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Abstract

The investigation of large technical systems by simu-
lating long time periods requires very effective
methods. If only sinusoidal quantities occur in the
electrical domain, phasor analysis can be used to de-
scribe the steady-state behaviour of this part of the
physical system. In this paper, modelling of AC cir-
cuits and electromechanical drives with electrical AC
subsystems is presented using the well-known phasor
method within Modelica. To this end, some funda-
mentals concerning phasor description are repeated
before a possible implementation of AC circuits with-
in Modelica is proposed. This implementation uses a
new Modelica-library which is still under construc-
tion. The main content of this library is introduced.
Furthermore, some statements are given concerning
the library’s usage when coupling with other domains
or with transient submodels, or when switching be-
tween transient and phasor analysis, respectively.
Finally, three examples are presented.

Keywords: sinusoidal quantity, steady-state analysis,
phasor domain models, model coupling, variable
model structure

1 Introduction

Many linear electrical circuits use alternating current
(AC circuits). Most of them operate with a nominal
frequency and nearly ideal sinusoidal electrical quan-
tities. Distortions occuring due to circuits’
nonlinearities can often be neglected. This way, we
can define so called idealized linear AC circuits. They
shall be characterized by ideal sinusoidal quantities
and one single (nominal) frequency.

Three operating modes can be distinguished in ideal-
ized linear AC circuits: the steady-state mode, the
dynamic mode, and the so-called quasi-stationary
mode. The first mode is characterized by constant am-
plitudes and phases of all sinusoidal quantities. The

system yields the sinusoidal steady-state response.
During the second mode, ,,fast“ dynamic changes of
sinusoidal quantities occur. ,,Fast™ means that the ap-
pearing dynamic processes shall have a low dominant
time constant compared to the nominal frequency.
Usually, it is a good choise if this time constant is less
than 107 (T = 1/f, f — nominal frequency). In this
case, the full transient (or complete) response of a sys-
tem has to be considered (using e.g. the electrical
Modelica standard library [14] or Haumer’s libraries
[6]). Such ,fast“ dynamic processes appear with
switching operations or (stepwise or ,,fast continu-
ous) changes of parameters. Because consisting only
of decreasing shares in most cases, they fade away
with advancing time and can be neglected after a finite
time period. The third mode — the so-called quasi-sta-
tionary mode — shall be understood as a sequence of
steady states on the following condition: parameters
(which would be constant at steady-state analysis)
may vary extraordinary slowly compared to the nom-
inal frequency. It is signalized by ,,slow* alterations of
amplitudes and phases of the sinusoidal quantities.
Usually, it is a good choise if the dynamic processes

have a dominant time constant higher than 107.

All three operating modes can be investigated by im-
plementing  behavioural models (differential-
algebraic equations) within appropriate numerical
simulation systems. Because the instantaneous values
of the sinusoidal quantities are changing perpetually,
the performance of dynamic simulations depends on
the nominal frequency and, hence, is limited. Espe-
cially, the study of such systems for a long time period
(hours, days, years) is hardly possible.

In this paper, a very efficient method for modelling
AC circuits and its implementation within Modelica is
presented. This method can naturally be used for
steady-state analysis of such systems. The method’s
principal idea is the substitution of the sinusoidal
(time-depending) physical quantities in the transient
model by constant complex quantities — so-called
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phasors — in the steady-state model. Hence, the sys-
tem’s behaviour is not described by differential but by
algebraic equations. The models are called phasor-do-
main models. This method of steady-state analysis
was introduced by Steinmetz in the late 19t century
([10], [11]). Nowadays it is well-known and can be
found in many elementary textbooks (e.g. [1], [3], [4],
[5], [7], [8], [9]). Wiesmann also uses such an ap-
proach in parts of his power-systems library for
Modelica ([12]).

Sometimes it is necessary to study physical systems
containing both AC circuits and subsystems from oth-
er domains for long time periods. Then the quasi-
stationary operating mode of AC circuits is of special
interest. Considering this mode, a combination of
phasor-domain and transient models is possible.

