

The Modelica Association Modelica 2006, September 4th – 5th

A Modelica-based Format for Flexible Modelica Code Generation
 and Causal Model Transformations

Jonas Larsson+ Peter Fritzson*

+ Fluid- and Mechanical Engineering Systems, Dept. Mechanical Engineering
* PELAB – Programming Environments Lab, Dept. Computer Science

Linköping University, S-581 83 Linköping, Sweden
+ jonla@ikp.liu.se * petfr@ida.liu.se

Abstract

The equation-based modeling language Modelica
offers the possibility to extract a differential alge-
braic equation system (DAE). The DAE in turn can
be used in numerical simulation, optimization, sensi-
tivity analysis, diagnosis and more. For each of these
categories, there exist software tools that all require
slightly different input data, sometimes in symbolic
form. Through examples, this paper briefly outlines a
Modelica based format which can be used as input to
the final code generation. This could yield a modular
Modelica compiler in which the creation of diverse
code generators is encouraged, which in turn widens
the application area for Modelica. However, no for-
mal definition of the format is presented here..
The paper also briefly addresses the issue of possible
model causal adaptation needed at the equation level
to make the model fit into target application with a
causal usage context and how to automate the inclu-
sion of these changes for seamless translation.
Keywords: Modelica, DAE, numerical solver, code
generation, DSblock

1 Introduction

Modelica [1][8] is one of several equation-based
modeling languages for describing continuous dy-
namic behavior and discrete events in the context of
technical systems. A Modelica model can be flat-
tened from its object-oriented form to a hybrid DAE,
i.e., a DAE containing both continuous and discrete
variables. One example of a model resulting in a hy-
brid DAE is that of a chemical process in a plant in-
cluding a software-based controller and actuated
on/off valves. The hybrid DAE is normally opti-
mized such that numerical time-domain solutions
will converge rapidly at a low computational cost.

Finally, code generation takes place where the actual
programming code is created for the application at
hand, for example a simulation, optimization, sensi-
tivity analysis, or diagnosis.
This compiling process is complex and among other
things includes an extensive flattening procedure,
efficient symbolic manipulations and sorting algo-
rithms for a large number of equations. The creation
demands a deep knowledge in the Modelica seman-
tics as well as in the area of solving DAEs. As an
example, the OpenModelica compiler [2], pro-
grammed in a Modelica-like syntax [3] contains
some 100 000 lines of code.
In order to facilitate and encourage a widened coop-
eration in Modelica compiler construction, this paper
discusses a Modelica based format for the informa-
tion available between the optimization and code
generation steps, called MOO from now on. The in-
formation is essentially several equation sets for ini-
tialization, numerical integration, re-initialization at
discrete events, and finally output. Today there al-
ready exist a Modelica format between flattening and
optimization that is a subset of Modelica since the
object-oriented syntax is not needed at that stage.
The equation-based MOO format exemplified in this
paper enables a discussion between compiler design-
ers and the simulation tool developers at the other
end on the interface information needed This can
lead to widened support for Modelica in simulation
tools and to new solvers, etc. due to a more modular
development of code generators.
The second but smaller subject of the paper is on
adapting Modelica models in terms of interface vari-
ables and the equation set to fit a target application
with a specific causality context, such as a model
library with conventions for the exchanged variables
among models in terms of computational causality,
signs, and names. Through the algorithms described,

467

A Modelica Based Format for Flexible Modelica Code Generation and Causal Model Transformations

The Modelica Association Modelica 2006, September 4th – 5th

a model can be fitted with new interface variables
and equations if needed.

