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Abstract 

The equation-based modeling language Modelica 
offers the possibility to extract a differential alge-
braic equation system (DAE). The DAE in turn can 
be used in numerical simulation, optimization, sensi-
tivity analysis, diagnosis and more. For each of these 
categories, there exist software tools that all require 
slightly different input data, sometimes in symbolic 
form. Through examples, this paper briefly outlines a 
Modelica based format which can be used as input to 
the final code generation. This could yield a modular 
Modelica compiler in which the creation of diverse 
code generators is encouraged, which in turn widens 
the application area for Modelica. However, no for-
mal definition of the format is presented here.. 
The paper also briefly addresses the issue of possible 
model causal adaptation needed at the equation level 
to make the model fit into target application with a 
causal usage context and how to automate the inclu-
sion of these changes for seamless translation. 
Keywords: Modelica, DAE, numerical solver, code 
generation, DSblock 

1 Introduction 

Modelica [1][8] is one of several equation-based 
modeling languages for describing continuous dy-
namic behavior and discrete events in the context of 
technical systems. A Modelica model can be flat-
tened from its object-oriented form to a hybrid DAE, 
i.e., a DAE containing both continuous and discrete 
variables. One example of a model resulting in a hy-
brid DAE is that of a chemical process in a plant in-
cluding a software-based controller and actuated 
on/off valves. The hybrid DAE is normally opti-
mized such that numerical time-domain solutions 
will converge rapidly at a low computational cost. 

Finally, code generation takes place where the actual 
programming code is created for the application at 
hand, for example a simulation, optimization, sensi-
tivity analysis, or diagnosis. 
This compiling process is complex and among other 
things includes an extensive flattening procedure, 
efficient symbolic manipulations and sorting algo-
rithms for a large number of equations. The creation 
demands a deep knowledge in the Modelica seman-
tics as well as in the area of solving DAEs. As an 
example, the OpenModelica compiler [2], pro-
grammed in a Modelica-like syntax [3] contains 
some 100 000 lines of code. 
In order to facilitate and encourage a widened coop-
eration in Modelica compiler construction, this paper 
discusses a Modelica based format for the informa-
tion available between the optimization and code 
generation steps, called MOO from now on. The in-
formation is essentially several equation sets for ini-
tialization, numerical integration, re-initialization at 
discrete events, and finally output. Today there al-
ready exist a Modelica format between flattening and 
optimization that is a subset of Modelica since the 
object-oriented syntax is not needed at that stage. 
The equation-based MOO format exemplified in this 
paper enables a discussion between compiler design-
ers and the simulation tool developers at the other 
end on the interface information needed This can 
lead to widened support for Modelica in simulation 
tools and to new solvers, etc. due to a more modular 
development of code generators.  
The second but smaller subject of the paper is on 
adapting Modelica models in terms of interface vari-
ables and the equation set to fit a target application 
with a specific causality context, such as a model 
library with conventions for the exchanged variables 
among models in terms of computational causality, 
signs, and names. Through the algorithms described, 
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a model can be fitted with new interface variables 
and equations if needed. 

2 Related Work 

The file based approach MOO has its disadvantages, 
such as low performance in comparison to a mono-
lithic compiler since the internal data structure needs 
to be converted to and from the Modelica syntax. On 
the other hand, a programmer does not need to get 
acquainted with the rest of the compiler code and 
could save time this way. Moreover, flattened Mode-
lica of the OpenModelica compiler is already used 
today as input to third party compilers.  
Another alternative would be to keep the current 
situation where the generated C code is utilized 
through function calls to get access to derivatives, 
output values etc, as is performed in DSblock [4] and 
SimStruct [5]. However, this C code can be gener-
ated from MOO, so the MOO file is an inclusive op-
tion. Also, the advantage with introducing MOO is 
that the equation sets produced are available on sym-
bolic form, which is important in order to create new 
types of applications where the equations need to be 
processed further through symbolic mathematics and 
other operations. One example is optimization, 
where the Hessian (matrix of second-order partial 
derivatives) is of interest. Many mathematical opera-
tions can be performed numerically, such as creating 
the Hessian, but often a mixed symbolic-numeric 
approach results in higher accuracy and better per-
formance. 
The paper [6] describes the syntax and semantics of 
an interchange format for hybrid models in general 
and is thus at a higher, more abstract level than 
MOO. MOO is however specified with [6] in mind 
not at least since compatibility between the two 
means that the code generators implemented for 
Modelica can be applied for other hybrid modeling 
languages as well with minor effort.  

