

The Modelica Association Modelica 2006, September 4th – 5th

Dymola interface to Java - A Case Study: Distributed Simulations
José Díaz López Hans Olsson

Dynasim AB
Research Park Ideon, S-223 70 Lund, Sweden

{jose.diaz, hans.olsson}@dynasim.com

Abstract

Running multiple simulations for the same model is
useful for studying the influence of parameters, cali-
brating parameters from measurement series, and
optimizing designs to be robust with respect to oper-
ating conditions. Dymola’s [1] Design-package al-
lows a user to specify such experiments for experi-
menting, calibrating and optimizing simulation stud-
ies [2].
Many of the simulations are independent allowing
them to be run in parallel, i.e. coarse-grained paral-
lelism. This paper describes the extension that dis-
tributes the simulations to multiple CPUs, while
keeping the original setup for the simulation study.
This makes the distributed nature transparent for the
user, and the only difference is that the studies are
done faster.
The implementation is implemented in Java using a
Modelica external interface, but in contrast to [3]
with direct interface inside Dymola. Implementing
the distributed simulations in Java makes it possible
to leverage the multi-threading, graphical, and com-
munication capabilities of Java; while using Mode-
lica’s strengths for modeling, setup of simulations,
and numeric algorithms.
Keywords: dynamic simulation, distributed simula-
tions, Java, Modelica

1 Introduction

Dymola broadens the external interface possibilities
to Java.1 A case study is distributed simulations for
model experimentation.

1 Java and any other Sun trademarks that are referred
to or displayed in the document are trademarks or
registered trademarks of Sun Microsystems, Inc. in
the U.S. or other countries.
Dymola is a tradermark of Dynasim AB, and a regis-
tered trademark of Dynasim AB in Sweden.

There are several needs for interfaces between Dy-
mola/Modelica and other tools/languages that can be
met in different ways. In this case we need to call
external functions inside Dymola and in those func-
tions have access to Dymola’s API in a “safe” way.
Java with Java’s Native Interface allows this in a
natural fashion, and Dymola allows a user to directly
call external functions written in Java from the
scripting environment. In those functions written in
Java it is also possible to access all of Dymola’s API
functions and normal Modelica functions.
This tight coupling requires that Dymola internally
runs a Java Virtual Machine, where Dymola adds
implementations of native functions to allow access
to Dymola’s API.

2 Dymola Interface to Java

2.1 Comparison with previous work

Previous implementation of interfaces to Java (based
on top of the external C-interface) did not allow
functions written in Java to call Modelica functions
as seamlessly, but sufficed for calling functions writ-
ten in Java inside models. The new implementation
also allows this and ensures consistency since one
external declaration in Modelica can be used for call-
ing the function both in the scripting environment
and inside models.
This implies that models using functions written in
Java will include a special header and automatically
link with the Java Virtual Machine.
Previous implementation of access to Dymola’s API
functions e.g. via DDE [3] only allows the external
tool to control Dymola, but not Dymola to call the
external tool.

Modelica is a registered trademark of the Modelica
Association.

477

Dymola interface to Java - A Case Study: Distributed Simulations

The Modelica Association Modelica 2006, September 4th – 5th

The new implementation allows calls from Modelica
functions to Java, and allows this function in Java to
call Dymola/Modelica.

2.2 Mapping of functions

The interface in Modelica to functions written in
Java is limited to static member functions of classes.
The declarations in Modelica are of the kind:

function foo
 input Real in1;
 input String in2;
 output Boolean out;
external "Java" out=’P.C.S’(in1,in2);
end foo;

In this example P is a package, C a class and S a
static function in this class.
This is according to the Modelica specification (in-
cluding the use of quoted identifiers for the name of
the function) except that Java is not one of allowed
external language in the specification. The package-
name can be a hierarchical name, with dot-notation.
For the future it might be possible to extend Mode-
lica’s external objects to also handle objects in Java.
Calls of Modelica functions (and Dymola’s API-
functions callable as Modelica functions) from Java
go through one generic function accessible in Java as
com.dynasim.dymola.interpretMainStatic. For other
Modelica functions a wrapper in Java can be con-
structed in a mechanical way that maps arguments,
calls this bridge function, and maps the result.
Having one entry point to Modelica from Java makes
it straightforward to transparently redirect all calls to
a remote instance of Dymola, i.e. remote method
invocation.
This interface is only intended for accessing one in-
stance of Dymola. Distributed simulations require
access to multiple instances of Dymola, and thus re-
quire additional efforts as will be explained later.
Asserts and other errors in Modelica are mapped to
exceptions to in Java and vice versa. Specific excep-
tions are thrown for errors specific to calling Mode-
lica functions from Java (illegal types for arguments,
unknown Modelica function, etc).

