

The Modelica Association Modelica 2006, September 4th – 5th

Robust Initialization of
Differential Algebraic Equations

Bernhard Bachmann, Peter Aronsson*, Peter Fritzson+

Dept. Mathematics and Engineering, University of Applied Sciences,
D-33609 Bielefeld, Germany

bernhard.bachmann@fh-bielefeld.de

* MathCore Engineering AB, Teknikringen 1B, SE-583 30 Linköping, Sweden
peter.aronsson@mathcore.com

+ PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, SE-581 83 Linköping, Sweden

petfr@ida.liu.se

Abstract
This paper describes a new solution method applied to
the problem initializing DAEs using the Modelica lan-
guage. Modelica is primarily an object-oriented equa-
tion-based modeling language that allows specification
of mathematical models of complex natural or man-
made systems. Major features of Modelica are the mul-
tidomain modeling capability and the reusability of
model components corresponding to physical objects,
which allow to build and simulate highly complex sys-
tems. However, initializing such models has been quite
cumbersome, since initial equations have to be pro-
vided at the system level, where the user needs to know
details on the underlying transformation and index-
reduction algorithms, that in general are applied to
simulate a Modelica model.

The new initialization concept allows to define the
initial equations locally in each relevant component
where the corresponding states appear. This approach
also works for arbitrary “well-posed” higher-index
problems and makes the initialization of complex sys-
tems more user friendly. A prototype implementation
in the OpenModelica compiler is presented, and test
results of non-trivial application examples are reported.

1 Introduction
So far, using model initialization in Modelica has only
been possible for higher-index problems if the user
formulates the initial equations globally. This was also
the case, e.g. when using the OpenModelica Open-
Modelica compiler which is an open source implemen-
tation developed at PELAB, Linköping University. In
order to do such a global formulation successfully, the
user needs to know about index reduction, at least the

number of freedom left after applying the dummy deriva-
tive method is necessary. Therefore, only advanced users
have been able to use this feature in the Modelica language,
when higher index problems occur (which is very com-
mon). In order to provide a more complete simulation envi-
ronment, we have started to add robust initialization tech-
niques to the OpenModelica compiler.

2 Flattening of a Modelica Model to
a Hybrid DAE

A Modelica model is typically translated to a basic mathe-
matical representation in terms of a flat system of differen-
tial and algebraic equations (DAEs) before being able to
simulate the model. This translation process elaborates on
the internal model representation by performing analysis
and type checking, inheritance and expansion of base
classes, modifications and redeclarations, conversion of
connect-equations to basic equations, etc. The result of this
analysis and translation process is a flat set of equations,
including conditional equations, as well as constants, vari-
ables, and function definitions. By the term flat is meant
that the object-oriented structure has been broken down to a
flat representation where no trace of the object hierarchy
remains apart from dot notation (e.g.
Class.Subclass.variable) within names.

3 Mathematical Formulation of Hy-
brid DAEs

3.1 Summary of notation
Below we summarize the notation used in the equations
that follow, with time dependencies stated explicitly for all
time-dependent variables by the arguments t or te:

607

Robust Initialization of Differential Algebraic Equations

The Modelica Association Modelica 2006, September 4th – 5th

• ,...},,{ 21 ppp = a vector containing the Modelica

variables declared as parameter or constant
i.e., variables without any time dependency.

• ,t the Modelica variable time, the independent
variable of type Real implicitly occurring in all
Modelica models.

•)(tx , the vector of state variables of the model,
i.e., variables of type Real that also appear differ-
entiated, meaning that der() is applied to them
somewhere in the model.

•)(tx , the differentiated vector of state variables of
the model.

•)(tu , a vector of input variables, i.e., not dependent
on other variables, of type Real. These also be-
long to the set of algebraic variables since they do
not appear differentiated.

•)(ty , a vector of Modelica variables of type Real
which do not fall into any other category. Output
variables are included among these, which together
with)(tu are algebraic variables since they do not
appear differentiated.

