

The Modelica Association Modelica 2006, September 4th – 5th

Neural Network Library in Modelica

Fabio Codecà Francesco Casella
Politecnico di Milano, Italy

Piazza Leonardo da Vinci 32, 20133 Milano

Abstract

The aim of this work is to present a library, developed
in Modelica, which provides the neural network math-
ematical model. This library is developed to be used
to simulate a non-linear system, previously identified
through a specific neural network training system. The
NeuralNetwork library is developed in Modelica
2.2 and it offers all the required capabilities to create
and use different kinds of neural networks.
Currently, only the feed-forward, the elman[6] and the
radial basis neural network can be modeled and simu-
lated, but it is possible to develop other kinds of neural
network models using the basic elements provided by
the library.
Keywords: neural network, library, simulate, model

1 Introduction

The work described in this paper is motivated by the
lack of publicly available Modelica libraries for neural
networks. A neural network is a mathematical model,
which is normally used to identify a non-linear system.
Its benefit is the capability to identify a system also
when its model structure is not defined. For such a
characteristic, sometimes it is used to model complex
non-linear system.
There are different kinds of neural networks in litera-
ture and all of them are characterized by a specific ar-
chitecture or some other specific features. This library
takes into consideration only three types of neural net-
works:

• the feed-forward neural network,

• the elman[6] neural network, which is a recurrent
neural network,

• the radial basis neural network,

but the basic elements of the library make possible the
construction of any other different neural network.

There are, in literature, different kinds of neural net-
works, many different algorithms to train them and
many different softwares to do this task. For this rea-
son, the library purposefully lacks any function to train
a neural network; the training process has to be made
by an external program. The MatLab[8] Neural Net-
work toolbox was chosen, during the development and
the tests, because it is commonly used and it is ex-
tremely powerful; however any other training software
can be used.
The library was already used to develop and simu-
late the neural network model of an electro-hydraulic
semi-active damper.
The paper is organized as follows. Section 2 presents
the neural network mathematical model: a briefly de-
scription about the characteristics of each kind of net-
work, implemented in the library, is provided. Section
3 describes the chosen library architecture and the rea-
sons which guide its implementation. Section 4 shows
an example of library use: the entire work process will
be explained, from the neural network identification,
with an external training software, through the net-
work parameters exchange (from the training software
environment to the Modelica one), to the validation of
the Modelica model. Last section (5) shows some pos-
sibilities of future work, and draws some conclusions.

2 Neural Network model

The neural network mathematical model was born in
the Artificial Intelligence (AI) research sector, in par-
ticular in the ’structural’ one: the main idea is to repro-
duce the intelligence and the capability to learn from
examples, simulating the brain neuronal structure on
an calculator.
The first result was achieved by McCulloch and Pitts
in 1943[1], when the first neural model was born.
In 1962 Rosenblatt[2] proposed a new neuron model,
called perceptron, which could be trained through ex-
amples. A perceptron makes the weighted sum of the
inputs and, if the sum is greater then a bias value, it

549

Neural Network Library in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

sets its output as ’1’. The training is the process used to
tune the value of the bias and of the parameters which
weight the inputs.
Some studies[3] underline the perceptron training lim-
its. Next studies[4], otherwise, show that different ba-
sic neuron models, complex neuron networks archi-
tecture as suitable learning algorithms, ensure to go
beyond the theoretical perceptron limits.
Three kinds of neural networks, which are described
in the following paragraphs, were taken into consider-
ation in the library: they differ in neuron model and
network architecture.

2.1 Feed-forward neural network

The feed-forward neural network is the most used neu-
ral network architecture: it is based on the series con-
nection of neuron layers, each one composed by a set
of neurons connected in parallel. Examine the i− th
layer: the layer inputs, u1,u2, . . . ,un, are used by r
neurons, which produce r output signals, y1,y2, . . . ,yr.
These signals are the inputs of the next layer, the
i+1− th layer.