3 Limitations 

Algorithms, arrays, and function calls of the Mode-
lica language are not the main concern of this paper 
but are at times commented in terms of implementa-
tion.  

4 Hybrid Modeling in Modelica  

In this chapter the basics of hybrid modelling in 
Modelica is described as well as the example model 
used throughout the text. In the following two sec-
tions, the resulting typical information from the flat-
tening and optimization steps is described as well as 
the information needed for code generation with dif-
ferent applications in mind.  
A bouncing ball is a good example of a hybrid sys-
tem. The motion of the ball is characterized by the 
height h and the vertical velocity v. The ball moves 
continuously between bounces, whereas discrete 
changes occur at bounce times, as depicted in Figure 
1 below. When the ball bounces against the ground 
its velocity is reversed. An ideal ball would have an 
elasticity coefficient e of 1 and would not lose any 
energy at a bounce. A more realistic ball, as the one 
modelled below, has an elasticity coefficient of 0.9, 
making it keep 90 percent of its speed after the 
bounce. 

 
 

Figure 1. A bouncing ball 
 
The bouncing ball model contains the two basic 
equations of motion relating height and velocity as 
well as the acceleration caused by the gravitational 
force. At the bounce instant where the boolean im-
pact variable switches value, the velocity is sud-
denly reversed and slightly decreased, i.e., v(after 
bounce) = -e*v(before bounce), which is 
accomplished by the special syntactic form of instan-
taneous equation: reinit(v,-e*pre(v)). The 
pre operator returns the value of the variable argu-
ment just before the latest event, in this case the ve-
locity just before impact. The edge operator used in 
the example is simply defined as: var and not 
pre(var) and thus indicates a change in the dis-
crete variable var.  
 
model BouncingBall  
  parameter Real e=0.7 "bounce coeff"; 
  parameter Real g=9.81 "gravity acc."; 
  Real h(start=1) "height of ball"; 
  Real v "velocity of ball"; 
  Boolean flying(start=true); 
  Boolean impact; 
  Real v_new; 
equation 
  impact = h <= 0.0; 
  der(v) = if flying then -g else 0; 
  der(h) =v; 
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  when {h <= 0.0 and v <= 0.0,impact} then 
    v_new =  if edge(impact) then  

  -e*pre(v)  
else  
  0; 

    flying = v_new > 0; 
    reinit(v, v_new); 
  end when; 
end BouncingBall; 
 
The equations within the when-equation are exe-
cuted whenever any of the given boolean expressions 
changes values. Thus, if the ball is on the ground and 
has a negative velocity but the impact variable has 
not changed the velocity will be reset to zero and the 
boolean variable flying is set to false. The deriva-
tive of the velocity in the equation section is then 
also set to zero due to the if-expression. 

5 Model Translation to Solvable 
Mathematical Representation 

A Modelica model is first flattened from its object 
oriented form to a set of hybrid differential and alge-
braic equations on the hybrid DAE implicit form [8] 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,, =eepree tcptqtqttytutxtxF  (1) 
 
