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Abstract

A typical purpose of a static calibration is to tune
static characteristics of components such pipes,
valve, throttles, pumps, nonlinear resistors, frictions
etc. Dymola’s GUI supports setting up such a cali-
bration without building a corresponding test rig
model. The GUI allows simple redefinition of a vari-
able to be an input. The measured data for such an
input and of course also for an original input can
then be specified to have a common value for all cas-
es or to have a case dependent value read from a file.

Assume that we want to find a static relation from
the variable v to w of the model and that we have
measurements for v and w and all inputs of the mod-
el. First we need to decide a parameterized shape or
in other words we need to come up with a function w
= f(p, v) where p is a parameter vector. In many cas-
es we can use polynomials. In general it is nontrivial
to come up with a good function that fits the data
well. However, in this case it is possible to use the
model and the measured data to back calculate w for
each case. Dymola supports the setup of such a cal-
culation is in a straightforward way very similar to
the setup of the transient calibration. Having w
makes the relation much more explicit and easier to
visualize and inspect. Just by plotting w against v,
we can get a good estimate of the chances to get a
good result.

If the plot shows that the points seem to be lying on
a line, the chance is much better than when the plot
looks like a random scatter. Such a plot may also
give us good insight in what kind of functional rela-
tion we should use. Classic pen and paper approach-
es as plotting in lin-log or log-log diagrams can be
used to find out if exponential or potential relations
could be useful.

Keywords: parameter estimation, static models, dy-
namic models, Modelica

1 Introduction

Physical modeling is an important tool for investigat-
ing models without the need for building them and
performing experiments that may be expensive, dan-
gerous, or delay projects.

Ideally these models should be built from first prin-
ciples and easily measurable quantities. This is, how-
ever, not always the case and thus one needs to cali-
brate physical models to the reality.

In many cases the unknown relationship is seen as a
static correlation, and the correlation is parameter-
ized in certain ways (e.g. polynomial functions be-
tween dimensionless variables).

The goal is to determine these correlations from stat-
ic measurements. The component model can then be
used in the complete model, and the complete model
can be validated against transient measurements.

2 Mathematical description

The actual parameter estimation uses the same nu-
meric method as the transient calibration (a non-lin-
ear least squares method) and fits into this frame-
work to allow analysis of the setup, e.g. to find non-
identifiable subsets [2].

The mathematical background of parameter estima-
tion (also known as data fitting [3]) is that we have a

number of measured inputs, V;, outputs W;, and a
static relation between them

w, = f(p,v,)

The goal is find the best set of parameters, £ , and to
minimize the residuals
r(p)= f(p.v)-w,
To combine all of the residuals into one scalar to be

minimized we will use the least squares formulation
and minimize

Y #(p)

i
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Equivalently we can minimize the square root of
this, i.e. the 2-norm of the residual.

There are two reasons for preferring to minimize the
least squares problem compared to other formula-
tions: numeric efficiency and statistical interpreta-
tion.
2.1  Statistical interpretation

The statistical interpretation of is that the parameter
values minimizing the least squares residuals are the
maximum likelihood parameter values, assuming
that all errors are measurement errors in the outputs,
and that these errors are normally distributed with
zero mean and identical variance. Furthermore the
function must be sufficiently linear [3].

These assumptions are in general not satisfied, but
they can still provide some guidelines, e.g. that we
should aim for outputs with “errors” of similar size.

Allowing measurement errors in both inputs and out-
puts lead to a more complex total least squares prob-
lem, which explains why it is not used even though it
could be argued that it is more realistic in many sce-
narios.

An implicit assumption is that the correlation func-
tion is of the correct type. We will in the back-calcu-
lation chapter discuss how we verify that the func-
tion is of the correct type, alternatively select an ap-
propriate type of function.

There are also well-known issues with having too
many parameters, or extrapolating a correlation func-
tion far from the calibrated region. There are several
statistical methods for avoid over-parameterization,
including Akaike’s criterion and cross validation
(and other computer intensive statistical methods).
2.2 Model errors

The errors above (measurement errors and incorrect
correlation) are in one sense easy since they will
(even for the optimal parameters) generate non-zero
residuals, and based on this one could estimate a
confidence interval for the parameters.