2 Phasor description of AC circuits

2.1 Fundamentals

A sinusoidal signal of the form
x(t) = xsin(wt+ @)

Q)

(x — amplitude, ® — angular frequency, ¢ — phase)
can be understood as a well-defined part of a time-de-
pendent complex quantity

x(1) =

= x[cos(wt+ @)+ jsin(wt+ ¢)] .

)}e/'(mtﬂp)

2

In the complex plane, signal x(#) from (2) describes a
rotating vector having a constant length x and form-
ing an angle of (®f+ @) with the real axis at time
instant ¢ (see Fig. 1). The original signal x(#) can then

be gained at any time instant by projecting x(#) to the
imaginary axis according to

x(¢) = Im[x(£)] = Im[x/“" "]

= xsin(ot+ @) .

3

If the angular frequency ® is constant then the angu-
lar velocity of a rotating vector is also constant and,
therefore, is not of special interest. The complex quan-

tity x(¢) and, hence, the original signal x(¢) are
adequate determined by two values: amplitude x and
phase . Using the rms value X = x/(4/2) of the

signal instead of its amplitude, x(#) can be represent-
ed by the following phasor

X = xJ°. 4)

This phasor has the constant length X and forms a
constant angle ¢ with the real axis (see Fig. 2).

Im

Re

Figure 1: Rotating vector in complex plane

Im

I

7\

x(t= 0)/\/3

Figure 2: Phasor in complex plane
Please note, that

£ (Im[x¢]} = Im[joxe"" 5)

which means that a derivation of x(#) in time domain

has to be replaced by multiplication with j® in phasor
domain.

2.2 Ohm’s Law in generalized form

Ohm’s Law is well-known in DC analysis. Using
phasor description, this law can be written in an anal-
ogous form for AC analysis. Ohm’s Law reads in its
generalized (or complex) form

V=11, (6)

where V and [ are the voltage and current phasors, re-

spectively, and Z denotes the impedance or ,,complex
resistance. It holds for linear electric components
like resistors, inductors, and capacitors. Consideration
of the relations between current and voltage at each
type of component yields the corresponding imped-
ances. Assuming a sinusoidal current

i(t) = ;sin((ot +¢,) and a sinusoidal voltage
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v(t) = vsin(w?+ ¢,) and replacing them by corre-

sponding phasors V' and [, the impedances of each

type of component can finally be represented with (5)
as:

Zp = R, )
Z, = joL, ®)
1 1 ©)

%= joc = Toc
(indices R, L, and C stand for resistor, inductor, and
capacitor, respectively).

In AC circuits, inductors coupled by magnetic fields
often occur. The behaviour of such a coupling can eas-
ily be included into the phasor description. Let M
denote the mutual inductance between two coils. Then
the EMF in coil 1 caused by a current through coil 2
reads

di, (1)
dt

(the upper sign holds if the coils are oriented like-
wise). This yields the following voltage drop

v (1) = iMdifZEt) .

With (5), the relations between the current phasor in
one branch and the voltage phasor in the other branch
read finally

e\(1) = M (10)

(11)

vV, = oM I, ,
(12)
V, = HoMI, .
2.3 Kirchhoff’s Laws

According to Kirchhoft’s Current Law, the sum of the
instantaneous values of all currents in a node must
vanish at each point in time

zkik(t) =0,

where k represents each branch being incident with
the considered node. In case of sinusoidal quantities,

(13)

each current i (7) = ;ksin(cotJr(pik) can be deter-

mined by projecting a rotating vector
N ilott ,
i = l.ke.l(w Pu) _ ﬁlkelm

to the imaginary axis. That’s why it follows from (13)

S Im[J21,] = 0 (15)
k

(14)

for each time instant # which means finally

> Imi/,] = Im[zk[kJ - 0.

Displacing the time axis by n/2, the currents read

(16)

i(t) = ;kcos(cot+(pik). Those can be represented

by projecting the rotating vector i, to the real axis.
Therefore, it holds

Re [Z,}k} = 0.

Equations (16) and (17) yield finally the generalized
form of Kirchhoff’s Current Law

Re[zk[k} + jlm[zklk} =X L= 0. ()

Kirchhoftf’s Voltage Law says that the sum of the in-
stantaneous values of all voltage drops in one mesh
must vanish at each point in time

¥ ) = 0.