Figure 1: Standard neuron model

The neuron used in the feed-forward neural network
is called standard neuron (figure 1). A standard neu-
ron maps Rq into R; it is characterized by n inputs,
u1,u2, . . . ,un, and one output, y. The first step, which
is taken by the neuron, is to compute a weighted sum
of the inputs: the result is called activation signal

s = w0u0 +w1u1 +w2u2 + . . . +wnun,

where w0,w1,w2, . . . ,wn are real parameters. w0 is the
neuron bias and w1,w2, . . . ,wn are the neuron weights.
The second step is to perform a non-linear elaboration
of s, obtaining y. This is computed using a function
σ(•) (R→ R), called activation function; it is usually
a real function of real variable, monotonically increas-
ing, with a lower and an upper asymptote:

s = lim
s→−∞

σ(•) = σin f ,

s = lim
s→−∞

σ(•) = σin f .

For this reasons, it is usually called sigmoid. Different
functions can be used; the most used are:

• σ(s) = tanh(s) (called in MatLab tangsig);

• σ(s) = 1
1+exp−n (called in MatLab logsig);

A linear function is also used as activation function: it
is normally used for the neurons which compose the
output layer (σ(s) = s (called in MatLab purelin)).
The feed-forward architecture allows to build very
complex neural networks: the only constraint is to
connect the layer in series and the neurons of a layer in
parallel, each of them with the same activation func-
tion. The first section of the network, which takes the
inputs and passes them to the first layer without doing
anything, is usually called Input layer. The last layer
is called Output layer and the others are called Hidden
layer1.

Figure 2: A feed-forward neural network structure

An important theoretical result, related to the feed-
forward neural network, ensures to specify which is
the non-linear function class that can be evaluated by a
specific neural network. The result is applicable to dif-
ferent kinds of networks: in particular, it involves the
standard neural network. This network is composed
by only two layers: an Hidden layer, composed by m
neurons2, which processes n inputs, u1,u2, . . . ,un, and
an Output layer, composed by one neuron with a linear
activation function.

1this is not an univocal nomenclature; for example, in MatLab,
the first neuron layer is called Input layer and the others are simply
called layer.

2all having the same activation functions

550

F. Codecà, F. Casella

The Modelica Association Modelica 2006, September 4th – 5th

Theorem 1 (Universal Approximator[4]) Take a
standard neural network where σ(•) satisfies the
following conditions:

1. lims→∞ σ(s) = 1,

2. lims→−∞ σ(s) = 0,

3. σ(•) is continuous.

Taking a function g(u) : Rq → R, continuous on a set
Iu compact in Rq, and an ε > 0, a standard neural
network exists which achieves the transformation y =
f (u) so that

|g(u)− f (u)|< ε,∀u ∈ Iu.

2.2 Recurrent neural network (Elman)

A particular type of neural network is the recurrent
neural network. This network is a dynamical system,
in which the output depends on the inputs and the in-
ternal state, which evolves with the network inputs. If
the internal state is Z(t), the network then agrees to the
following relations:{

Z(t +1) = F(Z(t),U(t))
Y (t) = G(Z(t),U(t))

Recurrent networks are usually based on a feedback
loop in the network architecture, but this is not the only
way.
In the library, the Elman[6] neural network is consid-
ered: in this network, the feedback loop is between the
output of the Hidden layer and the input of the layer
itself. This allows the network to learn, recognize and
create temporal and spatial models.
An Elman neural network is usually composed by two
layer connected as shown in figure 3: there is an Hid-
den layer, which is the recurrent layer, composed by
neurons with an hyperbolic tangent activation function
(σ(•) = tanh(•)), and an output layer, characterized
by a linear activation function.
As for the feed-forward neural network, the universal
approximator theorem ensures that the Elman neural
network is an universal approximator of a non-linear
function. The only requirement is that the more the
function to be estimated becomes complex, the more
the number of the neurons, which compose the Hidden
layer, increases.
The only difference between a feed-forward neural
network and an Elman neural network is the recur-
rence: this allows the network to learn spatial and tem-
poral models.

Figure 3: An Elman neural network

2.3 Radial basis neural network

The Radial basis neural network is used as an alterna-
tive to the feed-forward neural network. Like this one,
it is based on the series connection of layers, each of
them composed by a set of neurons connected in par-
allel. Two are the main differences:

• the number of layers is commonly fixed, with one
Hidden layer and one Output layer;

• the basic neuron is not the standard neuron but it
is called radial neuron.