Modeling errors are a bit different, since we can in
some cases get zero residual for a combination of in-
correct model and incorrect parameters. To avoid the
problem the model should be validated to ensure that
it is sufficiently accurate — both for the measurement
and for the actual behavior we want to study. These
are normally two different validations for static cali-
brations, since we want to use a statically determined
correlation function also for predicting transient be-
havior.

Related to model errors are unidentifiable sub-sets of
parameters. These are handled by fixing some pa-
rameters so that remaining ones can be accurately
identified. (The fixed parameters can be given rea-
sonable values, ignored by setting them to zero or in-
finity, or automatically handled by static calibration).
Also in this case it is important to ensure that the ac-
tual behavior does not depend on the fixed parame-
ters. By applying the tools for finding unidentifiable
sub-sets and parameters sweeps [3] to the actual be-
havior one can automatically verify this, or otherwise
complement the static calibration with transient cali-
bration.
2.3 Numeric solution procedure
The numeric efficiency for the solution of the non-
linear least squares problem is due to the Gauss-
Newton method that linearizes the residual and as
one step minimizes the linear least squares problem:
2

(p- po)

P=Po

a7
Y | n(py) + a—’"
P

i

This is a standard problem that can be solved using
QR-factorization, and by iterating this linear proce-
dure we get the solution for the original non-linear
problem. The solution is given by the normal equa-
tions:

y b

fip
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In practice some parameter sub-sets might be non-
identifiable, or the ignored non-linear part could
cause the new parameter estimate to have larger
residual. We guard against both of these problems by
modifying the algorithm to use the Levenberg-Mar-
quardt method [3]:

ar a7
vl + —+ —+
2; Ip
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i

P=Po P=Po P=Po

We use an automatic control of the iteration parame-
ter, vV (which is non-negative). This problem can
also be solved using the QR-factorization, and the
modification gives robustness at the cost of slower
convergence for problems where some parameters
cannot be identified.
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3 Modifying models

The previous work with parameter estimation from
dynamic measurements parameter in [2] could be
used. However, it is not an ideal solution since:

e Special test setup for the component model
must be built, which increases the likelihood
of errors.

e Either each measurement point requires one
simulation (which will be slow), or a faked
time is introduced leading to interpolation of
the measurements (which causes slow-
downs, and the model might be invalid in
those regions).

The static calibration framework handles both of
these, the first by modifying the model and the sec-
ond by running all parameter cases in a special way.
These two functionalities can be used independently
of each other, and thus static calibration can be per-
formed without modifying the model (useful if a test
bench already has been set up), or modify models for
other experiments.

The static calibration function handles both the case
when the model is completely state-less, such as
valve characteristics, and more complex steady-state
cases for which either dynamics are ignored or each
case is simulated until steady-state is obtained. For
completely static models special code is generated,
combining the model equations and the sweep over
calibration cases, which gives a very efficient solu-
tion method. The more complex steady-state cases
require individual simulations of each point, which
gives longer solution times.

A future work is instead of selecting the component
model directly select the component, which would
allow the calibration function to directly update the
parameters for the component. A related possibility
is to automatically construct a new class extending
from the base and with the updated parameters as
modifiers. This allows estimation of parameters in
read-only models.

3.1 Simple Example

To give a concrete example we consider a circuit
with an electric resistive component. Instead of
building test-rig with a source we just select to cali-
brate the component model Resistor. Dymola does
then not default connect the two top-level pins (re-
moving two equations), but instead asks us to trans-
form two variables into inputs as shown in Figure 1
(to ensure that we have the same number of equa-
tions and variable):
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Figure 1. Selecting additional inputs, to be connected
to measured data.

We can then set “n.v” to zero (arbitrary grounding)
and can then use measurements for “i” and “v” to
calibrate the resistance.