•)(etq , a vector of discrete-time Modelica variables
of type discrete Real, Boolean, Integer or
String. These variables change their value only at
event instants, i.e., at points te in time.

•)(epre tq , the values of q immediately before the
current event occurred, i.e., at time te.

•)(etc , a vector containing all Boolean condition
expressions evaluated at the most recent event at
time te. This includes conditions from all if-
equations/statements and if-expressions from the
original model as well as those generated during
the conversion of when-equations and when-
statements.

•))),(),(},{,,,,,1(())((ptqtqtyuxxcatreltvrel epree=
, a Boolean vector valued function containing the
relevant elementary relational expressions from the
model, excluding relations enclosed by no-

Event(). The argument v(t) = {v1,v2,...} is a vec-
tor containing all elements in the vectors

ptqtqtyuxx epree),(),(},{,,,, . This can be ex-
pressed using the Modelica concatenation function
cat applied to these vectors; rel(v(t)) = {v1 > v2,
v3 >= 0, v4<5, v6<=v7, v12=133} is one possible ex-
ample.

• (...)f , the function that defines the differential
equations 0(...) =f in (1a) of the system of equa-
tions.

• (...)g , the function that defines the algebraic equa-
tions 0(...) =g in (1b) of the system of equations.

• (...)qf , the function that defines the difference equa-
tions for the discrete variables (...): qfq = , i.e., (2) in
the system of equations.

• (...)ef , the function that defines the event conditions
(...): efc = , i.e., (3) in the system of equations.

• (...)xf , the function that defines the reinitialization
values for the continuous variables (...):)(xe ftx = at
events.

In the context of hybrid DAE:s the state of a system is not
only made up of the values of the set of variables that occur
differentiated in the model. The overall state of a system
may also include values of discrete variables. In this paper
the word state is used in this sense, including the state of
the discrete part of the system.

3.2 Continuous-Time Behavior
Now we want to formulate the continuous part of the hy-
brid DAE system of equations including discrete variables.
This is done by adding a vector q(te) of discrete-time vari-
ables and the corresponding predecessor variable vector
qpre(te) denoted by pre(q) in Modelica. For discrete vari-
ables we use te instead of t to indicate that such variables
may only change value at event time points denoted te, i.e.,
the variables q(te) and qpre(te) behave as constants between
events.

We also make the constant vector p of parameters and
constants explicit in the equations, and make the time t ex-
plicit. The vector c(te) of condition expressions, e.g. from
the conditions of if constructs and when constructs,
evaluated at the most recent event at time te is also included
since such conditions are referenced in conditional equa-
tions. We obtain the following continuous DAE system of
equations that describe the system behavior between
events:

0))(,),(),(,),(),(),((

0))(,),(),(,),(),(),(),((

=

=

eepree

eepree

tcptqtqttytutxg
tcptqtqttytutxtxf

)(
)(

b
a

 (1)

3.3 Discrete-Time Behavior
Discrete time behavior is closely related to the notion of an
event. Events can occur asynchronously, and affect the sys-
tem one at time, causing a sequence of state transitions.

An event occurs when any of conditions c(te) (defined
below) of conditional equations changes value from false
to true. We say that an event becomes enabled at the time
te, if and only if, for any sufficiently small value of ε, c(te-
ε) is false and c(te+ε) is true. An enabled event is fired,
i.e., some behavior associated with the event is executed,
often causing a discontinuous state transition.

Firing of an event may cause other conditions to switch
from false to true. In fact, events are fired until a stable

608

B. Bachmann, P. Aronsson, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

situation is reached when all the condition expressions
are false.

However, there are also state changes caused by
equations defining the values of the discrete variables
q(te), which may change value only at events, with
event times denoted te. Such discrete variables obtain
their value at events, e.g. by solving equations in when-
equations or evaluating assignments in when-
statements. The instantaneous equations defining dis-
crete variables in when-equations are restricted to par-
ticularly simple syntactic forms, e.g. var = expr;.
These restrictions are imposed by the Modelica lan-
guage in order to easily determine which discrete vari-
ables are defined by solving the equations in a when-
equation.

