

The Modelica Association Modelica 2006, September 4th – 5th

OpenModelica Development Environment with Eclipse Integration
 for Browsing, Modeling, and Debugging

Adrian Pop, Peter Fritzson, Andreas Remar, Elmir Jagudin, David Akhvlediani
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, S-581 83 Linköping, Sweden
{adrpo, petfr}@ida.liu.se

Abstract
The OpenModelica (MDT) Eclipse Plugin integrates
the OpenModelica compiler and debugger with the
Eclipse Integrated Development Environment Frame-
work.. MDT, together with the OpenModelica compiler
and debugger, provides an environment for Modelica
development projects. This includes browsing, code
completion through menus or popups, automatic inden-
tation even of syntactically incorrect models, and
model debugging. Simulation and plotting is also pos-
sible from a special command window. To our knowl-
edge, this is the first Eclipse plugin for an equation-
based language.

1 Introduction
The goal of our work with the Eclipse framework inte-
gration in the OpenModelica modeling and develop-
ment environment is to achieve a more comprehensive
and more powerful environment. It can be useful to
first take a general look at this area including some
background.

1.1 Integrated Interactive Programming Envi-
ronments

An integrated interactive modeling and simulation en-
vironment is a special case of programming environ-
ments with applications in modeling and simulation.
Thus, it should fulfill the requirements both from gen-
eral integrated environments and from the application
area of modeling and simulation mentioned in the pre-
vious section.

The main idea of an integrated programming envi-
ronment in general is that a number of programming
support functions should be available within the same
tool in a well-integrated way. This means that the func-
tions should operate on the same data and program rep-
resentations, exchange information when necessary,
resulting in an environment that is both powerful and
easy to use. An environment is interactive and incre-

mental if it gives quick feedback, e.g. without recom-
puting everything from scratch, and maintains a dia-
logue with the user, including preserving the state of
previous interactions with the user. Interactive envi-
ronments are typically both more productive and more
fun to use.

There are many things that one wants a program-
ming environment to do for the programmer, particu-
larly if it is interactive. What functionality should be
included? Comprehensive software development envi-
ronments are expected to provide support for the major
development phases, such as:

• Requirements analysis.
• Design.
• Implementation.
• Maintenance.

A programming environment can be somewhat more
restrictive and need not necessarily support early
phases such as requirements analysis, but it is an ad-
vantage if such facilities are also included. The main
point is to provide as much computer support as possi-
ble for different aspects of software development, to
free the developer from mundane tasks, so that more
time and effort can be spent on the essential issues. The
following is a partial list of integrated programming
environment facilities, some of which are already men-
tioned in (Sandewall 1978 [11]), that should be pro-
vided for the programmer:

• Administration and configuration management of
program modules and classes, and different versions
of these.

• Administration and maintenance of test examples
and their correct results.

• Administration and maintenance of formal or in-
formal documentation of program parts, and auto-
matic generation of documentation from programs.

• Support for a given programming methodology, e.g.
top-down or bottom-up. For example, if a top-down
approach should be encouraged, it is natural for the
interactive environment to maintain successive

459

OpenModelica Development Environment with Eclipse Integration for Browsing, Modeling, and Debugging

The Modelica Association Modelica 2006, September 4th – 5th

composition steps and mutual references between
those.

• Support for the interactive session. For example,
previous interactions should be saved in an appro-
priate way so that the user can refer to previous
commands or results, go back and edit those, and
possibly re-execute.

• Enhanced editing support, performed by an editor
that knows about the syntactic structure of the lan-
guage. It is an advantage if the system allows edit-
ing of the program in different views. For example,
editing of the overall system structure can be done
in the graphical view, whereas editing of detailed
properties can be done in the textual view.

• Cross-referencing and query facilities, to help the
user understand interdependences between parts of
large systems.

• Flexibility and extensibility, e.g. mechanisms to ex-
tend the syntax and semantics of the programming
language representation and the functionality built
into the environment.

• Accessible internal representation of programs. This
is often a prerequisite to the extensibility require-
ment. An accessible internal representation means
that there is a well-defined representation of pro-
grams that are represented in data structures of the
programming language itself, so that user-written
programs may inspect the structure and generate
new programs. This property is also known as the
principle of program-data equivalence.