A radial neuron maps Rq into R; it is characterized by
n inputs, u1,u2, . . . ,un, and one output, y. The first step
took by the radial neuron is to compute an activation
signal: it differs from the standard one because it is
not a weighted sum of inputs but it is equal to:

s = dist({u1,u2, . . . ,un} ,{α1,α2, . . . ,αn})b,,

where α1,α2, . . . ,αn are real parameters, regarding
which distances of the inputs are calculated (they are
called centers of the neuron), b is called neuron ampli-
tude and the function dist({x1,x2} ,{a1,a2}) computes
the euclidean distance between {x1,x2} and {a1,a2}3.
The following step is to perform a non-linear elabora-
tion of s, obtaining y. This is made using the function
σ(•) = exp−(•2) (R → R) which is the radial neuron
activation function; it is not a sigmoid function but a
bell-shaped function (figure 4).
As previously remarked, the radial basis neural net-
work architecture is commonly fixed: there is an Hid-
den layer, composed by radial neurons, and one Out-
put layer, composed by a standard neuron with a linear
activation function (purelin). Although the structure of
this neural network is more limited, compared to the
feed-forward one, this is not a limit for its approxima-
tor capability.

3dist({x1,x2} ,{a1,a2}) =
√

(x1−a1)2 +(x2−a2)2

551

Neural Network Library in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

Figure 4: Radial neuron activation function

As for the feed-forward and the Elman neural net-
works, the universal approximator theorem ensures
that this kind of neural network is an universal approx-
imator of a non-linear function. The only requirement
is that, the more the function to approximate becomes
complex, the more the number of the neurons which
compose the Hidden layer increases.

3 NeuralNetwork library

The reason of this library is the lack of an suitable
Modelica library, able to simulate a neural network.
The aim was to develop a library with the capabilities
to create and to simulate such a mathematical model.
There are already many different algorithms to train
a neural network and many different softwares to do
this task so no training algorithm was given. This re-
quires that the training process must be performed by
an external software. The MatLab[8] Neural Network
toolbox was chosen, during the development and the
tests, because it is used commonly and it is extremely
powerful; however any other training software can be
used. These elements affect some library architectural
choices.
The first aim was to give to the users all the elements
to create the previously presented neural networks: no
constraints were put in for the user, who can create any
kind of network architecture without limits. The user
himself is directly responsible to use the basic blocks
correctly and no checks are performed by the library
blocks.
The basic element of the NeuralNetwork library was
chosen to be a network layer. A layer in a neural net-
work (NeuralNetworkLayer) is a set of neurons
which are connected in parallel[5]. It is characterized
by the following parameters:

• numNeurons: it is the number of neurons which
compose the layer;

• numInputs: it is the number of inputs of the layer;

• weightTable: it is a matrix which col-
lects the weight parameters (or the centers
of neurons) used by every neuron of the
layer to weight the inputs; its dimension is
[numNeurons×numInputs];

• biasTable: it is a vector which collects the biases
of neurons that compose the layer; its dimension
is [numNeurons×1];

• NeuronActivationFunction: it is the activation
function used to compute the output by each neu-
ron of the layer. The neurons, which compose a
layer, can only have the same activation function.

Using a network layer as the basic element has the only
limit that the activation function of each neuron in a
layer must to be the same, but the neural network ar-
chitectures previously presented don’t need this prop-
erty. Moreover this choice ensures to have an easier
data exchange between the neural network training en-
vironment and the Modelica one.
This is particularly true when the MatLab Neural Net-
work toolbox is used to train a neural network. As
reported in the section 4, in the object used by MatLab
to store a neural network, the weights (or the centers of
neuron) and the bias of layer are collected in a matrix
with the same property of the matrix used to initialize
a NeuralNetworkLayer.
The library is organized in a tree-based fashion (Figure
5), and it is composed by five sub-packages:

• the package BaseClasses: it contains only
one element, the NeuralNetworkLayer;

• the package Networks: it contains some neu-
ral networks based on the connection of many
NeuralNetworkLayer;

• the package Utilities: it contains different
functions and models used to define some library
elements or used itself in the library;

• the package Types: it contains the constants
used to specify the activation functions which
characterize a NeuralNetworkLayer;

• the package Examples: it contains some exam-
ples which allow the user to explore the library
capabilities.