The vector q(te) is discrete-time variables and the 
corresponding predecessor variable vector qpre(te) is 
denoted pre(q) in Modelica. The time te used in-
stead of t for these variables indicate that such vari-
ables may only change value at event time points te. 
The time t and constant vector p of parameters and 
constants are made explicit in the equation. The vec-
tor c(te) is the conditional expressions from for ex-
ample if and when constructs, evaluated at the most 
recent event.  
Equation (1) can contain explicit or implicit alge-
braic relations among the states x which leads to dif-
ficulties in DAE solvers since numerical differentia-
tion is needed. Index reduction [7][8] is therefore 
applied, which means that certain equations of the 
DAE are differentiated symbolically wrt time. The 
result can be brought to the form  
 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,, =eepreef tcptqtqttytutxtxf  (2a) 
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,, =eepreegf tcptqtqttytytutxg  (2b) 

 
where xf ∂∂ / , fyf ∂∂ /  and gyg ∂∂ /  are nonsingular 
but most often nonlinear. The derivatives x  and al-
gebraic variables yf are found by solving Eq. 2a after 
which 2b is used for computing yg, which are output 
variables. Equation 2 is supplied to an ODE or DAE 
solver in order to compute x and y in between events. 

Equation 2 is the presumed resulting equation set 
from the optimization phase of the model compiling 
process.  
Apart from the equations in (2), there exist assign-
ments of discrete variables in normal equations as 
well as in the instantaneous when equations which 
are active only at events. These assignments can be 
written 
 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ⎟
⎟
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,,
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The boolean conditions vector is stated [8] as fol-
lows: 
 

( ) ( ) ( ) ( ) ( )( )( )ee
B

e
B
pree

B
ee tvreltptqtqftc ,,,:=   (4) 

 
The function fe takes as arguments the subset of dis-
crete variables and parameters of boolean type and 
the boolean vector rel contains all elementary rela-
tions of the model. Two possible relations are {a > b, 
c < a} which yields a possible c(te) as {a>b and 
not(c<a), a>b or c<a}. 

6 Modelica Representation for Input 
to Code Generation 

A simulation comprises initialization in order to 
reach consistent start values for dependent variables, 
numerical integration between events, event detec-
tion during integration by detecting changes in the 
boolean relations rel, solving both continuous and 
discrete variables at events, and termination. The 
MOO file contains information needed for all these 
operations and is described in this section. The in-
formation in the MOO file is based on how the pre-
sent OpenModelica compiler is implemented and on 
[5] and [8] - [11]. 
Since Modelica algorithms demand that all variables 
on the right hand side are defined, a Modelica model 
is more suitable than a function since the model can 
contain equations as well. The model below is filled 
with some of the Modelica statements discussed 
from now on. 
 
model PreCodeInfo 
 // Parameter, constant and  
 // variable declarations 
equation 
 // Equations 
end PreCodeInfo; 
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6.1 Constants and Parameters 

The parameter and constant declarations from the 
flattened Modelica model are replicated. Attributes 
such as minimum and maximum values and units are 
important information since they can be used for er-
ror control in the generated code. Parameters such as 
notset below with no fixed values are computed in 
the initialization described later. This is also true for 
bound parameters, i.e., computed from other parame-
ters. 
 
parameter Real e=0.7; 
parameter Real g=9.81; 
 
parameter Real other=e*g(min=…); 
parameter Real notset(fixed=false); 

6.2 Variable Declarations 

Variables have start values and at times a prefix stat-
ing whether the variable is discrete, input, or output. 
States are found by searching equations for the der 
operator applied to the variable in question in some 
equation. The variable declarations for the bouncing 
ball model are: 
 

discrete Real v_new; 
discrete Boolean impact; 
discrete Boolean flying(start=true); 
Real v; 
Real h; 

6.3 Initialization 

Before simulation, the initial values for all variables, 
including states and nonfixed parameters, need to be 
computed. A similar procedure takes place after an 
event has occurred. Initial equations (from the ini-
tial equation construct in Modelica) are part of 
the total initial system of equations to be solved as 
well as when-equations with the initial() condi-
tion and equations formed from initial values of vari-
ables with the fixed attribute set to true.  
An equation list is formed containing all model equa-
tions, excluding those within when-clauses without 
an initial() condition. Also, for continuous vari-
ables v with start=startExp and fixed=true, 
equations on the form v=startExp are added. For 
discrete variables under the same conditions, equa-
tions are added in which pre(v) = startExp. If 
fixed=false then startExp is only used as start 
value for the initialization, as is the case here. The 
when equation reinit(v,v_new) is treated as 
v=v_new in an initial equation if the when-condition 
contains initial(). For all when-equations with 
no initial() in the when-conditions, v=pre(v) is 
added for all v := expr.  