The generalized form of this law can be derived in the
very same way as shown above. It reads

> V=0,

(17

(19)

(20)

2.4 Coupling phasor domain models and

transient models — electric machines

Sometimes, investigations of models consisting of a
fast part and a comparatively slow part shall be carried
out. If only sinusoidal quantities occur in the fast part
of such a model then it can be of interest to use a
phasor domain description for this submodel. In these
cases, it is necessary to couple at least two submodels:
one submodel in phasor-domain description and one
transient submodel.

For convenience in the following, phasor-domain
models are referred to as P-models while transient
models are called T-models. To couple a P- and a T-
submodel within one mathematical description (see
Fig. 3), some assumptions must be fulfilled:

* the connection between the two submodels con-
sists of one-directional signals only (signals
computed within the P-submodel and needed to
be known in the T-submodel are referred to as I-
signals — input to the phasor domain; signals
resulting from the T-submodel and influencing
the P-submodel are referred to as O-signals —
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output from phasor domain),

 all I-signals are only allowed to alter very
slowly compared with the P-submodel’s nomi-
nal frequency.

I-signal

A

T-submodel
(time domain)

P-submodel
(phasor domain)

\ 4

O-signal

Figure 3: Coupling a P- and a T-submodel

The second point in the list requires either some a pri-
ori knowledge about the T-submodel or a permanent
check of the first time derivatives of all I-signals. The
consideration of all assumptions ensures that the P-
submodel is always in steady-state or quasi-stationary
mode.

Electric machines consist of a mechanical and an elec-
trical subsystem. The complete response of the
mechanical part is very often slow compared to that of
the electrical part. This is particularly true with AC
machines because of the nominal frequencies mostly
used. Under certain assumptions (perfect symmetry,
no saturation etc.), the steady state of an AC machine
is characterized by ideal sinusoidal voltages and cur-
rents with constant amplitudes and phases. The steady
state is furthermore signalized by a constant angular
velocity of the rotor — with an induction machine — or
by a constant torque angle — with a synchronous ma-
chine — as well as a constant torque produced
electrically with both machines (see e.g. [13]). If the
mechanical angular velocity or the torque angle alter
very slowly compared to the electrical nominal fre-
quency then the electrical subsystem is in quasi-
stationary mode. This results in a slow variance of am-
plitude and phase of the electric sinusoidal quantities.
To study electric machines in steady-state or quasi-
stationary mode of the electrical subsystem, a combi-
nation of two submodels — a phasor-domain model of
the electrical subsystem and a transient model of the
mechanical subsystem — is possible.

2.5 Switching between phasor-domain and

time-domain models

An electrical model which is to be switched between
time domain and phasor domain may be part of a het-
erogeneous system containing also subsystems of
other domains. Therefore, this model is refered to as
AC submodel in the following.

If the transient response of an AC subsystem has been

faded away then a changeover from time domain to
phasor domain is possible because the system is in a
quasi-stationary mode or in a steady state. Both states
are characterized by constant or at least by nearly con-
stant amplitudes and phases of voltages and currents.
During a numeric simulation, such a changeover caus-
es a transition of the formerly differential-algebraic
equation system (DAE system describing the AC sub-
model in time domain) into a linear system of
algebraic equations (AE system describing the AC
submodel in phasor domain)

Ax = b. (21)

In (21), matrix 4 may depend on time ¢ or on state var-
iables of other domains (see e.g. [2]) and, hence, is
known at switching time. The elements of vector b ei-
ther are known (if depending on time or on state
variables of other domains) or have to be determined
during the transient simulation by “scanning” ampli-
tude and phase continuously. This way, a consistent
changeover can be carried out.

A changeover from phasor domain to time domain is
always possible. It is actually necessary, if the tran-
sient response of an AC subsystem is of interest for a
time interval (e.g. caused by a step-wise change of a
parameter). In this case, the quasi-stationary or steady
state is finished at switching time. During a numeric
simulation, the AE system has to be replaced by the
corresponding DAE system. Amplitudes and phases
of all “transient” source components can be deter-
mined from the corresponding phasors. Additionally,
initial values for all state variables of the DAE system
are needed. These values can be calculated from the
voltage phasors across capacitors and from the current
phasors through inductors.