2 Related Work

The file based approach MOO has its disadvantages,
such as low performance in comparison to a mono-
lithic compiler since the internal data structure needs
to be converted to and from the Modelica syntax. On
the other hand, a programmer does not need to get
acquainted with the rest of the compiler code and
could save time this way. Moreover, flattened Mode-
lica of the OpenModelica compiler is already used
today as input to third party compilers.
Another alternative would be to keep the current
situation where the generated C code is utilized
through function calls to get access to derivatives,
output values etc, as is performed in DSblock [4] and
SimStruct [5]. However, this C code can be gener-
ated from MOO, so the MOO file is an inclusive op-
tion. Also, the advantage with introducing MOO is
that the equation sets produced are available on sym-
bolic form, which is important in order to create new
types of applications where the equations need to be
processed further through symbolic mathematics and
other operations. One example is optimization,
where the Hessian (matrix of second-order partial
derivatives) is of interest. Many mathematical opera-
tions can be performed numerically, such as creating
the Hessian, but often a mixed symbolic-numeric
approach results in higher accuracy and better per-
formance.
The paper [6] describes the syntax and semantics of
an interchange format for hybrid models in general
and is thus at a higher, more abstract level than
MOO. MOO is however specified with [6] in mind
not at least since compatibility between the two
means that the code generators implemented for
Modelica can be applied for other hybrid modeling
languages as well with minor effort.

3 Limitations

Algorithms, arrays, and function calls of the Mode-
lica language are not the main concern of this paper
but are at times commented in terms of implementa-
tion.

4 Hybrid Modeling in Modelica

In this chapter the basics of hybrid modelling in
Modelica is described as well as the example model
used throughout the text. In the following two sec-
tions, the resulting typical information from the flat-
tening and optimization steps is described as well as
the information needed for code generation with dif-
ferent applications in mind.
A bouncing ball is a good example of a hybrid sys-
tem. The motion of the ball is characterized by the
height h and the vertical velocity v. The ball moves
continuously between bounces, whereas discrete
changes occur at bounce times, as depicted in Figure
1 below. When the ball bounces against the ground
its velocity is reversed. An ideal ball would have an
elasticity coefficient e of 1 and would not lose any
energy at a bounce. A more realistic ball, as the one
modelled below, has an elasticity coefficient of 0.9,
making it keep 90 percent of its speed after the
bounce.

Figure 1. A bouncing ball

The bouncing ball model contains the two basic
equations of motion relating height and velocity as
well as the acceleration caused by the gravitational
force. At the bounce instant where the boolean im-
pact variable switches value, the velocity is sud-
denly reversed and slightly decreased, i.e., v(after
bounce) = -e*v(before bounce), which is
accomplished by the special syntactic form of instan-
taneous equation: reinit(v,-e*pre(v)). The
pre operator returns the value of the variable argu-
ment just before the latest event, in this case the ve-
locity just before impact. The edge operator used in
the example is simply defined as: var and not
pre(var) and thus indicates a change in the dis-
crete variable var.

model BouncingBall
 parameter Real e=0.7 "bounce coeff";
 parameter Real g=9.81 "gravity acc.";
 Real h(start=1) "height of ball";
 Real v "velocity of ball";
 Boolean flying(start=true);
 Boolean impact;
 Real v_new;
equation
 impact = h <= 0.0;
 der(v) = if flying then -g else 0;
 der(h) =v;

468

J. Larsson, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

 when {h <= 0.0 and v <= 0.0,impact} then
 v_new = if edge(impact) then

 -e*pre(v)
else
 0;

 flying = v_new > 0;
 reinit(v, v_new);
 end when;
end BouncingBall;

The equations within the when-equation are exe-
cuted whenever any of the given boolean expressions
changes values. Thus, if the ball is on the ground and
has a negative velocity but the impact variable has
not changed the velocity will be reset to zero and the
boolean variable flying is set to false. The deriva-
tive of the velocity in the equation section is then
also set to zero due to the if-expression.