It may very well be that the initialization is not a 
well posed problem, i.e., that the number of equa-
tions differs from the number of dependent variables. 
In the bouncing ball model case, the start value of h 
needs to be made fixed and v has no start value alto-
gether. The discrete variables v_new and flying 
are initialized as well using default value 0 and start 
value true. 
The resulting set of equations is shown below where 
both start values of discrete and continuous variables 
are computed. Two algorithms for finding a zero free 
diagonal [12] and then transforming into a block 
lower triangular form [13] have been applied. This 
results in a sequence of equation systems that can be 
solved more efficiently than the complete implicit 
equation system. The first index in the equations be-
low is the block and the other the equation number. 
Where possible, the variables have been solved for 
and are given as the first element in the list, followed 
by the equation right hand side and then a string 
commenting on whether the second argument is the 
right hand side of an assignment or the residual.  
 
iEq[1,1] = {pre(v_new),0,"ass"}; 
iEq[2,2] = {v_new,pre(v_new),"ass"}; 
iEq[3,3] = {pre(flying),true,"ass"}; 
iEq[4,4] = {flying,pre(flying),"ass"}; 
iEq[5,5] = {h,1,"ass"}; 
iEq[6,6] = {v,0,"ass"}; 
iEq[7,7] = {der(h),v,"ass"}; 
iEq[8,8] = {impact,h<=0.0,"ass"}; 
iEq[9,9] = {der(v),if flying then –g else  
     0, "ass"}; 
 

For equations that cannot be solved explicitly, such 
as nonlinear(v)=expression, the equation is 
simply written in the residual form, shown below. 
Any other residual is formed by subtracting the sec-
ond argument of the equation expressions above 
from the solved variable, such as pre(flying)-
true in the third equation. 
 

iEq[1] = {v,nonlinear(v)-expression,"res"}; 

 

In the bouncing ball model case, the variables can be 
computed sequentially. For each block however, if 
containing several equations, the mixed set of equa-
tions containing both discrete (Eq. (3)) and continu-
ous variables (Eq. (2)) needs to be solved either 
through fixed point iteration over the discrete vari-
ables followed by normal solving of remaining vari-
ables or through other means such as optimization of 
the complete equation set in the block.  
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Jacobians 

Jacobians can be defined only for the continuous 
equation subsets of each block since the discrete 
variables are discontinuous. Newton-Raphson itera-
tion or other techniques can then be utilized for both 
linear and nonlinear equation blocks in order to pro-
vide a consistent and simple code generation. The 
Jacobian elements can in the case of a linear block 
alternatively be made input to a linear solver such as 
those contained in LAPACK [14] . Whether a block 
is linear or nonlinear is easily found by analyzing 
and searching the Jacobian for non-constant ele-
ments.  
The Jacobians usually increase performance but de-
mand symbolic manipulations and are therefore 
valuable to relieve the code generation software 
from. Consider the nonlinear equation system below: 
 
iEq[1,1] = {a,sin(a)-userf(b),”res”}; 
iEq[1,2] = {b,cos(a)-abs(b),”res”}; 

 
The equations form a block of two equations and the 
Jacobian becomes : 
 
iJac[1] = {{1,cos(a)},{2,-der_userf(b))}}; 
iJac[2] = {{1,-sin(a)},{2,-(if b<= 0 then -
1 else 1)}}; 

 
where only non-zero elements are included. In this 
case, the partial derivative function der_userf has 
been defined by the modeler as below: 
 

function userf 
 input Real x; 
 output Real y; 
algorithm 
 // . . . 
end userf; 
der_userf = der(userf,x); 

 
When such a partial derivative definition exists, 
automatic differentiation as in [15] can be utilized in 
many cases, at least if the derivative function is not 
defined as external. For external functions, only nu-
merical differentiation remains in the general case. 