3 Implementation in Modelica

3.1 Basic partial models

A new library called Complex has been created for
the implementation of phasor-domain models in Mo-
delica. This library is designed such that it can be used
like the Modelica standard library Model-
ica.Electrical.Analog. An  important
difference is the definition of a so-called complex pin
instead of the standard pin to be used for connecting
components. Without any annotations, the definition
of the complex pin reads

connector ComplexPin
Real vRe, vIm;
flow Real iRe,
end ComplexPin;

iIm;
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containing real and imaginary part (vRe, vIm) of a
voltage phasor } as well as real and imaginary part

(iRe, iIm) of a current phasor /. Using this connec-

tor, important partial models like OnePort were
derived which, first, realize Kirchhoff’s relations in
generalized form between the component’s pins and,
second, compute real and reactive (idle) power out of
internal quantities and make them available via output
signals. The main part of the code for OnePort reads

partial model OnePort
PosComplexPin p;
NegComplexPin n;
Real vRe, vIm, iRe, iIm;
Real phi v, phi i, phi;
Real activePwr, idlePwr;
Complex.Interfaces.ComplexOutput

complexPwr;
equation
vRe = p.vRe - n.vRe;
vim = p.vIm - n.vIm;
iRe = p.iRe;
iIm = p.iIm;
0 = p.1iRe + n.iRe;
0 = p.iIm + n.iIm;
phi v = Complex.Math.atan2(vIm,vRe) ;
phi i = Complex.Math.atan2(iIm, iRe) ;
phi = phi v-phi i;
activePwr = v*i*cos (phi) ;

idlePwr = v*i*sin(phi) ;
complexPwr.real = activePwr;
complexPwr.im = idlePwr;

end OnePort;

Based on OnePort and other partial models, source
components (different voltage sources, some current
generators) as well as many linear RLC components
for single-phase grids have been created.

Many AC circuits are three-phase systems. To simpli-
fy modelling of such systems using the library
Complex, the complex plug — a special “multi-phase
complex pin” — was implemented:

connector ComplexPlug
parameter Integer m(final min=1) = 3;
Complex.SinglePhase.Interfaces.ComplexPin
complexpin[m] ;
end ComplexPlug;

Using this connector, some partial models were de-
rived which are suitable to be extended to source
components or RLC components of symmetric multi-
phase systems. An example of such a partial model is
TwoPlug:

partial model TwoPlug
PosComplexPlug plug p(final m=m) ;
NegComplexPlug plug n(final m=m) ;
Real vRe[m], vIm[m], iRe[m], iIm[m];
Real phi_vI[m], phi i[m], phi[m];

Real activePwr[m], idlePwr [m];
Complex.Interfaces.ComplexOutput
complexPwr [m] ;
equation
vRe = plug p.complexpin.vRe -
plug n.complexpin.vRe;
plug p.complexpin.vIm -
plug n.complexpin.vIm;
plug p.complexpin.iRe;
iIm = plug p.complexpin.iIm;
for j in 1:m loop
phi vI[j]l =
Complex.Math.atan2 (vIm[j],vRe[]]);
phi i[j] =
Complex.Math.atan2 (iIm[j],iRe[j]) ;
activePwr [j] = v[jl*i[]j]*cos(phil[j]);
idlePwr [j] = vI[jl*i[j]l*sin(phil([j]);
end for;
phi = phi v-phi i;
complexPwr.real = activePwr;
complexPwr.im = idlePwr;
end TwoPlug;

vIim =

iRe =

This model mainly realizes Kirchhoff’s Voltage Law
between the two plugs and computes real and reactive
power for all three phases.