5 Model Translation to Solvable
Mathematical Representation

A Modelica model is first flattened from its object
oriented form to a set of hybrid differential and alge-
braic equations on the hybrid DAE implicit form [8]

() () () () () () ()() 0,,,,,,,, =eepree tcptqtqttytutxtxF (1)

The vector q(te) is discrete-time variables and the
corresponding predecessor variable vector qpre(te) is
denoted pre(q) in Modelica. The time te used in-
stead of t for these variables indicate that such vari-
ables may only change value at event time points te.
The time t and constant vector p of parameters and
constants are made explicit in the equation. The vec-
tor c(te) is the conditional expressions from for ex-
ample if and when constructs, evaluated at the most
recent event.
Equation (1) can contain explicit or implicit alge-
braic relations among the states x which leads to dif-
ficulties in DAE solvers since numerical differentia-
tion is needed. Index reduction [7][8] is therefore
applied, which means that certain equations of the
DAE are differentiated symbolically wrt time. The
result can be brought to the form

() () () () () () ()() 0,,,,,,,, =eepreef tcptqtqttytutxtxf (2a)
() () () () () () ()() 0,,,,,,,, =eepreegf tcptqtqttytytutxg (2b)

where xf ∂∂ / , fyf ∂∂ / and gyg ∂∂ / are nonsingular
but most often nonlinear. The derivatives x and al-
gebraic variables yf are found by solving Eq. 2a after
which 2b is used for computing yg, which are output
variables. Equation 2 is supplied to an ODE or DAE
solver in order to compute x and y in between events.

Equation 2 is the presumed resulting equation set
from the optimization phase of the model compiling
process.
Apart from the equations in (2), there exist assign-
ments of discrete variables in normal equations as
well as in the instantaneous when equations which
are active only at events. These assignments can be
written

()
() () () () () ()

() () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

eepre

eeegefeee
qe tcptq

tqttytytutxtx
ftq

,,

,,,,,,,
: (3)

The boolean conditions vector is stated [8] as fol-
lows:

() () () () ()()()ee
B

e
B
pree

B
ee tvreltptqtqftc ,,,:= (4)

The function fe takes as arguments the subset of dis-
crete variables and parameters of boolean type and
the boolean vector rel contains all elementary rela-
tions of the model. Two possible relations are {a > b,
c < a} which yields a possible c(te) as {a>b and
not(c<a), a>b or c<a}.

6 Modelica Representation for Input
to Code Generation

A simulation comprises initialization in order to
reach consistent start values for dependent variables,
numerical integration between events, event detec-
tion during integration by detecting changes in the
boolean relations rel, solving both continuous and
discrete variables at events, and termination. The
MOO file contains information needed for all these
operations and is described in this section. The in-
formation in the MOO file is based on how the pre-
sent OpenModelica compiler is implemented and on
[5] and [8] - [11].
Since Modelica algorithms demand that all variables
on the right hand side are defined, a Modelica model
is more suitable than a function since the model can
contain equations as well. The model below is filled
with some of the Modelica statements discussed
from now on.

model PreCodeInfo
 // Parameter, constant and
 // variable declarations
equation
 // Equations
end PreCodeInfo;

469

A Modelica Based Format for Flexible Modelica Code Generation and Causal Model Transformations

The Modelica Association Modelica 2006, September 4th – 5th

6.1 Constants and Parameters

The parameter and constant declarations from the
flattened Modelica model are replicated. Attributes
such as minimum and maximum values and units are
important information since they can be used for er-
ror control in the generated code. Parameters such as
notset below with no fixed values are computed in
the initialization described later. This is also true for
bound parameters, i.e., computed from other parame-
ters.

parameter Real e=0.7;
parameter Real g=9.81;

parameter Real other=e*g(min=…);
parameter Real notset(fixed=false);

6.2 Variable Declarations

Variables have start values and at times a prefix stat-
ing whether the variable is discrete, input, or output.
States are found by searching equations for the der
operator applied to the variable in question in some
equation. The variable declarations for the bouncing
ball model are:

discrete Real v_new;
discrete Boolean impact;
discrete Boolean flying(start=true);
Real v;
Real h;