Such equations can be directly converted to equa-
tions in assignment form, i.e., assignment statements,
with fixed causality from the right-hand side to the left-
hand side. Regarding algorithmic when-statements that
define discrete variables, such definitions are always
done through assignments. Therefore we can in both
cases express the equations defining discrete variables
as assignments in the vector equation (1a), where the
vector-valued function fq specifies the right-hand side
expressions of those assignments to discrete variables.

() :
((), (), (), (), , (), , ())
e

q e e e e e pre e e

q t
f x t x t u t y t t q t p c t

=
 (2)

The last argument c(te) is made explicit for conven-
ience. It is strictly speaking not necessary since the
expressions in c(te) could have been incorporated di-
rectly into fq. The vector c(te) contains all Boolean
condition expressions evaluated at the most recent
event at time te. It is defined by the following vector
assignment equation with the right-hand side given by
the vector-valued function fe. This function has as ar-
guments the subset of the discrete variables having
Boolean type, i.e.,)(e

B tq and)(e
B
pre tq , the subset

of Boolean parameters or constants, Bp , and a vec-
tor rel(v(t)) evaluated at time te, containing the elemen-
tary relational expressions from the model. The vector
of condition expressions c(te) is defined by the follow-
ing equation in assignment form:

)))((,),(),((:)(e
B

e
B
pree

B
ee tvrelptqtqftc = (3)

The argument v(t) = {v1,v2,...} is a vector containing all
scalar elements of the argument vectors. This can be
expressed using the Modelica concatenation function
cat applied to the vectors, e.g.

)),(),(},{,,,,,1()(ptqtqtyuxxcattv epree= . For ex-
ample, if rel(v(t)) = {v1 > v2, v3 >= 0, v4<5, v6<=v7,
v12=133} where v(t) = {v1, v2, v3, v4, v6, v7, v12}, then it

might be the case that c(t) = {v1 > v2 and v3 >= 0, v10, not
v11, v4<5 or v6<=v7, v12=133}, where v10, v11 are Boolean
variables and v1, v2, v3, v4, v6, v7 might be Real variables,
whereas v12 might be an Integer variable.

))),(),(,),(),(),(),(,1(())((ptqtqttytutxtxreltvrel epreecat= ,
is a Boolean-typed vector-valued function containing the
relevant elementary relational expressions from the model,
excluding relations enclosed by noEvent().

Discontinuous changes of continuous dynamic variables
x(t) can be caused by so-called reinit equations in
Modelica. As in the case of discrete variables, such discon-
tinuous changes can only occur at events. The effect of a
reinit-equation that is activated at te is an assignment to
the continuous variable at time te of the form:

))(,),(,),(),(),(),((:)(eepreeeeeexe tcptqttytutxtxftx = (4)

For all variables in x(te) that are not affected by an reinit-
equation (...)xf takes the value of x(te), leaving the vari-
able unchanged..

3.4 The Complete Hybrid DAE
The total equation system consisting of the combination of
(1), (2), (3) and (4) is the desired hybrid DAE equation rep-
resentation for Modelica models, consisting of differential,
algebraic, and discrete equations.

This framework describes a system where the state
evolves in two ways: continuously in time by changing the
values of the state vector x(t), and instantaneously during
events triggered when some of the conditions c(te) change
value from false to true. The set of state variables
from which other variables are computed is selected from
the set of differentiated variables x(t), algebraic variables
y(t), and discrete-time variables q(t).

4 Simulation of Models Represented by
Hybrid DAEs

4.1 Well-defined problem description
A Modelica simulation problem in the general case is a
Modelica model that can be reduced to a hybrid DAE in the
form of equations (1), (2), (3) and (4), together with addi-
tional constraints on variables and their derivatives called
initial conditions.

The initial conditions prescribe initial start values of
variables and/or their derivatives at simulation time=0 (e.g.
expressed by the Modelica start attribute value of vari-
ables, with the attribute fixed = true), or default esti-
mates of start values (the start attribute value with
fixed = false).

