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Abstract  
 
Physical modeling is referred to as the first 
representation of a process model and is represented 
as a set of differential and algebraic equations. Noise 
added to the model can improve the estimated 
behavior of the process and it is more close to 
reality. The work defines the metamodelling models 
in order to build tools for the management of the 
noise, i.e. generation and properly use of it. Some 
models for random sequences and signals are 
considered also, under various distribution functions. 
Thw way of adding noise to dynamic model of the 
simulated process depends on the structural model of 
the considered process, i.e. with noise at the output 
or with noise at the input of the model. 
 
Keywords: Process Modeling, Noise Modeling, 
Metamodelling.  

1   Introduction 

Physical based and object-oriented modeling 
languages offer an interesting and useful approach in 
process modeling and simulation, very appreciated 
and useful in the world of engineers and scientists. 
Examples of such software-based environments are 
Omola, Dymola or MathModelica. All these 
environments are connected with basic features of 
the Modelica modeling language, as a neutral 
representation of physical processes. More, based on 
object-matching features, it is used as the standard 
representation formalism over the distributed 
simulation platforms.  
 
Perhaps the first reference that emphasizes a strong 
call to new modeling principles is of [1], which 
clearly shows the constraints of pure mathematical 
models. Other examples could be of [2] and [3], the 
last one - a project under the resources of Foundation 
for Strategic Research of Sweden. 

 
By applying the first modeling principles, a set of 
equations are obtained, which could be organized in 
two subsets: a subset of differential equations 
describing the dynamics of the process and a subset 
of algebraic equations describing the outputs and the 
constraints of the behavior of the considered process. 
In the context of real experiments and/or simulations 
of physical systems, where measurements should be 
considered as well for the purpose of identification 
and parameter estimation, the model is improved 
with noise information.  
 
The reason to introduce noise in process’s model is 
mainly related to un-modeled dynamics and 
disturbances acting on the process. Considering 
noise, the state-equations of the model of the process 
could have the form 
 

)t()t()t()t( wBuBxFxE wu ⋅+⋅=⋅+⋅        (1.a) 
 

)t()t()t( exCy +⋅=                       (1.b) 
 
where a noise component, w(t), is added for state 
variables and a noise component e(t) is added for the 
output variables. The type of the noise regarding the 
power and the probability density function depends 
on the process. Usually, white noise is considered 
with variance connected with the dynamics of the 
process. 
 
Noise modeling is an important task in process 
modeling. There are unmodelled phenomena and 
unknown parameters. A noise model should describe 
how the unmeasured inputs and the unmodeled 
dynamics could change the behavior of the 
considered system. Noise modeling also stands for 
the addition of one or more noise components to 
state variables, in order to model disturbances and/or 
some random or unknown behavior. Naturally, the 
physics of the process should indicate which 
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variables should have noise and which one not, that 
could be done manually for simple processes. The 
problem has two aspects: first, there is a complex 
process, difficult to manage and, second, a software 
tool that is more efficient and comfortable for any 
modeler.  
 
Adding noise to all equations can lead to derivates of 
white noise and – as results – to non-causal process, 
as infinite values of some variables.  
 
Details on how the non-causality with respect to the 
input signal, , can be handled are in [4] and [5]. 
The problem itself is considered and solved, however 
[6], where a band limited noise to avoid the problem 
suggest it.  

)t(u

 
The present work is looking to noise modeling and 
appropriate tools to generate different noise models. 
The reason of the subject is coming from the fact that 
Modelica, as far we know, does not have any 
considerations on noise models. The noise modeling 
tools are considered at the level of the metamodel, 
i.e. models of the methodology of noise modeling.  
 
The object of the section 2 is related to methods of 
noise modeling. Section 3 contains the basic 
theoretical models to generate noise, looking to 
define the problem, to understand the method and to 
propose solutions related to the noise modeling.  
Section 4 is dedicated to a set of noise models, in 
Modelica language implementation. Simulation 
results are presented and discussed in section 5. 

2   Noise metamodelling 

Fig. 1 and 2 are looking to present the methodology 
of noise modeling in the context of physical 
modeling, i.e. the integration on noise models into 
physical process models. 
 
The class diagram in Fig. 1 shows the hierarchy of 
different models, which is used in the building of the 
system model with physical constraints and – 
possible – under different representation formalisms. 
A model is an abstract representation and a 
generalization of a process model. A process model 
is an aggregation of one or more models based on 
equations. An equation-based model is an 
aggregation of some models, part with noise and part 
without noise. A noise model should be compliant 
with the laws of physics and the variables involved 
in the model should have a physical meaning. 
Symbolic tools are used to decide where and how to 

add noise to the model of the process, in order to 
have a valid representation of the reality. 
As Fig. 2 shows, a noise model is generalized as a 
model. A noise model is an aggregation of some 
model noises, e.g., of white noise model and band-
limited noise, i.e. colored noise. The last one has 
constraints from a physical model concerning the 
parameters, e.g. the power of the noise and the 
frequency bandwidth. 
 