6.3 Initialization

Before simulation, the initial values for all variables,
including states and nonfixed parameters, need to be
computed. A similar procedure takes place after an
event has occurred. Initial equations (from the ini-
tial equation construct in Modelica) are part of
the total initial system of equations to be solved as
well as when-equations with the initial() condi-
tion and equations formed from initial values of vari-
ables with the fixed attribute set to true.
An equation list is formed containing all model equa-
tions, excluding those within when-clauses without
an initial() condition. Also, for continuous vari-
ables v with start=startExp and fixed=true,
equations on the form v=startExp are added. For
discrete variables under the same conditions, equa-
tions are added in which pre(v) = startExp. If
fixed=false then startExp is only used as start
value for the initialization, as is the case here. The
when equation reinit(v,v_new) is treated as
v=v_new in an initial equation if the when-condition
contains initial(). For all when-equations with
no initial() in the when-conditions, v=pre(v) is
added for all v := expr.

It may very well be that the initialization is not a
well posed problem, i.e., that the number of equa-
tions differs from the number of dependent variables.
In the bouncing ball model case, the start value of h
needs to be made fixed and v has no start value alto-
gether. The discrete variables v_new and flying
are initialized as well using default value 0 and start
value true.
The resulting set of equations is shown below where
both start values of discrete and continuous variables
are computed. Two algorithms for finding a zero free
diagonal [12] and then transforming into a block
lower triangular form [13] have been applied. This
results in a sequence of equation systems that can be
solved more efficiently than the complete implicit
equation system. The first index in the equations be-
low is the block and the other the equation number.
Where possible, the variables have been solved for
and are given as the first element in the list, followed
by the equation right hand side and then a string
commenting on whether the second argument is the
right hand side of an assignment or the residual.

iEq[1,1] = {pre(v_new),0,"ass"};
iEq[2,2] = {v_new,pre(v_new),"ass"};
iEq[3,3] = {pre(flying),true,"ass"};
iEq[4,4] = {flying,pre(flying),"ass"};
iEq[5,5] = {h,1,"ass"};
iEq[6,6] = {v,0,"ass"};
iEq[7,7] = {der(h),v,"ass"};
iEq[8,8] = {impact,h<=0.0,"ass"};
iEq[9,9] = {der(v),if flying then –g else
 0, "ass"};

For equations that cannot be solved explicitly, such
as nonlinear(v)=expression, the equation is
simply written in the residual form, shown below.
Any other residual is formed by subtracting the sec-
ond argument of the equation expressions above
from the solved variable, such as pre(flying)-
true in the third equation.

iEq[1] = {v,nonlinear(v)-expression,"res"};

In the bouncing ball model case, the variables can be
computed sequentially. For each block however, if
containing several equations, the mixed set of equa-
tions containing both discrete (Eq. (3)) and continu-
ous variables (Eq. (2)) needs to be solved either
through fixed point iteration over the discrete vari-
ables followed by normal solving of remaining vari-
ables or through other means such as optimization of
the complete equation set in the block.

470

J. Larsson, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

Jacobians

Jacobians can be defined only for the continuous
equation subsets of each block since the discrete
variables are discontinuous. Newton-Raphson itera-
tion or other techniques can then be utilized for both
linear and nonlinear equation blocks in order to pro-
vide a consistent and simple code generation. The
Jacobian elements can in the case of a linear block
alternatively be made input to a linear solver such as
those contained in LAPACK [14] . Whether a block
is linear or nonlinear is easily found by analyzing
and searching the Jacobian for non-constant ele-
ments.
The Jacobians usually increase performance but de-
mand symbolic manipulations and are therefore
valuable to relieve the code generation software
from. Consider the nonlinear equation system below:

iEq[1,1] = {a,sin(a)-userf(b),”res”};
iEq[1,2] = {b,cos(a)-abs(b),”res”};

The equations form a block of two equations and the
Jacobian becomes :

iJac[1] = {{1,cos(a)},{2,-der_userf(b))}};
iJac[2] = {{1,-sin(a)},{2,-(if b<= 0 then -
1 else 1)}};

where only non-zero elements are included. In this
case, the partial derivative function der_userf has
been defined by the modeler as below:

function userf
 input Real x;
 output Real y;
algorithm
 // . . .
end userf;
der_userf = der(userf,x);

When such a partial derivative definition exists,
automatic differentiation as in [15] can be utilized in
many cases, at least if the derivative function is not
defined as external. For external functions, only nu-
merical differentiation remains in the general case.