6.4 Numerical Integration 

After the initialization, numerical integration of the 
derivatives can take place in simulation in order to 
compute the states. For this purpose the ODE of Eq. 
(2) is supplied on the form previously described 
where the equations after the last differential equa-
tion are separated (2b) and computed in the output 
section together with simple equations that have 
been removed during optimization. In the ball model 

case the derivative equations can be extracted from 
the complete set of equations below 
 
Eq[1,1] = {der(h),v,"ass"}; 
Eq[2,2] = {der(v),if flying then –g else  
         0,"ass"}; 
 
Jac[1] = {{1,1}}; 
Jac[2] = {{1,1}}; 

6.5 Reinitalization 

When an event has occurred, certain when condi-
tions will change and thus a certain new set of when 
equations will be active. The equation system will 
therefore change between events. This can be ex-
ploited by preparing efficient code for each combina-
tion of events. The number of combinations easily 
becomes large however and that is why the Modelica 
compiler Dymola [9] performs an offline simulation 
in order to see which combinations are likely to oc-
cur. A general solution works as well but with lower 
performance and is the one sketched here. 
The equation set is created for the case where all 
when-equations are active. After an event, the effec-
tive equation system is gathered from this list using 
information on which when-equations are active. 
The states are considered known unless they are part 
of any active reinit equations in which case the 
reinits are treated as state assignments. In the exam-
ple below, the complete equation set is shown to-
gether with the Jacobian. Here, the complete set is 
the same as the one formed when one of the when-
conditions becomes true. 
 
 
riEq[1,1] = {impact,h<=0.0,”ass”}; 
riEq[2,2] = {v_new,if edge(impact) then – 
       e*pre(v) else 0,”inst”}; 
riEq[3,3] = {v, v_new,”inst”}; 
riEq[4,4] = {flying, v_new>0,”inst”}; 
riEq[5,5] = {der(h),v,”ass”}; 
riEq[6,6] = {der(v),if flying then –g else  
         0,”ass”}; 
 
riJac[5] = {{5,1}}; 
riJac[6] = {{6,1}}; 

 
The equation system above has been sorted and par-
titioned, which is too demanding during simulation. 
The Jacobian can however be used at all times since 
it only is defined for the continuous equations and is 
not affected by causality. 

6.6 Event Detection and Location 

Any discontinuity in the ODE equation set during 
simulation can be captured through zero crossing 
functions that switch sign at the discontinuity. One 
function is created for each unique relation in rel. 

471

A Modelica Based Format for Flexible Modelica Code Generation and Causal Model Transformations



 

The Modelica Association  Modelica 2006, September 4th – 5th 

 
These functions are provided to the numerical inte-
grator in order for the integrator to identify the time 
point of the discontinuity and restart the simulation 
at that point with new values for the states. The zero 
crossing functions below are given together with 
which equations they either are part of (can be both 
in Eq. (2) and (3)) or can make active by being part 
of when conditions. 
 
z = {0.0-h,{1,2,3,4}}; 0.0-v,{2,3,4}}; 
 

Zero crossing functions reflect changes in relations 
that affect boolean variables that are part of when-
conditions. To determine the current active set of 
when-equations it is necessary to know which when-
equations a boolean equation triggers. In this case, 
the impact equation triggers the second when-
condition and therefore could make equations 2, 3 
and 4 active. 
 
c = {1,{2,3,4}}; 

6.7 Code Generation 

Given the complete Modelica model and naming 
conventions described above code can be generated 
for usage in a simulation environment, for example. 
Since it is Modelica syntax, the Modelica parser can 
be reused as well as parts of existing Modelica com-
pilers for generating C code for individual Modelica 
expressions.  
By translating the Modelica code to ModelicaXML 
[16], an XML implementation, a standard XML 
parser can be used instead together with widely used 
XML tools for traversing the XML structure and ex-
tracting and transforming information. 