552

F. Codecà, F. Casella

The Modelica Association Modelica 2006, September 4th – 5th

Figure 5: Library structure

3.1 BaseClasses - NeuralNetworkLayer

As previously described, there is only one el-
ement in the BaseClasses package, the
NeuralNetworkLayer. This is a block with
a MIMO interface, in which the number of inputs is
specified through a parameter and the outputs number
is the same to the neurons one.
The parameters of the NeuralNetworkLayer are:

• numNeurons: it is the number of neurons which
compose the layer

• numInputs: it is the number of inputs to the layer

• weightTable: it is the table of the weights, if the
layer is composed by standard neurons, or the ta-
ble of the centers of the neuron, if the layer is
composed by radial neurons

• biasTable: it is the bias matrix of the neurons
which compose the layer

• NeuronActivationFunction: it is the activation
function of the layer neurons

The NeuronActivationFunction characterizes the
behavior of the neuron network layer. The pa-
rameter can be selected in the set, defined by
NeuralNetwork.Types.ActivationFunc-
tion; the possible choices and behaviors are:

• PureLin: the block acts as a layer composed by
standard linear neurons; the output is equal to the
activation signal s, which is equal to

y = s = weightTable * u + biasTable[:,1]

• TanSig: the block acts as a layer composed by
standard non linear neurons; the output is equal
to the hyperbolic tangent of the activation sign al

y = Modelica.Math.tanh(s);

• LogSig: the block acts as a layer composed by
standard non linear neurons; the output is equal
to the value returned by the LogSig function:

y = NeuralNetwork.Utilities.LogSig(s);

• RadBas: the block acts as a layer composed by
radial non linear neurons; the output is computed
with the following steps:

– the euclidean distance between the
centers of layer neurons and the in-
puts is evaluated using the function
NeuralNetwork.Utilities.Dist()

with the following parameters: weight-
Table, matrix(u)

– the element-wise product between
the previous function output and the
bias matrix is calculated using the
NeuralNetwork.Utilities.Ele-

mentWiseProduct function: this value is
the activation signal s

– the output is then evaluated using the
specific radial neuron activation function
(NeuralNetwork.Utilities.RadBas);

3.2 Networks

Figure 6: Networks package structure

This package (shown in figure 6) is composed by
five blocks: each one represents a neural network.
The feed-forward neural network and the radial ba-
sis neural network are easily composed using the
NeuralNetworkLayer block.
The case of the Elman neural network (figure 7 shows
the model in Dymola[7]), which in the library is called

553

Neural Network Library in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

NeuralNetwork RecurrentOne(Two)Layer4,
is different. In figure 7 the NeuralNetwork Re-
currentOneLayer is shown: the delay block has
been introduced to create the recurrence. The para-
meters of every layer and the parameter of the delay
block, which is the samplePeriod of the recurrent
layer, can be tuned. The samplePeriod has to be equal
to the input signal sample rate, so that the network can
work correctly.

Figure 7: Elman neural network in Dymola

The NeuralNetwork.Utilities.UnitDe-
layMIMO was introduced to realize the layer feed-
back: it behaves as the Modelica.Blocks.Di-
screte.UnitDelay but it has a MIMO interface
in place of the SISO one.

3.3 Utilities

Figure 8: Utilities package

The Utilities package (shown in fi-
gure 8) is composed by some mathemati-
cal functions and blocks needed to the li-
brary to work. In the blocks there are the
NeuralNetwork.Utilities.UnitDelay-
MIMO block, used to model an Elman neural network,
and the NeuralNetwork.Utilities.Sam-
plerMIMO, used to sample more signals at the same
time and used to build the Elman neural network
example. The mathematical functions instead are
used to model a specific activation function (LogSig

4they differ for the number of recurrent layer

and RadBas) or to elaborate signals which are used
by neurons to compute the activation signal (Dist
and ElementWiseProduct are used by a layer
composed by radial).

4 An application example

The package Examples contains some instances
which allow the user to explore the library capabili-
ties. In this section, an example of how to use the
NeuralNetwork library is shown: the entire work
process will be explained, from the neural network
identification, with MatLab Neural Network toolbox,
through the network parameters exchange, to the vali-
dation on the model implementation in Modelica.