2.3 Mapping of data-structures

Simple types in Modelica (e.g. Real) are normally
mapped to corresponding simple types in Java.
Strings are non-simple in Java, the mapping is still

direct, and is made simpler by the fact that JVM and
Dymola internally use the same UCS-8 implementa-
tion of Unicode strings.
Note: The UCS-8 mapping is the result of applying
the UTF-8 mapping to UTF-16 strings, and the rec-
ommendation is that even though it can be used in-
ternally in programs it should not be used for inter-
faces. In this case we make an exception in order to
be compatible with the pre-existing C-interface of
JVM.
Arrays in Modelica correspond to (possibly nested)
arrays in Java. Special care is needed to detect het-
erogeneous arrays in Java, and convert zero-sized
matrices from Java.
Records in Modelica are mapped to a class imple-
menting a map interface in Java. This ensures that
the semantics of Modelica records (named based
type equivalence) is preserved.
To summarize we first present how arguments are
mapped when calling a function written in Java from
Modelica.
Modelica External Java
Real double
Integer int
Boolean boolean
String java.lang.String
Record com.dynasim.record
Real[] double[]
Integer[] int[]
Boolean boolean[]
String[] java.lang.String[]
Record[] com.dynasim.record[]
The mapping when a function in Java calls inter-
pretMainStatic is similar, but has special handling of
simple types as presented below. This is necessary
since the simple types such as double are not objects
and thus cannot be part of the generic argument list
of interpretMainStatic.
Modelica interpretMainStatic
Real java.lang.Double
Integer java.lang.Integer
Boolean java.lang.Boolean
String java.lang.String
Record com.dynasim.record
Real[] double[]
Integer[] int[]
Boolean boolean[]
String[] java.lang.String[]

478

J.D. López, H. Olsson

The Modelica Association Modelica 2006, September 4th – 5th

Record[] com.dynasim.record[]
The record class, com.dynasim.record implements
the map-interface, and the contents is mapped as for
interpretMainStatic (also when calling a function
written in Java from Modelica). The reason is the
same as for interpretMainStatic. However, for easy
access to simple variables there are also special func-
tions, getDouble, getInt, and getBoolean.
The map for records is straightforward to use and by
being name-based avoid issues with declaration or-
der and future extensions of the records in Modelica.

2.4 Mapping of errors

Exceptions thrown from Java called from Modelica
are automatically mapped to assertions, which is the
normal error handling primitive in Modelica. Cur-
rently an assertion stop Dymola’s interpreter are
there is no way of catching the error inside Modelica.
When an assertion (or other error) is trigged in Mod-
elica originating from a call to interpretMainStatic
this is mapped to an exception in Java as follows:

• com.dynasim.DymolaException base-class
of the other exception – introduced in order
to make it easy to catch all exceptions.

• com.dynasim.DymolaNoSuchFunction(<na
me of function>) when the function is not
found by interpretMainStatic.

• com.dynasim.DymolaIllegalArgumentExcep
tion for problems with transforming results
or argument between Java and Dymola, and
incorrect type of arguments to function.

• com.dynasim.DymolaEvaluationException
when evaluation fails – e.g. assertions and
division by zero.

These exception classes all inherit from java.lang.
RunTimeException, this ensures that no ‘throws’
clause is needed for routines calling Dymola-
functions.
This corresponds to the Modelica environment where
no “assert-clause” is needed.

3 Distributed simulations with Java

The new facilities accessible from Java for calling a
Dymola instance, allows the use of transparent RMI
[4] for distributed tasks. Since Dymola simulations
for parameter experimentation are independent, long
simulation times can be shortened by using several
processors. A version of the Experimentation pack-
age [5] has been adapted to distributed simulations.

3.1 Setup

The command setup is of distributed Experimenta-
tion package is identical to the one described in [5].

The main architecture implemented in Java is de-
picted in the previous figure.

The architecture of the Java code is simple:

• A master dispatcher with three lists working
as queues: Task Queue, ResultQueue and
AddressList

• Independent threads for each server. The
thread starts, monitors and reports results to
the static lists in the dispatcher.

• External Java functions in Modelica to ac-
cess the different Queues.

Single signals of whole trajectory files can be sent
back to the master computer if requested, for anima-
tion purposes.
Having all this functionalities at hand, the Distrib-
uted Experimentation package was written, and we
describe it in the following.

3.2 Distributed Experimentation package

The structure of the Distributed Experimentation
package is very similar to the Experimentation pack-
age. The functionalities are the same, as shown be-
low.

479

Dymola interface to Java - A Case Study: Distributed Simulations

The Modelica Association Modelica 2006, September 4th – 5th

The main difference to the experimentation package
is the distribution of tasks from client to server. The
GUI and setup are the same, and the function
startMasterDispatcher has to be run before any simu-
lation is performed. The information of the servers
and their lookup names is reported to the dispatcher
with this function. See the figure below.

The names “192.168.1.2”, “192.168.1.3” and so on
are IP numbers of the server hosts. DNS name re-
solving is also supported, and therefore possible to
use names instead. The name “localhost” represents
the address 127.0.0.1 as usual. Use it to include the
own computer which also runs a server.