6.4 Numerical Integration

After the initialization, numerical integration of the
derivatives can take place in simulation in order to
compute the states. For this purpose the ODE of Eq.
(2) is supplied on the form previously described
where the equations after the last differential equa-
tion are separated (2b) and computed in the output
section together with simple equations that have
been removed during optimization. In the ball model

case the derivative equations can be extracted from
the complete set of equations below

Eq[1,1] = {der(h),v,"ass"};
Eq[2,2] = {der(v),if flying then –g else
 0,"ass"};

Jac[1] = {{1,1}};
Jac[2] = {{1,1}};

6.5 Reinitalization

When an event has occurred, certain when condi-
tions will change and thus a certain new set of when
equations will be active. The equation system will
therefore change between events. This can be ex-
ploited by preparing efficient code for each combina-
tion of events. The number of combinations easily
becomes large however and that is why the Modelica
compiler Dymola [9] performs an offline simulation
in order to see which combinations are likely to oc-
cur. A general solution works as well but with lower
performance and is the one sketched here.
The equation set is created for the case where all
when-equations are active. After an event, the effec-
tive equation system is gathered from this list using
information on which when-equations are active.
The states are considered known unless they are part
of any active reinit equations in which case the
reinits are treated as state assignments. In the exam-
ple below, the complete equation set is shown to-
gether with the Jacobian. Here, the complete set is
the same as the one formed when one of the when-
conditions becomes true.

riEq[1,1] = {impact,h<=0.0,”ass”};
riEq[2,2] = {v_new,if edge(impact) then –
 e*pre(v) else 0,”inst”};
riEq[3,3] = {v, v_new,”inst”};
riEq[4,4] = {flying, v_new>0,”inst”};
riEq[5,5] = {der(h),v,”ass”};
riEq[6,6] = {der(v),if flying then –g else
 0,”ass”};

riJac[5] = {{5,1}};
riJac[6] = {{6,1}};

The equation system above has been sorted and par-
titioned, which is too demanding during simulation.
The Jacobian can however be used at all times since
it only is defined for the continuous equations and is
not affected by causality.

6.6 Event Detection and Location

Any discontinuity in the ODE equation set during
simulation can be captured through zero crossing
functions that switch sign at the discontinuity. One
function is created for each unique relation in rel.

471

A Modelica Based Format for Flexible Modelica Code Generation and Causal Model Transformations

The Modelica Association Modelica 2006, September 4th – 5th

These functions are provided to the numerical inte-
grator in order for the integrator to identify the time
point of the discontinuity and restart the simulation
at that point with new values for the states. The zero
crossing functions below are given together with
which equations they either are part of (can be both
in Eq. (2) and (3)) or can make active by being part
of when conditions.

z = {0.0-h,{1,2,3,4}}; 0.0-v,{2,3,4}};

Zero crossing functions reflect changes in relations
that affect boolean variables that are part of when-
conditions. To determine the current active set of
when-equations it is necessary to know which when-
equations a boolean equation triggers. In this case,
the impact equation triggers the second when-
condition and therefore could make equations 2, 3
and 4 active.

c = {1,{2,3,4}};

6.7 Code Generation

Given the complete Modelica model and naming
conventions described above code can be generated
for usage in a simulation environment, for example.
Since it is Modelica syntax, the Modelica parser can
be reused as well as parts of existing Modelica com-
pilers for generating C code for individual Modelica
expressions.
By translating the Modelica code to ModelicaXML
[16], an XML implementation, a standard XML
parser can be used instead together with widely used
XML tools for traversing the XML structure and ex-
tracting and transforming information.