3.2 Basic one-phase components

The basic one-phase RLC components are assorted in
the package Complex.SinglePhase.Basics.
The inductor’s model (see Fig. 4) reads e.g. without
any annotations and comments:

model Inductor
extends
Complex.SinglePhase.Interfaces.OnePort;
parameter Real L=1;

equation
vRe = -omega*L*ilIm;
vIm = omega*L*iRe;

end Inductor;

Inductor1

>
D VY
L=1

Figure 4: Icon for comlex inductor

If the inductance is not constant but depends on time
or some other physical quantity like a mechanical co-
ordinate then the model VariableInductor has
to be used. In this model, the inductance is governed
via an input signal.

model VariableInductor
extends
Complex.SinglePhase.Interfaces.OnePort;
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Modelica.Blocks.Interfaces.RealInput L;

equation
vRe = -omega*L*ilIm;
vIm = omega*L*iRe;

end VariableInductor;

A complete list of the Basics-package reads:
e Ground
* Resistor
* Inductor
* Capacitor
» Conductor
¢ Transformer
* IdealTransformer
 VariableResistor
* VariableInductor
* VariableCapacitor
* VariableConductor
* VariableTransformer

Some one-phase source components can be found in
the package Complex.SinglePhase.Sources.
Presently, voltage sources and current generators are
implemented with

* constant amplitude and phase,

 amplitude and phase governed by input signal.
Additionally, power sources with given power (con-
stant or governed by input signal) are available.
Furthermore, the package Complex.Single-
Phase contains some sensors for “measuring” the
phasors (rms value, phase) of voltage or current. Fi-
nally, the power quality sensor (PQ_sensor) can be
used to determine all interesting values concerning the
power and its quality.

3.3 Basic multi-phase components

The basic multi-phase RLC components are assorted
in the package Complex.MultiPhase.Basics.
These definitions can be used in symmetric multi-
phase grids of arbitrary number of phases. The pack-
age contains models for resistors, inductors,
capacitors, and conductors each with constant consti-
tutive parameters or with parameters governed by
input signals. For comparability, the inductor’s model
with constant inductance is given here:

model Inductor
extends
Complex.MultiPhase.Interfaces.TwoPlug;
parameter Real L[m]=£fill(1,m);
Complex.SinglePhase.Basics.Inductor
inductor [m] (final L=L) ;
equation
connect (inductor.p, plug p.complexpin) ;
connect (inductor.n, plug n.complexpin) ;
end Inductor;

Moreover, elements for realizing star connections or
delta connections as well as for connecting multi-
phase and single-phase components together are in-
cluded in the package. Finally, some sources and
sensors are available, too.

3.4 Electric induction machine

In the presented library, a model of an electric induc-
tion machine has been implemented, too. To this end,
the package Complex.Machines was created. An
induction machine can be regarded as consisting of a
mechanical and an electrical subsystem. Specific in-
teractions take effect between the two subsystems.
The model of the induction machine combines a tran-
sient (time-domain) part of the mechanical subsystem
with a phasor-domain part of the electrical subsystem.
The model is only valid for analysing the machine
within steady-state or quasi-stationary mode of the
electrical subsystem. Fig. 5 shows the well-known
steady-state equivalent circuit for one phase of an in-

duction machine. In this diagram, V), is the voltage

I R X, X,
pa s D R/ s

I,
.e

I~
=

Figure 5: Induction machine’s equivalent circuit

phasor of the net, / denotes a current phasor (subind-
ex s stands for the stator, subindex r stands for the
rotor, m denotes the main reactance, ¢ refers to the
stray reactances). R and X = oL are ohmic resist-
ance and inductive reactance, respectively. The slip
between electrical angular frequency ® and rotor’s
while

angular velocity ®, is denoted by s,

s = (0—-w,)/o. (Please note that this model is a

time phasor description not using any space phasors.)
Furthermore, it shall hold X, = X, +X _ and
X, = X, + X, . Finally, the stray coefficient can be
the according to

1 - /X2 /(X,X,). Using some simplifying as-

sumptions (e.g. R, sufficient small) and denoting the

determined from reactances

o =

number of phases by #, the torque produced electrical-
ly reads (see e.g. [13])
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2

2
_ Wy X/ X)
T=n—

® (R!/s)+(s/R,)(cX,)

(22)

Slip s and torque 7 are the signals which connect the
mechanical and the electrical subsystem. Considering
the definitions of coupling signals in chapter 2.4 (see
Fig. 3), the slip is the I-signal and the torque is the O-
signal. Hence, the slip must not vary too fast, because
one must ensure at each point in time that the electri-
cal subsystem works within the quasi-stationary
mode. (An automatic monitoring of this demand is not
implemented in the library at the moment but would
be a nice feature.) Under this assumption, the torque is
always calculated correctly.