The simulation problem is well defined provided that
the following conditions hold:

609

Robust Initialization of Differential Algebraic Equations

The Modelica Association Modelica 2006, September 4th – 5th

• The total model system of equations is consistent

and neither underdetermined nor overdetermined.
• The initial conditions are consistent and determine

initial values for all variables.
• The model is specific enough to define a unique

solution from the start simulation time t0 to some
end simulation time t1.

The initial conditions of the simulation problem are
often specified interactively by the user in the simula-
tion tool, e.g. through menus and forms, or alterna-
tively as default start attribute values in the simula-
tion code. More complex initial conditions can be
specified through initial equation sections in
Modelica.

4.2 Simulation Techniques
There are three different kinds of equation systems
resulting from the translation of a Modelica model to a
flat set of equations, from the simplest to the most
complicated and powerful:

• ODEs – Ordinary differential equations for con-
tinuous-time problems.

• DAEs – Differential algebraic equations for con-
tinuous-time problems

• Hybrid DAEs – Hybrid differential algebraic
equations for mixed continuous-discrete prob-
lems.

In the following we present a short overview of meth-
ods to solve these kinds of equation systems. However,
remember that these representations are strongly inter-
related: an ODE is a special case of DAE without alge-
braic dependencies between states, whereas a DAE is a
special case of hybrid DAEs without discrete or condi-
tional equations. We should also point out that in cer-
tain cases a Modelica model results in one of the fol-
lowing two forms of purely algebraic equation systems,
which can be viewed as DAEs without a differential
equation part:

• Linear algebraic equation systems
• Nonlinear algebraic equation systems

However, rather than representing a whole Modelica
model, such algebraic equation systems are usually
subsystems of the total equation system.

4.3 The Notion of DAE Index

The DAE index is an important property of DAE sys-
tems. Consider once more a DAE system on the gen-
eral form (neglecting the hybrid part, parameters and
constants):

0))(),(),(),((=tutytxtxF (5)

We assume that this system is solvable with a continuous
solution, given an appropriate initial solution. There are
several definitions of DAE index in the literature, of which
the following, also called differential index, is informally
defined as follows:

• The index of a DAE system Error! Reference
source not found. is the minimum number of times
certain equations in the DAE must be differentiated
in order to solve)(tx as a function of x(t), y(t), and
u(t), i.e. to transform the problem into ODE explicit
state space form.

The index gives a classification of DAEs with respect to
their numerical properties and can be seen as a measure of
the distance between the DAE and the corresponding ODE

An ODE system on explicit state space form is of index
0 since it is already in the desired form:

))(,()(txtftx = (6)

The following semi-explicit form of DAE system is of in-
dex 1 under certain conditions:

))(),(,(0
))(),(,()(

tytxtg
tytxtftx

=
=

)(
)(

b
a

 (7)

The condition is that the Jacobian of g with respect to y,
)/(yg ∂∂ – usually a matrix – is non-singular and therefore

has a well-defined inverse. This means that in principle y(t)
can be solved as a function of x(t) and substituted into (7a)
to get state-space form. A DAE system in the general form
(5) may have higher index than one. Mechanical models
often lead to index 3 DAE systems. We conclude:

• There is no need for symbolic differentiation of
equations in a DAE system if it is possible to deter-
mine the highest order derivatives as continuous
functions of time and lower derivatives using stable
numerical methods. In this case the index is at most
1.

• The index is zero for such a DAE system if there are
no algebraic variables.

4.4 Mixed Symbolic and Numerical Solution of
higher-index DAEs

A mixed symbolic and numerical approach to solution of
DAEs avoids the problems of numeric differentiation. The
DAE is transformed to a lower index problem by using in-
dex reduction. The standard mixed symbolic and numeric
approach contains the following steps:

610

B. Bachmann, P. Aronsson, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

1. Use Pantelides algorithm to determine how

many times each equation has to be differenti-
ated to reduce the index to one or zero.