Figure 9: NARX: neural network with external dynam-
ics

The example shown here (which is the model
FeedForwardNeuralNetwork placed in
Examples package) is about a feed-forward
network with external dynamics. This neural network,
shown in figure 9, is a feed-forward neural network
in which the signals used as inputs are previously
delayed. The feed-forward neural network with
external dynamic, which is normally called NARX,
performs the following function

y(t) = f (u(t) . . .u(t−na),y(t) . . .y(t−nb)).

This example shows how to use the elements of the
NeuralNetwork library to create a feed-forward
neural network with external dynamic, where u is a
vector composed by two elements, na = 2 and nb = 0.
First of all we have to create the model of the process
which has to be identified by the network. We assume
that the process is driven by the non-linear function

F(t) = (3x(t)x(t−1)x(t−2))+(y(t)y(t−2)),

554

F. Codecà, F. Casella

The Modelica Association Modelica 2006, September 4th – 5th

where x and y are the inputs of the system. Note that
the process is dynamic because F(t) uses the input val-
ues at t time, t− 1 time and t− 2. For this reason we
choose to use a dynamical feed-forward network with
6 inputs:

y(t) = f (x(t),y(t),x(t−1),y(t−1),x(t−2),y(t−2)).

To train the network is mandatory to have some input
signals and the correspondent outputs. The Matlab en-
vironment can be used: define the input signals with
the following commands5

t=0:0.01:10;
x=sin(2*pi*t);
y=cos(5*pi*t);

and calculate the output signal of the process from the
inputs previously defined.

for k=3:length(t)
f(k)=(3*x(k)*x(k-1)*x(k-2));
f(k)=f(k)+(y(k)*y(k-2));

end

After the input and output signals are created, the net-
work has to be built. To construct a feed-forward neu-
ral network, the command newff has to be used. As
parameters, the command requires the variances of the
inputs, the dimension of the network and the layer ac-
tivation functions. To do this use the following com-
mands

var x = [min(x) max(x)];
var X = [var x;var x;var x];
var y = [min(y) max(y)];
var Y = [var y;var y;var y];
net = newff([var X ; var Y],[4 1],

{’tansig’,’purelin’});

Note that var X and var Y are a 3× 2 matrix, with
one line for x(t), one for x(t−1) and one for x(t−2).
To train the network, the input signal matrices have to
be created (they are in X and in Y). Some parame-
ters, like the train method and the train epochs num-
ber, has to be set and then the function train can be
used. This is done with the following commands:

in X = [x ; [0 x(1:end-1)] ;
[0 0 x(1:end-2)]];

in Y = [y ; [0 y(1:end-1)] ;
[0 0 y(1:end-2)]];

net.trainFcn = ’trainlm’;

5when dealing with dynamic feed-forward networks it is very
important that the sampling time during the simulation be the same
as the one used for the network training, otherwise the model will
not behave correctly.

net.trainParam.epochs = 100;
[net,tr]=train(net,[in X;in Y],f);

To see how the network has learned the non-linear sy-
stem the command sim can be used

f SIM = sim(net,[in X;in Y]);

Figure 10: Real process and neural network output
comparison

Plotting the real output and the network simulated out-
put (figure 10), we can see that the network has iden-
tified the non-linear system very well. Two ways were
taken into consideration in order to use the parameters
coming from the MatLab environment:

• create a specific script for MatLab (called extract-
Data.m) which collects the parameters from the
environment and creates a text file containing all
the information as the Modelica notation and the
library requests;

• use the DataFiles library which provides
some functions to read/write parameters
from/into .mat files (saved using the -V4 option).

The DataFiles library is a particular implementa-
tion supplied by Dymola to manage .mat files: this ap-
proach was used in absence of a general solution in
Modelica.
In this particular example the first way was used. At
first, it has to be understood how the MatLab saves
the feed-forward neural network parameters. Watch-
ing the figure 11, which shows how MatLab maps the
weights and bias of the layer on the network object ma-
trices and keeping in mind that the first hidden layer is
called InputLayer and the others only Layer, can be
asserted that:

555

Neural Network Library in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

Figure 11: MatLab weights and bias matrices

• to access to the weights matrix of a layer has to be
used the command net.X{1,1}6, where X=IW
for the first layer and X=LW for the others; the
weights matrix is a [S×R] , where S is the neuron
number and R the layer inputs number

• to access to the bias matrix has to be used the
command net.b{1}, [S×1].