4  Examples

4.1 Electric circuit with varying resistance

Fig. 6 shows a simple example circuit containing a
VariableResistor-component. The voltage
source V works with constant amplitude and zero
phase. The resistance R3 is a ramp function of time

(10-°...5Q). Fig. 7 shows the rms values of the volt-
age drops across resistor R2 and the inductor as well
as the source voltage. The voltages across R2 and L

N
s
Y
L0'0=1
1
[9R<]

Ramp

%

duration=1

Figure 6: Example circuit

'2 T T T T T T T T T
a0 05 1.0

Figure 7: Voltages drops across R2 and L, source voltage

depends on time. But this curve is not a transient re-
sponse. It is rather a sequence of quasi-stationary
states spread over time axis. To prove this statement,
one shall have a look at the time constant of the
curves. This constant is about 0.5 s which is more than
107 because a nominal frequency of 50 Hz is used.
The real and imaginary part of the voltage drop across
the inductor is plotted in Fig. 8. This diagram shows
the variation of phase within the sequence of quasi-
stationary states.

LwRe —— —L.wim

oo ns 10

Figure 8: Real and imaginary part of voltage across L

4.2 Induction machine in quasi-stationary mode

This example deals with a three-phase induction ma-
chine. The test setup is shown in the schematic
diagram of Fig. 9. The machine’s electrical subsystem

Inertia

Rarmpy

fi

duration=10

ConstPhase

Fixed1=0

AIM_3ph

k=0

Star

Ground duration=10

Figure 9: Schematic diagram

is connected to a “three-phase voltage source” which
is the same as being connected to three single source
components. The three-phase source works with vari-
able amplitude and phase each governed by one input
signal. During the simulation, the amplitude increases
along a ramp function (see Fig. 10, solid line) while
the phase remains at zero. On the mechanical side, the
shaft of the induction machine is connected to an ad-
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ditional inertia, a damper component, and an applied
torque. Inertia and damping constant have fixed val-
ues. The torque is governed by a ramp function which
starts at a simulation time of 20 s (see Fig. 10, dashed
line).

—%Y — — Torgue fau [N.m]
S00
400 ———

/
300 4 7
!
200 /’
/
100 /
0 - _./’

-100 r T r T r T r

u} 10 20 30 40

Figure 10: Inputs: source voltage and applied torque

omega —— — Al_3ph.inertiaRotor v [radfz]
300 -
—
-~
200 4 4'(
100 }{}‘
04
T T T T T T T
0 10 20 30 40

Figure 11: Electrical and mechanical frequencies

In the first time interval (between 0 and 20 s), the in-
duction machine works as a motor. The increasing
stator voltage causes an increasing acceleration of the
shaft. Because of the mechanical damping, the angu-
lar velocity — i.e. the shaft velocity — (see Fig. 11,
dashed line) finally reaches a value which is less
smaller than the electrical angular frequency (see
Fig. 11, solid line). Hence, the slip has only positive
values in the first time interval. Fig. 11 additionally
shows that the simulation produces a transient re-
sponse of the shaft’s angular velocity. The time
constant during the highest acceleration is about 0.2 s

which equals 107. Therefore, the electrical subsys-
tem is still in the quasi-stationary mode.

In the second time interval (between 20 and 40 s), the
shaft is accelerated by an increasing torque which is
additionally applied to it. At one moment in time, the
shaft’s angular velocity becomes higher than the elec-
trical angular frequency. Beginning with this time

instant (approximately 28 s), the induction machine is
working in generator mode. Hence, the slip goes be-
low zero. The transition of the working modes is
characterized by a change of the sign of the difference
between both frequencies or — which is the same — by
a change of slip’s sign. The transient process in the
second time intervall is much slower than in the first
interval. Therefore, the electrical subsystem is in the
steady state or in the quasi-stationary mode during the
complete simulation.

Finally, Fig. 12 shows the electrical active power of
one phase of the voltage source component and the
mechanical power of the complete induction machine.