Early work in interactive integrated programming envi-
ronments supporting a specific language was done in
the InterLisp system for the Lisp language: (Teitelman
1974 [12]), common principles and experience of early
interactive Lisp environments are described in (Sande-
wall 1978 [11]), interactive and incremental Pascal
with the DICE system: (Fritzson 1983 [3]), the inte-
grated Mjölner environment, (Lindskov, Knudsen,
Lehrmann-Madsen, and Magnusson 1993 [9]).

1.2 The Eclipse Framework

Eclipse [1] is an open source framework for creating
extensible integrated development environments
(IDEs). (For the history of Eclipse, see Section 6). One
of the goals of the Eclipse platform is to avoid duplicat-
ing common code that is needed to implement a power-
ful integrated environment for development of soft-
ware. By allowing third parties to easily extend the
platform via the plugin concept, the amount of new
code that needs to be written is decreased.

1.3 Eclipse Platform Architecture

By itself, Eclipse does not provide much end-user func-
tionality. The important contributions to Eclipse are
based on its plugins. The smallest architectural unit of
the Eclipse platform is the plugin.

At the core of Eclipse is the Eclipse Platform Run-
time. The Runtime in itself mostly provides the loading
of external plugins. The Java Development Tooling
(JDT) is for example a collection of plugins that are
loaded into Eclipse when they are requested. The fact
that Eclipse is in itself written in Java and comes with
the Java Development Tooling as default often leads
newcomers to believe that Eclipse is a Java IDE with
plugin capabilities. It is in fact the other way around,
with Eclipse being just a base for plugins, and the Java
Development Tooling plugging into this base.

To extend Eclipse, a set of new plugins must be cre-
ated. A plugin is created by extending a certain exten-
sion point in Eclipse. There are several predefined ex-
tension points in Eclipse, and plugins can provide their
own extension points. This means that you can plug in
plugins into other plugins.

An extension point can have several plugins at-
tached, and the plugin that will be used is determined
by a property file. For example, the Modelica Editor is
loaded at the same time as the Java Editor is loaded.
When a user opens a Java file, the Java Editor will be
used, based on a property in the Java Editor extension.
In this case, it is the file name extension that selects
what editor should be used.

As the number of plugins in Eclipse can be very
large, a plugin is not actually loaded into memory be-
fore its contribution is directly requested by the user.
This design makes the memory impact reasonably low
while running Eclipse.

A user-friendly aspect of Eclipse is the Eclipse Up-
date Manager which allows the user to install new
plugins just by pointing Eclipse to a certain website.
This website is provided by the developers of the
plugin that the user may wish to install. An update site
at the OpenModelica [13] web site is for example pro-
vided for easy installation of the latest version of MDT.

1.4 OpenModelica MDT Plugin into Eclipse

The MDT Eclipse plugin provides file and class hierar-
chy browsing and text editing capabilities. Syntax high-
lighting facilities and a compilation manager are also
included in MDT, as well as integration of the debug-
ger for the algorithmic Modelica code.

460

A. Pop, P. Fritzson, A. Remar, E. Jagudin, D. Akhvlediani

The Modelica Association Modelica 2006, September 4th – 5th

Figure 1. The architecture of Eclipse, with possible plugin
positions marked.

The Eclipse framework (Figure 1) has the advantage of
making it easy to add future extensions.

2 OpenModelica Environment Archi-
tecture

The MDT Eclipse plugin is integrated in the Open-
Modelica environment which consists of several inter-
connected subsystems, as depicted in Figure 2 below.

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

Emacs
Editor/Browser

DrModelica
NoteBook

Model Editor

Eclipse Plugin
Editor/Browser

Figure 2. The architecture of the OpenModelica
environment.

Arrows denote data and control flow. Several subsys-
tems provide different forms of browsing and textual
editing of the Modelica code.

OpenModelica is structured as several communicat-
ing processes in client-server architecture, primarily
exchanging information through a Corba interface, see
Figure 3. The OpenModelica compiler/interpreter
(OMC) is the server, communicating with clients. The
Eclipse MDT plugin is one of the clients.

Parse

Client: Eclipse
Plugin

Corba

Client: OMShell
Interactive

Session Handler

Server: Main Program
Including Compiler,

Interpreter, etc.

InteractiveSCode

Inst

Ceval
plot

system

etc.

Untyped API

Typed Checked Command API

Client: Graphic
Model Editor

Figure 3. The client-server architecture of the
OpenModelica environment.