2. Perform index reduction of the DAE by ana-
lytic symbolic differentiation of certain equa-
tions and by applying the method of dummy
derivatives.

3. Select the core state variables to be used for
solving the reduced problem. These can either
be selected statically during compilation, or in
some cases selected dynamically during simu-
lation.

4. Use a numeric ODE solver to solve the reduced
problem.

In the following we will discuss the notions of index
and index reduction in some more detail.

4.5 Higher Index Problems are Natural in
Component-Based Models

The index of a DAE system is not a property of the
modeled system but the property of a particular model
representation, and therefore a function of the model-
ing methodology. A natural object-oriented compo-
nent-based methodology with reuse and connections
between physical objects leads to high index in the
general case. The reason is the constraint equations
resulting from setting variables equal across connec-
tions between separate objects.

Since the index is not a property of the modeled
system it is possible to reduce the index by symbolic
manipulations. High index indicates that the model has
algebraic relations between differentiated state vari-
ables implied by algebraic relations between those state
variables. By using knowledge about the particular
modeling domain it is often possible to manually
eliminate a number of differentiated variables, and thus
reduce the index. However, this violates the object-
oriented component-based modeling methodology for
physical modeling that is intended to be supported by
the Modelica language.

We conclude that high index models are natural,
and that automatic index reduction is necessary to sup-
port a general object-oriented component-based model-
ing methodology with a high degree of reuse.

5 Finding Consistent Initial Val-
ues at Start or Restart

As we have stated briefly above, at the start of the
simulation, or at restart after handling an event, it is
required to find a consistent set of initial values or re-
start values of the variables of the hybrid DAE equa-

tion system before starting continuous DAE solution proc-
ess.

At the start of the simulation these conditions are given
by the initial conditions of the problems (including start
attribute equations, equations in initial equation sec-
tions, etc., together with the system of equations defined by
(1), (2), and (3). The user specifies the initial time of the
simulation, t0, and initial values or guesses of initial values
of some of the continuous variables, derivatives, and dis-
crete-time variables so that the algebraic part of the equa-
tion system can be solved at the initial time t=t0 for all the
remaining unknown initial values. In some application ex-
amples it is even necessary to calculate initial values of
parameters (fixed = false), that afterwards be kept
constant during simulation.

At restart after an event, the conditions are given by the
new values of variables that have changed at the event, to-
gether with the current values of the remaining variables,
and the system of equations (5), (6), and (7). The goal is the
same as in the initial case, to solve for the new values of
the remaining variables. In the initial case, however, the
causality can be different since initial equations are in-
cluded to calculate start values for the state variables,
whereas at restart the state variables are always known.

6 Robust Initialization of Higher-
Index DAEs

Initializing DAEs using the Modelica language has been
quite cumbersome in the past, since initial equations have
to be provided on the system level, where the user needs to
know details on the underlying transformation and index-
reduction algorithms, that are in general applied to simulate
a Modelica model. Especially, when higher-index DAEs
are involved the number of locally defined state variables
no longer coincide with the number of state variables of the
overall system. Although, one can influence the index-
reduction algorithm by setting some attribute values
(stateSelect=always,prefer,…), cases can be con-
structed which don’t allow the straight forward prediction
of the number of state variables left after transformation.

In order to make the initialization procedure more con-
venient a new concept is necessary, which allows to define
the initial equations locally in each relevant component
where the corresponding states appear, even if these states
are eliminated during index-reduction. Naturally, this leads
to an overdetermined system of equations, which has to be
solved during the initialization process. In this context, we
call a higher-index problem “well-posed” if enough equa-
tions of the system are redundant so that initial values can
be determined which fulfill the whole set of initial equa-
tions. The main idea of the new approach is to reformulate

611

Robust Initialization of Differential Algebraic Equations

The Modelica Association Modelica 2006, September 4th – 5th

the problem of finding roots of the set of non-linear
equations to an equivalent optimization problem.