In the view above it is included the set up for trajec-
tory file transferring. Check “transferResults” if
transfer files to the dispatcher computer is to be
done. The variable “transferServer” is the network
name of the client computer and the “transferFolder”
is the network name of the shared folder.

The flag showInformation makes Dymola show a
window with the registered servers for debugging
purposes.

The functionalities of perturbParameter, sweep-
Parameter, sweepOneParameter, SweepTwoParame-
ters and MonteCarloAnalysis are described in more
detail in Dymola Additions document, and can be
used directly here. We will focus here on the setup
and running of the examples. We consider coupled-
Clutches as a reference case study.

The subpackage VDDemo has two functions: vehi-
cleSweepParameter and animateResultFile, used for
demonstration purposes.

3.2.1 Progress Monitoring

The task dealer presents in this window which task
was sent to which server, as well as the overall pro-
gress. The progress bar indicates the percentage of
work done and received by the client.

If any task could not be performed by a server, it will
be back to the task queue and the respective server
will be disabled (marked with red background). Yel-

480

J.D. López, H. Olsson

The Modelica Association Modelica 2006, September 4th – 5th

low background denotes ongoing simulation on
server. Green background denotes free server.

3.2.2 Collecting results

 During simulation time, Dymola inspects the result
queue in the master dispatcher waiting for results
with a simple Modelica Function call. For instance,
results are presented directly in sweepParameter as
the results are arriving. It is up to the Modelica func-
tion whether to present the incoming results or not.
In the figure below, the results of sweepParameter on
CoupledClutches example are depicted, after three
results are arrived.

Running a sweep with Payloads-example can be
done by clicking on “Commands/Roof load (11
cases) with weights from 0 to 200 Kg”, and then
execute. The model is depicted below.

For this example we used four servers. The dis-
patcher log evolves as depicted in the figure below.

Dymola shows the following view when all 11 cases
are completed. The visualisation is performed by a
special visualizer written for this example. In the
figure below, we observe a rectangle defined by the
position of the four wheels and the identifier of the
case.

 We observe with his experiment that the car is stable
with regard to a payload from 0 to 200 Kg.

481

Dymola interface to Java - A Case Study: Distributed Simulations

The Modelica Association Modelica 2006, September 4th – 5th

The final log window has the following information
and statistics. The first simulation was ready after
86.5 seconds (translation, compilation with Visual
Studio 2003 and running). We analyse now two runs
of sweepParameter.

To interpret the results, we consider the total time
against the best time. Using the best computer, the
total time for eleven simulations would be 411 sec-
onds. As a result of the distributed simulation, the
whole task needed only 202.5 seconds. This means
that the speedup factor was of 2,036. We observe
also that the localhost and the first server are slowing
down the simulation.

For a second run, we make the same sweep but for
one hundred simulations. In this way, we get rid of
initialisation overhead. Observe the final dispatcher
log.

We analyse this log in the next section.

3.3 Asymptotic resulting speed up

Confirmation of theoretical Speed up factor (approx.
number of servers) has been observed using long
simulation times using VehicleDynamics 1.0.2.

The effective time used per simulation for the second
sweep is of 12 seconds. The fastest simulation was
36.07 seconds. If we just only used the fastest com-
puter, the total elapsed time would have been 3607
seconds. The total elapsed time with these two serv-
ers was 1239 seconds. The resulting speedup factor
is 2.911 compared to the most optimistic scenario.

It is our experience that localhost behaves slower
than its equivalent server, since the dispatcher runs
also in the same computer. We added a computer
double so slow than the other two. Equivalently, we
were running with three equally fast servers in total,
reflected in the example.

482

J.D. López, H. Olsson

The Modelica Association Modelica 2006, September 4th – 5th

4 Conclusions

A new interface between Modelica and Java has
been implemented. This enables Modelica and Dy-
mola to take advantage of all Java features, making
possible the incorporation of java objects in Mode-
lica.
As such an example of Java applications with Dy-
mola, distributed simulations with Dymola where
implemented using the transparent RMI Java pack-
age. High speed up factors were observed with low
overhead. The main advantage is that RMI handles
directly all concerning network communication,
while Dymola handled all simulation aspects.

References

[1] Dymola User’s Manual, www.dynasim.com
[2] Elmqvist H., Olsson H., Mattsson S.E.,

Brück D., Schweiger C., Joos D., Otter M.,
Optimization for Design and Parameter Es-
timation, Proceedings of the 4th International
Modelica Conference, Hamburg-Haburg,
Germany, 2005.

[3] Olsson H., External Interface to Modelica in
Dymola, Proceedings of the 4th International
Modelica Conference, Hamburg-Haburg,
Germany, 2005.

[4] Gur-Ari, G. Empower RMI with TRMI.
http://www.javaworld.com/javaworld/jw-08-
2002/jw-0809-trmi.html

[5] Dymola Users Manual – Dymola 6.0 Addi-
tions, shipped together with Dymola distribu-
tion.

483

Dymola interface to Java - A Case Study: Distributed Simulations