Messages from the Corba interface are of two kinds.
The first group consists of expressions or user com-
mands which are evaluated by the Ceval module. The
second group includes declarations of classes, vari-
ables, etc., assignments, and client-server API calls that
are handled via the Interactive module, which also
stores information about interactively declared/assigned
items at the top-level in an environment structure

3 Modelica Development Tooling
(MDT) Eclipse Plugin

As mentioned, the Modelica Development Tooling
(MDT) Eclipse Plugin provides an environment for
working with Modelica development projects.

The following features are available:

• Browsing support for Modelica projects, pack-
ages, and classes.

• Wizards for creating Modelica projects,
packages, and classes.

• Syntax color highlighting.
• Syntax checking.
• Code completion when writing code to

reference a class.
• Code completion/signature information when

writing function calls.
• Browsing of the Modelica Standard Library and

other Modelica package hierarchies.
• Support for MetaModelica extensions to

standard Modelica.

461

OpenModelica Development Environment with Eclipse Integration for Browsing, Modeling, and Debugging

The Modelica Association Modelica 2006, September 4th – 5th

3.1 Using the Modelica Perspective

The most convenient way to work with Modelica pro-
jects is to use to the Modelica perspective. To switch to
the Modelica perspective, choose the Window menu
item, select Open Perspective followed by
Other... Select the Modelica option from the dialog
presented and click OK.

3.2 Creating a Project

To start a new project, use the New Modelica Pro-
ject Wizard. It is accessible through File->New->
Modelica Project or by right-clicking in the Mode-
lica Projects view and selecting New->Modelica

Project.

Figure 4. Creating a new package.

3.3 Creating a Package

To create a new package inside a Modelica project,
select File->New->Modelica Package. Enter the
desired name of the package and a description of what
it contains.

3.4 Creating a Class

To create a new Modelica class, select where in the
hierarchy that you want to add your new class and se-
lect File->New->Modelica Class. When creating a
Modelica class you can add different restrictions on
what the class can contain. These can for example be
model, connector, block, record, or function.

When you have selected your desired class type,
you can select modifiers that add code blocks to the
generated code. ‘Include initial code block’ will
for example add the line ‘initial equation’ to the
class.

Figure 5. Creating a new class.

3.5 Syntax Checking

Whenever a Modelica (.mo) file is saved by the Mode-
lica Editor, it is checked for syntactical errors. Any er-
rors found are added to the Problems view and also
marked in the source code editor.

Figure 6. Syntax checking.

Errors are marked in the editor as a red circle with a
white cross, a squiggly red line under the problematic
construct, and as a red marker in the right-hand side of
the editor. To reach the problem, one can either click
the item in the Problems view or select the red box in
the right-hand side of the editor.

3.6 Code Completion

MDT supports Code Completion in two variants. The
first variant, code completion when typing a dot after a
class (package) name, shows alternatives in a menu:

462

A. Pop, P. Fritzson, A. Remar, E. Jagudin, D. Akhvlediani

The Modelica Association Modelica 2006, September 4th – 5th

Figure 7. Code completion using a popup menu after a dot

The second variant is useful when typing a call to a
function. It shows the function signature (formal pa-
rameter names and types) in a popup when typing the
parenthesis after the function name, here the signature
Real sin(SI.Angle u) of the sin function:

Figure 8. Code completion showing a popup function
signature after typing a left parenthesis.

3.7 Automatic Indentation

MDT has recently obtained support for automatic in-
dentation. When typing the Return (Enter) key, the next
line is indented correctly. You can also correct indenta-
tion of the current line or a range selection using
CTRL+I or “Correct Indentation” action on the toolbar
or in the Edit menu.

Indentation can be applied to incomplete code as a
heuristic Modelica scanner is used and the indentation
is based only on the tokens generated by this scanner.
The indenter indents one line at a time. For example,
consider that line four (4) in Figure 10 should be in-
dented. The indenter asks the heuristic scanner to give
tokens from the starting token in backwards direction to
the start of the file until a scope introducer is recog-
nized, which for this particular file is model MoonAn-
dEarth. The reference position of the start of the
scope introducer is computed and line four (4) is in-
dented from this reference position one indent unit. The
indentation result is presented in Figure 10.