7 Model Adaptation for Causal Ex-
ternal Usage 

Imagine the scenario where a Modelica model is to 
be used within several causal models, for example 
within the simulation environments EASY5 and 
Simulink. One example could be a Modelica model 
of an engine, or even a complete standard Modelica 
library of driveline components that modelers of dif-
ferent enterprises have the interest of making part of 
their complete vehicle simulations performed in do-
main specific simulation tools with no support for 
equation-based models. A recent case is the CAPSim 
simulation centre [17] for hybrid vehicle simulation 
that has a model library open for usage and where 
the intention is to make the models usable for many 
simulation environments. 

A flexible compiler supports straightforward code 
generation suited for these different environments, 
but the models themselves need to be adapted at the 
equation level as well, as is described in this section.  
Consider a mechanical inertia model with outside 
connectors containing position and force. The con-
nector class is specified in Modelica as shown be-
low. The flow keyword tells the compiler to sum 
corresponding variables in a connection with other 
connectors. The non-flow variables are set equal. 
The mentioned inertia model connectors are part of 
the external interface and it is through those the com-
munication of connector variables to and from other 
models takes place.  
 
connector flange_pos 
  Real pos(unit="m") "Pos into"; 
  flow Real force(unit="N") "Pos out"; 
end flange_pos; 

 
Now consider a model where the outside connectors 
contain speed and force instead. Connecting the two 
models could be performed through a model that 
contains an equation for the relation between speed 
and position. This could even be automated by iden-
tifying differential variables and corresponding de-
rivatives through unit checking.   
 
model intermediate 
  flange_speed fs; 
  flange_pos fp; 
equation 
  fs.speed=der(fp.pos); 
  fs.force=fp.force; 
end intermediate; 
 
connector flange_speed 
  Real speed(unit="m/s"); 
  flow Real force(unit="N"); 
end flange_speed; 
 

But in a causal target environment, the connectors 
are causal. The next example demonstrates a wrapper 
that assigns causalities to an acausal fource source 
model to make it suitable for insertion into a specific 
causal target model.  
 
model force_source 
  flange_pos flange_p; 
equation 
  flange_p.force = 0.2*cos(time); 
end force_source; 
 
model wrapper 
  flange_pos flange_p; 
  input Real speed; 
  output Real force; 
equation 
  speed=der(flange_p.pos); 
  force=flange_p.force; 
end wrapper; 
 

The causal model is created as below by connecting 
the wrapper to the force source. A Modelica com-
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piler is able to create code for this model and saves 
information about the connectors in the comments of 
the input and output variables. 
 
model causal 
  wrapper w; 
  force_source fs; 
  input Real speed "($Conn:flange_p)"; 
  output Real force "($Conn:flange_p)"; 
equation 
  connect(w.flange_p,fs.flange_p); 
  w.speed=speed; 
  force=w.force; 
end causal; 

7.1 Automatic Adaptation 

The content of the wrapper model depends on both 
source and target model connector variables. New 
variables may need to be created, as the speed in this 
case, unit conversions may need to be applied as well 
as sign changes. All in all, a large number of combi-
nations exist for which wrappers need to be created 
to support the usage of the model in arbitrary causal 
models. But the standards for exchanging variables 
among causal models in a certain simulation envi-
ronment can be declared in template connectors, 
where also sign conventions are declared. In the 
force source example, the connector template could 
look like 
 
model template_connector 
  input Real speed(unit="m/s") "Pos out"; 
  output Real force(unit="N") "Pos into"; 
end template_connector; 