7 Model Adaptation for Causal Ex-
ternal Usage

Imagine the scenario where a Modelica model is to
be used within several causal models, for example
within the simulation environments EASY5 and
Simulink. One example could be a Modelica model
of an engine, or even a complete standard Modelica
library of driveline components that modelers of dif-
ferent enterprises have the interest of making part of
their complete vehicle simulations performed in do-
main specific simulation tools with no support for
equation-based models. A recent case is the CAPSim
simulation centre [17] for hybrid vehicle simulation
that has a model library open for usage and where
the intention is to make the models usable for many
simulation environments.

A flexible compiler supports straightforward code
generation suited for these different environments,
but the models themselves need to be adapted at the
equation level as well, as is described in this section.
Consider a mechanical inertia model with outside
connectors containing position and force. The con-
nector class is specified in Modelica as shown be-
low. The flow keyword tells the compiler to sum
corresponding variables in a connection with other
connectors. The non-flow variables are set equal.
The mentioned inertia model connectors are part of
the external interface and it is through those the com-
munication of connector variables to and from other
models takes place.

connector flange_pos
 Real pos(unit="m") "Pos into";
 flow Real force(unit="N") "Pos out";
end flange_pos;

Now consider a model where the outside connectors
contain speed and force instead. Connecting the two
models could be performed through a model that
contains an equation for the relation between speed
and position. This could even be automated by iden-
tifying differential variables and corresponding de-
rivatives through unit checking.

model intermediate
 flange_speed fs;
 flange_pos fp;
equation
 fs.speed=der(fp.pos);
 fs.force=fp.force;
end intermediate;

connector flange_speed
 Real speed(unit="m/s");
 flow Real force(unit="N");
end flange_speed;

But in a causal target environment, the connectors
are causal. The next example demonstrates a wrapper
that assigns causalities to an acausal fource source
model to make it suitable for insertion into a specific
causal target model.

model force_source
 flange_pos flange_p;
equation
 flange_p.force = 0.2*cos(time);
end force_source;

model wrapper
 flange_pos flange_p;
 input Real speed;
 output Real force;
equation
 speed=der(flange_p.pos);
 force=flange_p.force;
end wrapper;

The causal model is created as below by connecting
the wrapper to the force source. A Modelica com-

472

J. Larsson, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

piler is able to create code for this model and saves
information about the connectors in the comments of
the input and output variables.

model causal
 wrapper w;
 force_source fs;
 input Real speed "($Conn:flange_p)";
 output Real force "($Conn:flange_p)";
equation
 connect(w.flange_p,fs.flange_p);
 w.speed=speed;
 force=w.force;
end causal;

7.1 Automatic Adaptation

The content of the wrapper model depends on both
source and target model connector variables. New
variables may need to be created, as the speed in this
case, unit conversions may need to be applied as well
as sign changes. All in all, a large number of combi-
nations exist for which wrappers need to be created
to support the usage of the model in arbitrary causal
models. But the standards for exchanging variables
among causal models in a certain simulation envi-
ronment can be declared in template connectors,
where also sign conventions are declared. In the
force source example, the connector template could
look like

model template_connector
 input Real speed(unit="m/s") "Pos out";
 output Real force(unit="N") "Pos into";
end template_connector;