Indenting Modelica code is far from trivial when in-
complete (possibly incorrect) code should be indented
correctly. Most of the difficulty comes from Modelica

scopes which are hard to recognize using just a scanner
and some logic behind it. In languages like C/C++ and
Java finding enclosing scopes is very easy as one char-
acter tokens are used for the scope opening and closing:
"{" and "}". In Modelica you need at least two tokens
and much more case analysis to find where a scope
starts and ends. Complications also arise when mixing
if-statements with if-expressions (which was further
complicated by the introduction of conditional declara-
tions in the Modelica language). In this particular case
we implemented a parser emulator that recognizes these
constructs based on scanner tokens delivered back-
wards.

Figure 9. Example of code before indentation.

Figure 10. Example of code after automatic indentation.

The indenter works in almost all cases, but there are
cases in which is impossible to find the correct indenta-
tion. For example when the indentation of a line con-

463

OpenModelica Development Environment with Eclipse Integration for Browsing, Modeling, and Debugging

The Modelica Association Modelica 2006, September 4th – 5th

sisting of "end Name;" is requested and the scope
introducer for Name is not found (that is identifier Name
followed backwards by class, model, package,
block, record, connector etc.) then the indenter
fails and returns the indentation of the previous line.

4 The OpenModelica Debugger Inte-
grated in Eclipse

We have integrated our debugger for algorithmic Mod-
elica code (Adrian Pop and Peter Fritzson, 2005 [10])
within the Eclipse debugging framework.

The communication protocol between MDT and the
debugger (which is included in the compiled executable
built for simulation) is based on a client-server archi-
tecture and is implemented via sockets. The debugger
is the server and MDT is the client.

When the debugged model is simulated, the debug-
ger receives from MDT all the breakpoints set within
the algorithmic code. Then the debugger resumes the
application program. When a breakpoint condition be-
comes true the debugger stops the program and listens
to commands it may receive from MDT. The com-
mands accepted by the MDT client are classic: variable
value printing, stack trace printing, stepping, running,
etc. MDT sends appropriate commands to the debug-
ger, parses the information received and displays it
within the MDT debugging views to be inspected by
the programmer.

Because algorithmic code can be executed millions
of times within a simulation, it is very important to be
able to specify breakpoints based on variable values
and/or the number of times a function executes. These
types of breakpoints were recently added to the debug-
ging framework previously described in (Adrian Pop
and Peter Fritzson, 2005 [10]) and are now available,
also in MDT within Eclipse.

5 Simulation and Plotting from MDT
Simulation and plotting is possible from a special
command window, where commands are sent to omc.
For example:

Simulation:
>> simulate(Influenza,startTime=0.0,
stopTime=3.0)
record
 resultFile = "Influenza_res.plt"
end record

The simulated population is plotted (Figure 11).
>> plot({Infected_Popul.p})
true

Figure 11. Plot of the Influenza model.

6 Eclipse History
In the mid 1990s software developments tools were
primarily dominated by systems built around two tech-
nologies. Many of the tools were focused on a runtime
environment developed and controlled by the Microsoft
Corporation. The other was built around the Java plat-
form. The Java platform is less dominated by a single
company and more open to industry and community
input. IBM felt it was important to contribute to the
growth of the more open Java platform to become in-
dependent of Microsoft.

By creating a common platform for development
tools built on top of the Java platform, IBM hoped to
attract more developers from competing environments.
In late 1998, the software division at the IBM Corpora-
tion began working on the software project that is today
known as Eclipse. The original work was based on re-
sources developed by Object Technology International
labs. In the beginning, the work on a new Java IDE was
performed at the IBM laboratories. At the same time
additional teams were setup by IBM to build other
products on top of the platform.

In order to increase the rate of adaptation of the
platform and to instill confidence in the Eclipse plat-
form, IBM decided to release the code base under an
open source license, and to build a community around
the project.

In 2001, IBM together with eight other organiza-
tions created the Eclipse consortium. A website at
eclipse.org was started in order to create and coor-
dinate a community around Eclipse. The goal was that
source code would be controlled and developed by the
open source community and the consortium would
handle the marketing and business side of the project.

At that point, IBM was the largest contributor to
both the open source community and the consortium.
Two years later the first major public release of the
Eclipse platform was made. The release got a lot of
attention from developers and was well received. How-

464

A. Pop, P. Fritzson, A. Remar, E. Jagudin, D. Akhvlediani

The Modelica Association Modelica 2006, September 4th – 5th

ever, industry analysts suggested that many still per-
ceived Eclipse as an IBM-controlled technology. Many
key players in the industry did not want to make com-
mitments to a project controlled by the International
Business Machines Corporation.