Using this information and the extractData.m script,
two files, which contain the Modelica definition of the
network layers that compose the neural network, were
created:
extractData(’LW.txt’,’OutputLayer’,

net.LW{2,1},net.b{2},’lin’)
extractData(’IW.txt’,’HiddenLayer’,

net.IW{1},net.b{1},’tan’)

where ’LW.txt’ and ’IW.txt’ are the names of
the file where the definition of the Modelica
neuralNetwork TwoLayer OutputLayer and
HiddenLayer are stored. The other parameters of the
command are the weights and the bias matrices and
the layer activation function.
Now it’s possible to create this neural network
using the Modelica language7. At first take a
neuralNetwork TwoLayer block and change its
parameters using the results of the previous steps (lo-
cated in ’IW.txt’ and ’LW.txt’). Then, since the neural
network expects 6 inputs which have to be externally
built, some unit delay blocks (with sample time sets
to 0.01, which is the input signals sample time) and a
multiplexer must be used.
As last step, build a .mat file enclosing the input sig-
nals used in MatLab to simulate the neural network.
To compare the Modelica output to the MatLab one,
enclose the output signals too.

6For the index selection please use the MatLab Neural Network
toolbox help.

7The example model (figure 12) was created in Dymola[7]

Figure 12: FeedForwardNeuralNetwork exam-
ple

IN x=[t’ , x’];
IN y=[t’ , y’];
OUT f=[t’ , f SIM’];
save testData FeedForwardNN.mat -V4
IN x IN y OUT f

the figure 13 shows the output of the Modelica simu-
lation and the output of MatLab: see that there is no
difference between them.

Figure 13: Matlab and Modelica simulation output
comparison

Similar examples have been built for the other kinds
of networks in the library. They are available in the
Examples package, to check their results against the
Matlab implementation.

5 Conclusion

A Modelica library, providing the neural network
mathematical model is presented. This library is de-
veloped to be used to simulate a non-linear system,

556

F. Codecà, F. Casella

The Modelica Association Modelica 2006, September 4th – 5th

previously identified through a specific neural network
training system. The NeuralNetwork library is de-
veloped in Modelica 2.2 and it offers all the required
capabilities to create and use different kinds of neural
networks.
Currently, only the feed-forward, the elman[6] and the
radial basis neural network can be modeled and simu-
lated, but it is possible to build different network struc-
tures, by using the basic elements provided by the li-
brary. In section 4, a library extension example is
shown: a dynamical neural network model is created
using the library blocks. The entire work process is
explained, from the neural network identification, with
an external training software, through the network pa-
rameters exchange (from the training software envi-
ronment to the Modelica one), to the validation of the
Modelica model. This lead us to show that there is
no difference between the Modelica simulation output
and the MatLab one.
The library is publicly available under the Modelica
License from the www.modelica.org website.

References

[1] McCulloch, W. S. and Pitts, W., A logical cal-
culus of the ideas immanent in nervous activ-
ity. Bulletin of Mathematical Biophysics, 5, 115–
133, 1943.

[2] Rosenblatt, F., The perceptron: A probabilistic
model for information storage and organization
in the brain, Psychological Reviw, 1958, 65, 386-
408.

[3] Minsky, M.L. and Papert, S., Perceptrons: An
Introduction to Computational Geometry. Cam-
bridge, MA: MIT Press, 1969.

[4] Hornik, K., Stinchcombe, M. and White, H.,
Multilayer feedforward neural networks are uni-
versal approximators, Neural Networks, vol. 2,
no. 5, pp. 359–366, 1989.

[5] Bittanti, S., Identificazione dei modelli e sistemi
adattativi, Pitagora Editrice, 2002.

[6] Elman, J. L., Finding structure in time, Cognitive
Science, 15, 1990, 179-211.

[7] Dymola, Dynamic Modeling Laboratory, Dy-
nasim AB, Lund, Sweden.

[8] The Math Works Inc., MATLAB R©- The lan-
guage of Technical Computing, 1997.

557

Neural Network Library in Modelica