Considering the general mathematical description
of the initialization problem:

1 1

1

(, ...,) 0

(,...,) 0

n

m n

f z z

f z z

=

=

 (8)

Cases where m n≥ means that more equations (m)
than variables (n) are given. Every solution to (8)
minimizes the problem:

() 2
1 1

1
,..., (,...,) min

m

n i n
i

F z z f z z
=

= →∑ (9)

On the other hand, every global minimum of (9) is a
solution to (8). In order to solve (9) a number of differ-
ent algorithms have been developed during the past.
The algorithm can be categorized depending on the
order of derivatives needed during the solution process.
In the OpenModelica environment the Simplex-method
of Nelder and Mead as well as the Brent’s method are
currently implemented, only working with the minimi-
zation function F. The OpenModelica prototype al-
ready shows reliable results for the evaluated exam-
ples.

Further improvements can be achieved as soon as
the Jacobian of F with regards to the unknown is avail-
able. In that case, more advanced algorithms like the
method of Fletcher-Reeves, Quasi-Newton, and/or
Levenberg-Marquardt methods can be applied which
would provide a speed-up in convergence. We regard
this as a quality of implementation, since the described
approach is working in principle already.

7 Test and Evaluation with Open-
Modelica

Consider the following electrical 3-phase power sys-
tem, where two generating units VS1 and VS2 are con-
nected via a transmission line modeled by components
LR1 and LR2.

Figure 1. An electrical power system where two generating units
vs1 and vs2 are connected via a transmission line.

The connectors are written in dq0-coordinates implement-
ing the potential variable u_dq0 and the flow variable
i_dq0. These quantities are constant in case of a nondis-
tributed steady state, which is generally assumed during the
initialization process. Introducing the Park-Transformation
P the 3-phase rotating system (voltages u_abc and currents
i_abc) can be calculated from the dq0-representation and
vice versa.

The transmission line (LR1 and LR2) is modeled by a
purely inductive and resistive component, based on the
Modelica Electrical Library. Since LR1 and LR2 are con-
nected in series, giving a higher index system, index reduc-
tion has to be applied for simulation purposes.

Figure 2. LR2 component with dq0 connectors.

The voltage source is described similarly using the Mode-
lica Standard Library combined with the dq0-connectors.

612

B. Bachmann, P. Aronsson, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

Figure 3. Voltage source.

In order to initialize the model correctly to steady state
the following initial equations have been added to the
local components LR1 and LR2.
model LR
 ...
equation
 ...
initial equation
 der(dq0_1.i_dq0)={0,0,0};
end LR;

Due to the higher-index of the overall system, index-
reduction is applied. The system finally is determined
by 3 state variables LR1.I1.i, LR1.I2.i, LR1.I3.i.
The corresponding initial equation system has 3 equa-
tions more than number of unknowns, but these equa-
tions are redundant and could be eliminated. Due to the
involvement of the Park-transformation, redundancy is
not easy to detect. However, applying the concept de-
scribed above correct initialization of the system is
performed.

8 Implementation Status
An experimental prototype version of this method has
been implemented in a special version of the Open-
Modelica compiler (not yet in the ordinary version),
and tried on several small examples. We have worked
for some time to automatically handle the example de-
scribed in this paper have been delayed by a bug in the
OpenModelica index reduction. The example has been

verified by partly manual efforts. However, we expect to
soon fix this small remaining problem in the OpenModelica
compiler.

9 Conclusions and Future work
In this paper we have presented an overview of our imple-
mentation of initializing Modelica models in the Open-
Modelica compiler. A new concept has been developed to
describe the initial equations locally in the relevant compo-
nent where the corresponding states appear, that also works
for arbitrary well-posed higher-index problems. Due to the
necessary index reduction some of the states get changed to
dummy states that means that they will be algebraic during
the simulation of the model. The corresponding initial
equations are therefore redundant, but can be handled cor-
rectly by the new initialization process, if they are consis-
tent. If not, an error/warning is issued to the user.