After discussions within the consortium it was de-
cided that a new organization was needed to make the
status of Eclipse as an open and community driven pro-
ject clear. At the EclipseCon 2004 gathering an an-
nouncement was made that the Eclipse Foundation was
formed. The foundation is an independent not-for-profit
organization. It has its own full time paid professional
staff, supported by foundation members.

The new organization has proven itself a success. At
this point the foundation have released version 3.0 and
3.1 of Eclipse since its birth. These releases have
gained more adoption and recognition than any earlier
versions. Today (2005) the foundation has more than
90 full-time developers on the pay roll and receives
more than $2 millions in funding each year.

Currently there are more than eighty member com-
panies in the foundation of which at least sixty-nine are
providing add-on products to Eclipse. Today there ex-
ists hundreds of proprietary and an even greater number
of free plugin products. Eclipse has gained a strong
foothold in the industry and is one of the major open
source software development platforms [2].

7 Conclusion
The OpenModelica integrated development environ-
ment for Modelica has been augmented with a plugin to
the Eclipse framework. The plugin, called MDT (Mod-
elica Development Tooling) [13], an earlier version is
described in [14], is primarily aimed at development of
large models. It has support for browsing, editing, code
completion, automatic indentation, building executa-
bles, and debugging. It also allows simulation and plot-
ting from a special command window. To summarize,
it provides a rather complete integrated development
environment, and it is also the first available Eclipse
plugin for an equation-based language.

8 Acknowledgements
This work was supported by Vinnova in the SWEB-
Prod project, by the CUGS graduate school, and by
MathCore Engineering AB.

References
[1] Eclipse website. http://www.eclipse.org.
[2] Eclipse history. A brief history of eclipse.

http://www-128.ibm.com/developerworks/rational/
library/nov05/cernosek/

[3] Peter Fritzson. Symbolic Debugging through In-
cremental Compilation in an Integrated Environ-
ment, Journal of Systems and Software, 3, pp.
285–294, 1983.

[4] Peter Fritzson, Peter Aronsson, Håkan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldamli, David
Broman. The OpenModelica Modeling, Simula-
tion, and Development Environment. In Proceed-
ings of the 46th Conference on Simulation and
Modelling of the Scandinavian Simulation Society
(SIMS2005), Trondheim, Norway, October 13-14,
2005.
http://www.ida.liu.se/projects/OpenModelica

[5] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pp., ISBN 0-471-471631, Wiley-IEEE Press, 2004.

[6] The Modelica Association. The Modelica Lan-
guage Specification Version 2.2, March 2005.
http://www.modelica.org.

[7] Peter Fritzson et al. The OpenModelica Users
Guide, version 0.7, May 2006.
http://www.ida.liu.se/projects/OpenModelica.

[8] Peter Fritzson et al. The OpenModelica System
Documentation, version 0.7, May 2006.
http://www.ida.liu.se/projects/OpenModelica.

[9] J. Lindskov, M. Knudsen, O. Löfgren, Ole Lehr-
mann-Madsen, and Boris Magnusson (Eds.). Ob-
ject-Oriented Environments - The Mjølner Ap-
proach. Prentice Hall, 1993.

[10] Adrian Pop and Peter Fritzson. A Portable Debug-
ger for Algorithmic Modelica Code, the 4th Inter-
national Modelica Conference (Modelica2005),
March 7-9, 2005, Hamburg, Germany.

[11] Erik Sandewall. Programming in an Interactive
Environment: The “LISP” Experience, Computing
Surveys, 10:1, Mar. 1978.

[12] Warren Teitelman. INTERLISP Reference Manual.
Xerox Palo Alto Research Center, Palo Alto, CA,
1974.

[13] PELAB, Modelica Development Tooling (MDT).
http://www.ida.liu.se/labs/pelab/modelica/OpenM
odelica/MDT

[14] Andreas Remar and Elmir Jagudin. Modelica De-
velopment Tooling for Eclipse. Master Thesis
LITH-IDA-EX–06/024–SE, April 10, 2006.

465

OpenModelica Development Environment with Eclipse Integration for Browsing, Modeling, and Debugging