This corresponds to constructing a test-circuit with
inputs for “i” and “n.v”” and without the default con-
nect, i.e. connecting a current source to the resistor

and grounding the circuit.

The remainder of the setup is similar to the setup in
[2], and the main differences are that one measure-
ment file contains all of the cases and the possibility
to provide fixed values for variables such as “n.v”, as
shown in Figure 2 below.
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Figure 2. Assigning a fixed input signal to one poten-
tial, corresponding to grounding the resistor.

3.2  Back-calculation

Since the goal is to determine the correlations one
can start without any correlation. By running the
static calibration cases one gets data so that one can
plot the correlations and either try to find correla-
tions or simply verify that the selected correlation is
appropriate.

For the resistor this would mean having a generic re-
sistive load without any correlation, in that case one
has to give three additional inputs: “v”, and
“n.v”, and can then plot voltage against current to
find that Ohm’s law is valid, or that the resistive load

is non-linear.

133+
1
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Figure 3. Simple validation of Ohm’s law (errors likely
due to inaccurate measurements).

The resistance can be calibrated by using the Resis-
tor class and selecting “R” as the tuner parameter
(similarly as in [2] and it is the only possible choice).

4 Application example
4.1 Calibrating steady-state compressor char-
acteristics

One of the most important characteristics in a vapor
compression cycle for refrigeration or air condition-
ing is the static characteristic of the compressor. This
map usually describes flow rate directly as a function
of compressor speed n and pressure ratio (7T=p4/p;),
or indirectly through efficiency functions, e.g. volu-
metric efficiency A and isentropic efficiency n;, [4,
5]. As an example volumetric efficiency for an Ob-
rist swash-plate compressor using CO, as refrigerant
has been fitted to the functional form used in the Air-
Conditioning library, the data is taken from [5] and
is also available in the library. The function used for
calibration is given below, for more details see 7.

/ 2 R
Mo = (TCO — ijipi) (I _::2) (agn‘r—l—nm\‘—kao)

where p,; and p, are discharge and suction pressure,
respectively. The relative displacement, x, was not
part of the data set, so it is held fixed at x=1. The cal-
ibrated parameters are the maximum pressure ratio, T
0, and the coefficients, a;, of a first or second order
polynomial. The graph below shows the result for A
over the 30 data points.
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Figure 4. Calibrated volumetric efficiency over 30 data
points.

Using compressor speed in rpm as independent vari-
able gives a better view of the calibration result. The
three lines in Figure 5 correspond to three different
operating points at pressure ratio, =2, 2.7 and 4, re-
spectively.
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Figure 5. Volumetric efficiency as a function of rpm,
showing three data sets at different pressure ratios.

5 Comparisons

Model calibration was previously available in Dymo-
la using external optimization functions, e.g. the Ba-
sicOptimizer package using a simplex-method. This
was often quite cumbersome to set up since a special
model for calibration needed to be created that inte-
grated:

e Model equations and parameter tuners
e Measurement data and residual function

e Evaluation of value function to be optimized
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The case in section 4.1 is part of the example pack-
age ACWorkbench.CompressorOptimization includ-
ed in the commercial AirConditioning library. Using
the new Dymola calibration GUI most similar exam-
ples are set up without creating a task-specific mod-
el. For the volumetric efficiency function, a simple
wrapper model needs to be created since direct opti-
mization of functions is not yet supported in the
GUI. The basic least squares optimizer has replace-
able function and additional data and could be used
without any model wrapper, but due to current re-
strictions (in Modelica and in Dymola) it uses pack-
ages with several replaceable classes that would no
be convenient to directly support in the GUI.