The implementation is however not yet complete. The
current prototype just implements the concept, but the effi-
ciency should be increased in the near future. We wish to
implement calculation of the Jacobian matrix of the equa-
tion system with regards to the state variables. This gives
the possibility to implement more advanced and robust
numerical algorithms in order to solve the corresponding
optimization (minimization) problem during initialization
of the DAE.

10 Acknowledgements
This work was supported by the University of Applied Sci-
ences in Bielefeld, by MathCore Engineering AB, by the
Swedish Research Council (VR), and by SSF in the VISI-
MOD project.

References
[1] Peter Fritzson, et al. The Open Source Modelica Pro-

ject. In Proceedings of The 2nd International
Modelica Conference, 18-19 March, 2002. Munich,
Germany See also:
http://www.ida.liu.se/projects/OpenModelica.

[2] Peter Fritzson. Principles of Object-Oriented Model-
ing and Simulation with Modelica 2.1, 940 pp., ISBN
0-471-471631, Wiley-IEEE Press, 2004.

[3] The Modelica Association. The Modelica Language
Specification Version 2.2, March 2005.
http://www.modelica.org.

[4] The OpenModelica Users Guide, version 0.6, June
2005. www.ida.liu.se/projects/OpenModelica

613

Robust Initialization of Differential Algebraic Equations

The Modelica Association Modelica 2006, September 4th – 5th

[5] The OpenModelica System Documentation, ver-

sion 0.6, June 2006.
www.ida.liu.se/projects/OpenModelica

[6] K. E. Brenan, S. L. Campbell, and L. R. Petzold,
Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations, Elsevier, New
York, 1989.

[7] B. Bachmann et. al. (Modelica Association):
Modelica - A Unified Object-Oriented Language
for Physical Systems Modeling - Language Speci-
fication. 2002.

[8] P. Fritzson, P. Aronsson, P. Bunus, V. Engelson,
L. Saldamli, H. Johansson, A. Karström: The
Open Source Modelica Project. In: 2nd Modelica
Conference 2002, Oberpfaffenhofen, 2002

[9] S.-E. Mattson, H. Olson, H. Elmqvist: Dynamic
Selection of States in Dymola. In: 1st Modelica
Workshop 2000, Lund, Sweden, 2000

[10] M. Otter: Objektorientierte Modellierung Physi-
kalischer Systeme (Teil 4) – Transformationsal-
gorithmen. In: at Automatisierungstechnik,
Oldenbourg Verlag München, 1999

[11] M. Otter, B. Bachmann: Objektorientierte Model-
lierung Physikalischer Systeme (Teil 5,6) – Sin-
guläre Systeme. In: at Automatisierungstechnik,
Oldenbourg Verlag München, 1999

[12] R. Fletcher: Practical Methods of Optimization
John Wiley & Sons, 1995

[13] J. Stoer, R. Burlisch: Einführung in die nu-
merische Mathematik. Springer Verlag, 1994

[14] S.E. Mattsson, G. Söderlind: Index reduction in
differential-algebraic equations using dummy de-
rivatives. SIAM Journal of Scientific and Statisti-
cal Computing, Vol. 14, 1993.

[15] K.E. Brenan., S.L. Campbell, L.R. Petzold: Nu-
merical Solution of Initial Value Problems in Dif-
ferential Algebraic Equations. North-Holland,
Amsterdam, 1989

[16] C.C. Pantelides: The Consistent Initialization of
Differential-Algebraic Systems, SIAM Journal of
Scientific and Statistical Computing, 1988.

[17] L.R. Petzold: A description of DASSL: A differ-
ential / algebraic system solver. Sandia National
Laboratories, Albuquerque, 1982

[18] H. Elmqvist: A Structured Model Language for
Large Continuous Systems, PhD dissertation, De-
partment of Automatic Control, Lund Institute of
Technology, Lund, Schweden, 1978

[19] R.E. Tarjan: Depth First Search and Linear Graph
Algorithms. SIAM Journal of Comp., Nr. 1, 1972.

614

B. Bachmann, P. Aronsson, P. Fritzson