 
From the template connector, a compiler can create 
the wrapper and causal model automatically as is 
described from now on. By comparing the connector 
class flange_pos with template_connector, it 
can be seen that two variables have the same units; 
the forces. The variables pos and speed have dif-
ferent units, but here it can be seen that speed is the 
derivative of pos by analyzing the units. The wrap-
per model is now complete, the forces are set equal 
and the derivative relation is established. If the speed 
of template_connector would have had the unit 
“mm/s” instead, a factor 1000 would have been 
needed in the wrapper equation.  
There is no sign convention information in the Mod-
elica models apart from comments. This information 
can be used as a starting point, looking for keywords 
such as “out of” and “into” and similar. But of 
course more explicit information would be valuable. 
In this case the sign conventions differ and the wrap-
per equations will both contain negations.  
Here follows yet another template connector that 
could be used instead of the one defined earlier. The 
resulting causal model is compatible with the use of 
so called bilateral delay lines [18], which provide 

means for robust coupled simulation in which every 
component model solves its own equations and 
communicates at discrete time points with surround-
ing models. The variable C is in this case a force 
wave that passes back and forth in the delay line, as 
is the case in metal rods, for example. The end result 
is an overall numerical solution that mimics the time 
delay existing in physical interactions in nature. The 
variable Z is a kind of impedance. Without going 
further into the details of delay lines, the example 
shows how new equations can be automatically 
added to existing models in a mathematically sound 
way in order to adjust the models towards various 
boundary conditions. 
 
model template_connector 
  input Real C(unit="N"); 
  input Real Z(unit="N.s/m"); 
  output Real speed(unit="m/s"); 
  output Real force(unit="N"); 
equation 
  force = C + Z*speed; 
end template_connector; 

 

7.2 Causality Combinations 

It could be that the force source model cannot be 
solved with the specified input-output causality in 
the target connector. Since in causal environments, 
every second model has inverted causalities for 
compatibility in variable exchange, this can be tested 
for the target connector to see if that works better.  
The force source model can be solved with speed as 
input and force as output, but not the other way 
around. The test can be performed through maximum 
matching algorithms [12] present in standard Mode-
lica compilers.  
What has not been mentioned so far is how to find a 
matching target connector for a certain outside con-
nector of the Modelica model. For a match to exist 
there must be a one to one match between an outside 
connector variable and a causal target connector 
variable in terms of units. The units may be of dif-
ferentiated/integrated form in the target connector. 
The target connector may have more variables if they 
are output variables and are part of supplied equa-
tions.  
If the model has a number of connectors of different 
classes, such as both mechanical, electrical and other 
types, the testing becomes tedious and the testing can 
be handed over to the compiler to either generate all 
solvable combinations of inverted and non-inverted 
target connector causalities or generate the “best” 
solution. One measure for how good a solution is to 
see how high index the adapted model has. One ex-
ample is feeding a mass with a position rather than 
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force and thus removing its inertia effect. The user 
interface could be implemented such that there is a 
choice to enforce the default target boundary condi-
tions or to give priority to low index. 
The model adaptation method where low index is 
prioritized described in this section has been imple-
mented and tested in a Modelica compiler [19] sup-
porting only continuous equations without arrays. 
The model adaptation takes place after flattening 
where the outside connectors of the flattened model 
have not been flattened so that they can still be iden-
tified. The algorithms have been proven useful since 
the compiler automatically produces numerically 
sound code for a given set of target connector tem-
plates and a source Modelica model. 

8 Conclusions 

A partial implementation of the Modelica intermedi-
ate code format has been done in the OpenModelica 
compiler to be used as input to external code genera-
tors. The intent is that this information can be pro-
duced and is complete for generating simulation 
code from hybrid Modelica models. 
The model adaptation functionality for using Mode-
lica models in an external causal context needs to be 
implemented in a compiler supporting the complete 
Modelica language, e.g. soon OpenModelica. This 
can pose problems, not at least due to the increas-
ingly complex definition of connectors in Modelica. 
Nonetheless the model adaptation can be made less 
automatic if needed, for example by defining explicit 
transformations among different connector defini-
tions.  
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