Fig. 3 presents the point of view of the signal 
domain, which is the output of the noise models. The 
figure describes a hierarchy on classes, as the object-
technology is supposed to have, starting with the 
class signal as generalization of the class noise. In 
turn, the class noise is an aggregation of three 
different noise classes, considering probability 
distribution function, starting with Wiener 
distribution and going to white noise and finally to 
colored noise. Each class has specific methods and 
attributes, e.g, the power of the white noise and the 
time constant or, equivalently, the frequency 
bandwidth, as parameter in the transfer function from 
white noise to colored noise signals. What is not 
considered here is the type of the signal, discrete or 
continuous. This is more complicated, mainly 
because it requires the interactions with a solver and 
is out of the paper’s horizon. 

3  Random variables 

Random process generation is usually made in two 
steps: first, generating imitations of independent and 
identically distributed random variables having the 
uniform distribution over the interval and, 
second, applying transformations to these variables 
in order to generate random vectors with arbitrary 
distributions. These two steps are independent.  

)1,0(

 
The next subsections sketch the theoretical 
background in order to sustain the declarative 
models for the generation of various types of the 
noise.  Methods for generating a sequence of 
random numbers have been extensively studied 
and are well understood. Widely accepted is the 
method of the linear congruential generators. 
These numbers have the general form  
 

( ) mckUakU mod)()1( +⋅=+         (2) 
 

where  is the k-th element of the sequence 
and  and  are parameters.

)(kU
caU ,),0( m
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  Figure 1: Different types of models 
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                  Figure 2:  Connections among different types of noise models 

 
 

Figure 3:  Class diagram of the noise signals 
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The second variable of the modulus function, m, 
is a large integer which must be prime; the 
multiplier a is an integer in the range (2, 3, …, m-
1);  the additive constant c is an integer, often 
equal to zero. These are chosen to make the sequence 
look as random as possible. This generator has 
period m-1. Common choices for these values are 

= any positive integer, )0(U 16807=a , 

, . Other common choices and 
optimum algorithms are presented and described, 
e.g., in [13],[14],[15], [16] and [17].  

1231 −=m 0=c

 
A Box-Muller method [18] could be used in order to 
obtain a unit normal random, say X. Two uniform 
random variables U1 and U2  are necessary and the 
relation  
 

)(2sin())(log(2)( 21 kUkUkX ⋅⋅⋅⋅−= π   (3) 
 
Given a uniform random variable U(k), a Rayleigh 
random variable R(k) can be obtained by:  

 

( ))(11ln2)( 2 kUkR −⋅⋅= σ                (4) 
 
where  is the variance of the Rayleigh random 
variable. 

2σ

4  Noise models 

Considering an interval , a standard 
Wiener process is a random variable W(t) which 
satisfies the properties: 

[ ,TI 0= ]

1).                     00 =)(W
2). ),,(Ntt)t(W)t(W 101212 ⋅−≅−  with 

, .  is a random number 
under normal distribution with zero mean and unit 
variance.  

12 tt ≥ It,t ∈∀ 21 ),(N 10

3). For , the samples 
 and  are independent. 

Itttt ∈≤≤≤ 4321
)tt(W 12 − )tt(W 34 −

White noise , with unit variance, is the formal 
derivative of a Wiener process , as  

)t(N
)t(W

 

dt
)t(dW)t(N =                   (5) 

 
It may be possible that the noise in a physical system 
has correlations that are not satisfied by white noise. 

A colored noise, )t(ξ , may be calculated from a 
stochastic equation as 

 

)t(N)t(
dt

)t(d
⋅

σ
+ξ⋅−=

ξ
ττ

1             (6) 

 
where  is a Gaussian white noise, with unit 
variance and zero mean.  

)t(N

5   Modelica implementation 

Based on mathematical considerations of above 
section and on metamodel of Fig. 3, declarative 
models based on Modelica modeling language will 
be presented. 
 
Real type numbers makes the interface 
communication over different models. The Modelica 
code for interfaces can by as  
 

connector PortNumber  
        Real n; 
end PortNumber; 

 
The uniform random number generator needs a 
function mod defined as  
 

function mod  
         input Real x, y; 
         output Real z; 
algorithm  
         z := x - div(x, y) * y; 
end mod; 

 
where the assignation in the algorithm section 
imposes the causality of input and output variables. 
 