WoactivePwr[1] — — AIM_3phP_mech

1ES
—_—
5E4 | - \
EE4 // \
4E4 | ,f \\
el | it
\
0ED —
2E4 Y
-4E4 , ; ; : T : T
0] 10 20 30 40

Figure 12: Electrical active power

Both curves have analogous shapes. After the tran-
sient response is faded away, the mechanical power is
three times higher than the electrical power (because
a three-phase machine is under consideration). In the
first part of the simulation, the power curves have pos-
itive values which means that the source component
produces energy while the motor consumes it. After a
simulation time of about 28 s, the curves go below ze-
ro. This fact indicates that now the induction machine
produces energy which is fed back into the electric net
via the source component.

4.3 Example for domain switching

The switching between time domain and phasor do-
main and vice versa will be explained on a simple
circuit containing a sinusoidal voltage source, an
ohmic resistor, and a capacitor. Fig. 13 shows the
time-domain model (on the left hand side) and the
phasor-domain model (on the right hand side). The
left circuit remains in time domain during the com-
plete simulation. The right circuit is modelled in time
domain at the beginning. At an arbitrary point in time

(t, = 0.177), the modelling domain of the right sub-

system is changed to phasor domain (T-P
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changeover). Now, the phasor-domain description is
used until #, = 0.377 (again chosen arbitraryly). At
this time instant, the modelling domain is changed
back to time domain (P-T changeover). From ¢, to the
end of simulation, the time-domain model is used. The
component’s parameters are identical in both circuits
(R = 10Q, C = 1mF). Both sources are feeding a
voltage of 1 Vat¢ = 0 increasing at a rate of 0.5V/s.

Because of the low increasing rate, the circuits are al-
ways in a quasi-stationary mode.

Resistor1 Resistor2

O e
Q Q
o el
Q Q
[+ =
g g

v v

¢
Ground1 Ground2

Figure 13: Schematic of domain-switching example;
left: always within time domain, right: switching from
time domain to phasor domain (T-P) and reverse (P-T)

Some simulation results are shown in the following
figures. The first three diagrams contain the voltage
drop Vcref across the capacitor of the permanent time-
domain system and, from the switching system, the si-
nusoidal voltage drop (first and third interval) or the
amplitude of the voltage phasor (second interval), re-
spectively (both denoted by Vc). Fig. 14 shows the
complete simulation progress, while Fig.15 and

wWoref —— = %Wo

0.4

0.2

0.0

0.2

i

025 o0&
Figure 14: Voltages; Vcref: always in time domain, Vc:
switching T-P and P-T (showing amplitude in P-domain)

Fig. 16 represent the details around the switching in-
stants. Using the time-domain model for the switching
circuit, both curves (Vcref and Vc) are identical. If
this circuit is described within the phasor-domain then
the dashed curve is nearly constant showing only the

amplitude of Vc.

woref — — o
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Figure 15: Zoomed voltages; T-P changeover
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0.350
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Figure 16: Zoomed voltages; P-T changeover

The last three diagrams show the current flowing
through the permanent time-domain circuit (Iref) and,
from the switching system, the sinusoidal current
(first and third interval) or the amplitude of the current
phasor (second interval), respectively (both denoted
by I). Fig. 17 shows the complete simulation progress,
while Fig. 18 and Fig. 19 represent the details around

il

015 T T T T T T T T T
0.0o

iref — —i
015

0404

0.05 4

0.00 4

-0.054

-004

0.s0

Figure 17: Currents; Iref: always in time domain, I:
switching T-P and P-T (showing amplitude in P-domain)
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the switching instants. In these diagrams, both cur-
rents are identical, too, if the time-domain model is
applied to the switching circuit. If the phasor-domain
model is valid then the dashed curve is nearly constant
showing only the amplitude of I.

iref — —i

-0.15 T T T T

T
0173 0.200

Figure 18: Zoomed currents; T-P changeover

iref — —1i

-0.15 T T T T

T
0373 0.400

Studying AC systems for long time periods within the
time domain is hardly possible. Therefore, it may be
of interest to switch between a time-domain model
and a phasor-domain model and vice versa in an ap-
propriate manner. This scenario is shortly concerned
in the paper.

Finally, simulation results of three examples are given
proving the principal capabilities of the library.
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