The Modelica code for the wrapper is provided be-

low.

model CalibrateVolumetricEfficiency
"wrapper model for calibrating lambda"

import CompEff = ThermoFluidPro.
SubComponents.CompressorEfficiencies

input SIunits.Frequency n "speed in Hz";

input SIunits.Pressure pi "pressure ra-

tio";
output Real lambda "vol. efficiency";
parameter CompEff.EfficiencyPars

ce "compressor coefficients";

equation
lambda =
CompEff.EffectiveVolumetricEfficiency (
n, pi*le5, le5, 1, ce);

end CalibrateVolumetricEfficiency;

The wrapper contains definitions of the inputs and
output. They are connected to measurements via the
GUI, where the data values can be linearly scaled. In
the case of multiple outputs the residuals can also be
weighted. The tuners are found in the record class
EfficiencyPars together with other coefficients that
are not used. Which parameters that are active during
calibration, as well as starting and min/max values
are also entered in the GUL

Also the execution of the calibration is significantly
faster using the new calibration GUI. The example
here is simple and calibrating the two parameters of
a first order polynomial takes a few seconds. The
calibration result in Figure 4 took less than five sec-
onds and 15 model evaluations to generate. This can
be compared with 78 evaluations in approximately
20 seconds using the BasicOptimizer package.

6 Complex steady-state cases

The calibration method has also been tested on a
case fitting values to unknown coefficients of the

heat transfer and pressure drop correlations on the air
side of an automotive condenser. This is a common
task in the industry, and often requested by AirCon-
ditioning users. In the example two standard correla-
tions from the AirConditioning library are used, both
power laws with unknown multiplier and exponent:

Nu = C; x Re“2x Pr’?

Ap =(C; X (rh/rho)c4
The first expression gives Nusselt number, Nu,
which is used in the condenser model to calculate
heat transfer. The second expression gives the pres-
sure drop as a function of mass flow. Reynolds num-
ber, Re, depends on air flow and geometry. Prandtl

number, Pr, depends on the medium properties. The
unknown coefficients are C;, C,, C; and C..

The case was set up in a standard AirConditioning
test bench model, supplying fixed outlet pressure and
refrigerant subcooling as well as inflow boundary
conditions on both the air and refrigerant sides of the
heat exchanger. The condenser was set up with the
correct geometry and the correlations corresponding
to the ones showed above selected for the air side
heat transfer and pressure drop. This completes the
model setup, with a model corresponding to the same
test bench that would be used for simulated valida-
tion or manual tuning of the condenser to measured
data. The only difference is that a variable for air in-
let velocity needs to be included, to connect to the
corresponding measurement. Also the parameters to
be calibrated were propagated to the top-level for
convenience.

IS StaticDesign. calibrateSteadyState

" calibiateSteadyState ® Tuner parameters

and start valies to be calibrated

active value min mas

2 0o 100
03 (] 1
50 1 200
15 o1 E|

Y
<lgf< <

Figure 6. Dymola dialog for calibration setup of the
heat exchanger case.

Using the new Dymola calibration GUI, the case was
easily set up, as shown in Figure 6. On different tabs
first the model is selected, then the parameters to be
tuned, third the data file is supplied, and last columns
with measured data connected to the corresponding
inputs and variables in the model. Once setup is
completed the model is translated and simulated
multiple times. For a steady-state case like this each
iteration requires #data points X #parameters x 2
simulations. Since the test bench model in question
only required 1 second simulation to solve, the func-
tion converges in a few minutes. During the function
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iterations, a plot shows the residual between the cal-
culated and measured air side power and pressure
drop respectively. The final residuals for power are
displayed in Figure 7. The final residuals are below
100 W in each point, corresponding to less than 1%
relative error. The shape of the residual suggests that
the final measured value, at the highest air flow ve-
locity, is either an outlier or that the chosen correla-
tion is not suited for high flow speeds. The final
residuals in pressure drop are around 1 Pa, and are

not shown.
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Figure 7. Power[W] residual for the last five iterations.

7 Conclusions

The above shows that Dymola is able to go from
static measurements, via plots of correlations, to cali-
bration of parameterized static correlations.

This is done in user-friendly way, without having to
build additional models, and furthermore this is use-
ful for real problems, and works more efficiently
than the previous optimizer.

Furthermore the static calibration and the complex
steady state cases both use the same underlying opti-
mizer as in [2] — demonstrating its usefulness.
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