A separate model describes global simulation 
parameters 
 

model parameters  
// the numbers of random values: 
       parameter Integer n=100; 
// sample period: 
        parameter Real dt = 1;  
// start time moment: 
        parameter Real start = 1; 
// the index of arrays used in simulation: 
       Integer j; 
algorithm         
        j := integer(time/dt) + 1; 
end parameters; 
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The uniform random generator over the interval 
 is described by  ]1,0(

 
model UNG   //uniform_number_generator 

                 extends parameters; 
       constant Integer m =  2^31 - 1; 
       constant Integer a= 7^5; 
       constant Integer c=10; 
       Real xmax,  x[n]; 
       Integer j; 
       PortNumber OUT; 
algorithm  
        x[1] := 1.0; 
        for k in 1:n - 1 loop 
                x[k + 1] := mod(a*x[k] + c, m); 
        end for; 
        xmax := max(x); 
        for k in 1:n loop  // normalization 
                 x[k] := x[k] / xmax; 
         end for; 
         OUT.n := x[j]; 
end UNG; 

 
The model defines the basic bricks of the noise 
modeling and generations tools and has two outputs, 
related to two consecutive random numbers over a 
set of n preimposed values. All variables are part of 
the generator and the causalities are assigned in the 
algorithm section. 
The normal distribution needs two uniform 
generators that could be developed by using two 
independent uniform generators or only one 
generator but with multiple independent outputs. 
With the last assumption the model of the normal 
random generator is as  
 

model NNG   // normal_number_generator 
        extends UNG_MULTI; 
        PortNumber OUT; 
        Real x[n];  
algorithm 
        x[j] := OUT.n; 

OUT.n:=sqrt(-2*log(OUT1.n))*sin(6.28*OUT2.n); 
end NNG; 

 
The model for a Rayleigh distribution is  
 

model RRG // Rayleigh random generator 
       extends parameters; 
       parameter Real sigma=1; 
       Real xr; 
       PortNumber OUT; 
       UNG ung; 
algorithm  

 

xr:=sqrt(2*sigma^2*log(1/(1e-5+1-ung.OUT.n))); 
       OUT.n := xr; 
end RRG; 

 
The normal white noise model needs a normal 
random numbers. The model is described by 
 

model white_noise  
       extends parameters; 
       parameter Real sigma = 1; 
       Real xw[n], xa[n]; 
       PortNumber OUT; 
       NNG nng; 
algorithm  
        xw[j] := sqrt(dt)* nng.OUT.n; 
        xa[j] := sigma*(xw[j] - xw[j-1]) / dt; 
        OUT.n := xa[j]; 
end white_noise; 

 
There are two random variables, one is Wiener and 
another one is of white type. 

The colored noise is described by the sequence  
 

model colored_noise  
        extends parameters; 
        PortNumber IN, OUT; 
        parameter Real tau = 1; 
        parameter Real sigma = 1; 
        Real xc; 
algorithm 
        OUT.n := xc; 
equation  
        when sample(start, dt) then 
             der(xc) = -xc/tau + sigma*IN.n/tau; 
        end when; 
end colored_noise; 

 
and has two parameters with the names tau and 
sigma. The function sample(start,interval) returns 
true and triggers time events at time instants (start + 
i*interval).  
 
The final simulation model, in order to generate a 
colored noise with the imposed parameters, is 

 
model sim  
        colored_noise cn; 
        white_noise wn; 
equation  
        connect(wn.OUT,  cn.IN); 
end sim; 

 
In addition, the links between the used models are 
graphically presented in Fig. 4. 
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Figure 4:  The model for colored white noise 

6   Simulation results 

For discrete sequences, simulations where conducted 
for different lengths. Figure 5 presents the result for 

 as parameters 
of the uniform number generator. The parameter of 
the obtained random sequence are 0.4277 for mean 
and 0.0833 the variance. Rising the length to n=100 
the distribution’s parameters are improved to 0.4350 
for the mean and 0.0995 for the variance. It is 
remembered that the ideal values are 0.5 for mean 
and 1/12. 

1010712 531 ===−= )(x,c,a,m

 
Figure 6 shows a normal random sequence. The 
parameters for the second uniform number generator 
were .  For a 
length of 50 a sequence of  0.0939 and 1.0741 is 
obtained, as values for mean and variance. With 
n=100 the parameters are -0.0191 and 0.9885.  

200712 331 ===−= )(x,c,a,m

 
Fig. 7 shows samples of the simulation results from 
the outputs of the continous noise models, i.e. white 
and coloured. It seems that the results are 
satisfactory over the behavior of the signals.  
 
More statistic tests will be developed in order to 
improve the structure of generators and to check the 
distances between the real and the imposed behavior.  

7   Conclusions 

The objective of the work was to define noise 
models, with different density distribution functions, 
at the level of metamodels and to implement these in 
a neutral declarative modeling language, here 
Modelica.  
 
The study is on the beginning and - as a first trial - 
the obtained models are compliant with the reference 
behavior. In the future more study will be done in 
order to make distinction between continuous time 

and discrete time random processes and to built a set 
of models ready to use in noise modelling. 

 

 
 

Figure 5: Uniform random number sequence 
 

 
Figure 6:  Normal random sequence 

 

 
 

Figure 7:  White and colored noise signal 
( ) 2,1,1 2 === τσdt
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