From the template connector, a compiler can create
the wrapper and causal model automatically as is
described from now on. By comparing the connector
class flange_pos with template_connector, it
can be seen that two variables have the same units;
the forces. The variables pos and speed have dif-
ferent units, but here it can be seen that speed is the
derivative of pos by analyzing the units. The wrap-
per model is now complete, the forces are set equal
and the derivative relation is established. If the speed
of template_connector would have had the unit
“mm/s” instead, a factor 1000 would have been
needed in the wrapper equation.
There is no sign convention information in the Mod-
elica models apart from comments. This information
can be used as a starting point, looking for keywords
such as “out of” and “into” and similar. But of
course more explicit information would be valuable.
In this case the sign conventions differ and the wrap-
per equations will both contain negations.
Here follows yet another template connector that
could be used instead of the one defined earlier. The
resulting causal model is compatible with the use of
so called bilateral delay lines [18], which provide

means for robust coupled simulation in which every
component model solves its own equations and
communicates at discrete time points with surround-
ing models. The variable C is in this case a force
wave that passes back and forth in the delay line, as
is the case in metal rods, for example. The end result
is an overall numerical solution that mimics the time
delay existing in physical interactions in nature. The
variable Z is a kind of impedance. Without going
further into the details of delay lines, the example
shows how new equations can be automatically
added to existing models in a mathematically sound
way in order to adjust the models towards various
boundary conditions.

model template_connector
 input Real C(unit="N");
 input Real Z(unit="N.s/m");
 output Real speed(unit="m/s");
 output Real force(unit="N");
equation
 force = C + Z*speed;
end template_connector;

7.2 Causality Combinations

It could be that the force source model cannot be
solved with the specified input-output causality in
the target connector. Since in causal environments,
every second model has inverted causalities for
compatibility in variable exchange, this can be tested
for the target connector to see if that works better.
The force source model can be solved with speed as
input and force as output, but not the other way
around. The test can be performed through maximum
matching algorithms [12] present in standard Mode-
lica compilers.
What has not been mentioned so far is how to find a
matching target connector for a certain outside con-
nector of the Modelica model. For a match to exist
there must be a one to one match between an outside
connector variable and a causal target connector
variable in terms of units. The units may be of dif-
ferentiated/integrated form in the target connector.
The target connector may have more variables if they
are output variables and are part of supplied equa-
tions.
If the model has a number of connectors of different
classes, such as both mechanical, electrical and other
types, the testing becomes tedious and the testing can
be handed over to the compiler to either generate all
solvable combinations of inverted and non-inverted
target connector causalities or generate the “best”
solution. One measure for how good a solution is to
see how high index the adapted model has. One ex-
ample is feeding a mass with a position rather than

473

A Modelica Based Format for Flexible Modelica Code Generation and Causal Model Transformations

The Modelica Association Modelica 2006, September 4th – 5th

force and thus removing its inertia effect. The user
interface could be implemented such that there is a
choice to enforce the default target boundary condi-
tions or to give priority to low index.
The model adaptation method where low index is
prioritized described in this section has been imple-
mented and tested in a Modelica compiler [19] sup-
porting only continuous equations without arrays.
The model adaptation takes place after flattening
where the outside connectors of the flattened model
have not been flattened so that they can still be iden-
tified. The algorithms have been proven useful since
the compiler automatically produces numerically
sound code for a given set of target connector tem-
plates and a source Modelica model.

8 Conclusions

A partial implementation of the Modelica intermedi-
ate code format has been done in the OpenModelica
compiler to be used as input to external code genera-
tors. The intent is that this information can be pro-
duced and is complete for generating simulation
code from hybrid Modelica models.
The model adaptation functionality for using Mode-
lica models in an external causal context needs to be
implemented in a compiler supporting the complete
Modelica language, e.g. soon OpenModelica. This
can pose problems, not at least due to the increas-
ingly complex definition of connectors in Modelica.
Nonetheless the model adaptation can be made less
automatic if needed, for example by defining explicit
transformations among different connector defini-
tions.

