L >>3)<<3);
x d o t [ 2 ] = x [ 0 ] ;

}

/∗ Compute o u t p u t s ∗ /
i f ( idemand == 1) {

y [ 0 ] = x [ 2 ] ;
}

Figure 11: Simulation result with model analysed in
time interval [0,100]

8 Summary

We have presented a tool that enables a developer to
use Modelica models for code generation for an em-
bedded system or FPGA with a minimum of manual
interaction.

References

[1] Dymola, Dynasim AB, www.dynasim.com

[2] Mitrion-C, Mitrionics AB, www.mitrion.com

[3] Ulf Nordström. To be published. Automatic
Fixed Point Code Generation in Modelica us-
ing Dymola. Lund, Sweden: Master’s thesis, De-
partment of Automatic control, Lund Institute of
Technology, 2006.

[4] Claire F.Fang, Rob A Rutenbar, Tsuhan Chen.
Fast, Accurate Static Analysis for fixed-point
Finite-Precision Effects in DSP Designs. Pitts-
burgh, USA, Department of Electrical and Com-
puter Engineering, Carnegie Mellon University.

[5] Float-to-Fixed Conversion Tool, www.float-to-
fixed.com

[6] R. E. Moore. Interval Analysis. Prentice-Hall,
1966.

[7] The Mathworks, Simulink fixed-point, 2005.

628

U. Nordström, J.D. López, H. Elmqvist