References

[1] Modelica Association (2005): Modelica – A Uni-
fied Object-Oriented Language for Physical
Systems Modeling – Language Specification.
Version 2.2

[2] P Fritzson, et al (2002): The Open Source Mod-
elica Project. In Proceedings of The 2nd Interna-
tional Modelica Conference, 18-19 March, 2002,
Munich, Germany. See www.ida.liu.se/projects/
OpenModelica

[3] P. Fritzson, A. Pop and P. Aronsson (2005): To-
wards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica.
Proceedings of the 4th International Modelica
Conference, Hamburg, pp. 519-525

[4] M. Otter and H. Elmqvist (1995): The DSblock
model interface for exchanging model compo-

nents. In Proceedings of the 1995 EUROSIM
Conference, Elsevier Science Publishers, pp. 505-
510

[5] P. J. Mosterman and J. E. Ciolfi (2002): Embed-
ded Code Generation for Efficient Reinitializa-
tion. Proceedings of 2002 IFAC 15th Triennial
World Congress, Barcelona, Spain.

[6] A. Pinto, L. P. Carloni, R. Passerone and A. San-
giovanni-Vincentelli (2006): Interchange Se-
mantics for Hybrid System Models. Proced-
dings 5th MATHMOD Vienna

[7] C. Pantelides (1988). The Consistent Initializa-
tion of Differential Algebraic Systems. SIAM
Journal on Scientific and Statistical Computing,
Vol. 9

[8] P. Fritzson (2004): Principles of Object-
Oriented Modeling and Simulation with Mode-
lica 2.1. Wiley-IEEE Press, ISBN 0-471-47163-1

[9] S.E. Mattsson, M. Otter, M, and H. Elmqvist
(1999): Modelica Hybrid Modeling and Effi-
cient Simulation, the 38th IEEE Conference on
Decision and Control, CDC'99, Phoenix, Arizona,
USA

[10] T. Park, P.I. Barton (1996): State Event Loca-
tion in Differential-Algebraic Models. ACM
Transactions on Modeling and Computer Simula-
tion, Vol. 6, No. 2, pp. 137-165

[11] P. I. Barton and C. K. Lee (2002): Modeling,
Simulation, Sensitivity Analysis and Optimiza-
tion of Hybrid Systems. ACM Transactions on
Modeling and Computer Simulation, Vol. 12, No.
4, pp. 256-289

[12] I. S. Duff and J. K. Reid (1981): Algorithm 575
Permutations for a zero-free diagonal. ACM
Transactions on Mathematical Software, Vol. 7,
pp. 387-390

[13] I. S. Duff and J. K. Reid (1978) An implementa-
tion of Tarjan’s algorithm for the block trian-
gularization of a matrix. ACM Transactions on
Mathematical Software, Vol. 4, pp. 137-147

[14] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J.
Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D.
Sorensen (1995): LAPACK Users' Guide.
SIAM Philadelphia, Pennsylvania, 2 edition

[15] H. Olsson, H. Tummescheit, and H. Elmqvist
(2005): Using Automatic Differentiation for
Partial Derivatives of Functions in Modelica.
Proceedings of the 4th International Modelica
Conference, Hamburg, pp. 105-112

[16] A. Pop and P. Fritzson (2003): ModelicaXML: A
Modelica XML Representation with Applica-
tions, Proceedings of the 3rd International Mode-
lica Conference, Linköping, November 3-4, pp.
419-430

[17] J. Fredriksson, J. Larsson, J. Sjöberg and P. Krus
(2006): Evaluating Hybrid Electric and Fuel

474

J. Larsson, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

Cell Vehicles using the CAPSim Simulation
Environment. The 22nd International Battery,
Hybrid and Fuel Cell Electric Vehicle Sympo-
sium & Exposition, October 23-28

[18] D. M. Auslander D.M (1968): Distributed Sys-
tem Simulation with Bilateral Delay-Line
Models. Journal of Basic Engineering, Transac-
tions of ASME, pp. 195-200

[19] J. Larsson (2007): A Framework for Implemen-
tation-Independent Simulation Models. Ac-
cepted for publication in Simulation: Transactions
of the Society for Modeling and Simulation Inter-
national

475

A Modelica Based Format for Flexible Modelica Code Generation and Causal Model Transformations

