

The Modelica Association Modelica 2006, September 4th – 5th

An Analyzer for Declarative Equation Based Models
JIAN-WAN Ding1 LI-PING Chen1 FAN-LI Zhou1 YI-ZHONG Wu1 GUO-BIAO Wang2

1 National CAD Support Software Engineering Research Center, Huazhong University of Science
and Technology, Wuhan 430074, China

2 National Natural Science Foundation of China, Beijing 100085, China

Abstract

Along with its benefits, object-oriented modeling
with Modelica language also brings the risk of miss-
ing or redundant equations, thus leads to an under-
constrained problem or an over-constrained problem.
This paper aims at facilitating debugging of structur-
ally singular model through an analyzer in terms of
reducing the number of tests to correct the model.
When checking for singularities of a component, the
analyzer first uses some fictitious equations to re-
place the constraint equations generated by the out-
side connections of the component, and then identi-
fies whether the singularities derive from the com-
ponent or not by structural analysis. The checking
procedure is done recursively. The proposed ana-
lyzer can automatically identify faulty components
that are responsible for the singularities.
Keywords: Modelica; debugging; structural analysis;
structural singularity

1 Introduction

The need for mathematical modeling and simulation
in engineering is continuously rising since technical
systems become increasingly complex and physical
prototyping becomes too expensive. Modelica is an
object-oriented equation based language for efficient
modeling and simulation of complex, heterogeneous,
multi-domain physical systems described by ordi-
nary differential and algebraic equations. Modelica
allows describing simulation models in a declarative
object-oriented manner, so that a model can be used
to solve various problems and model components
easily can be modified to describe similar systems.
Following object-oriented modeling methodology, a
Modelica model is structured as closely as possible
to the corresponding physical system. In particular,
models are defined in acausal form, independently of
the context in which it is used. Complex models can
be realized by aggregating more submodels and their
connections within a composite larger model, which

may in turn be connected to other models. For con-
tinuous time modeling, by assembling the declarative
equations of component models, this form of model
representation gives rise to a larger scale system of
differential algebraic equations (DAEs).
Along with its benefits, object-oriented modeling
with Modelica language often unconsciously leads to
an under-constrained problem or an over-constrained
problem. In such situations, numerical solvers fail to
find correct solutions to the underlying system of
equations. Due to the high-level abstraction of equa-
tion based models, it is extremely hard to find and
localize model singularities. Moreover, especially for
complex physical systems, the underlying system of
equations is of very large dimension. Even if a mod-
eler suspects a redundant equation, it is very time-
consuming to identify the equation in a large scale
system of equations. Therefore, it is a key problem to
check for the singularity of the model before using it
for analysis or design purposes, or before generating
the simulation code.
To address the aforementioned problem, Bunus and
Fritzson[1,2] have developed a debugging framework
for Modelica models and have adapted traditional
debugging techniques and algorithms to it. Equations
and variables that probably cause the irregularities
are isolated by applying graph decomposition tech-
niques and reduced by using structural information
and semantic information. The developed algorithms
and methods help to statically detect and repair a
broad range of errors without having to execute the
simulation model.
This paper focuses on checking for structural singu-
larities of equation based models. Our goal is to de-
velop an analyzer, called Model Singularity Analyzer
(MSA), to help the modeler to localize model singu-
larities more quickly and more efficiently.
The paper is organized as follows: Section 2 dis-
cusses the three main steps of the MSA. The exam-
ples are demonstrated in Section 3. Section 4 gives a
comparison of the MSA to existing methods. Section
5 presents our conclusions.

349

An Analyzer for Declarative Equation Based Models

The Modelica Association Modelica 2006, September 4th – 5th

2 Structural analysis

2.1 Detecting structural singularities

Before solving a Modelica model, the Modelica
source code is first translated into a so called “flat
model”, which is a flat set of equations, constants,
parameters and variables. For continuous time mod-
eling, the flat model can be described by a system of
differential algebraic equations of the form

0),,,,(=tpuxxF & (1)

where x is the variable vector, u is the input vector, p
is the parameter vector and t is time.
The system of equations resulting from a Modelica
model can naturally be represented as a bipartite
graph },,{ 21 EVVG = where V1 denotes the set of
equations, V2 denotes the set of variables, and there
is an edge Ee∈ between a variable 2Vv∈ and an
equation 1Vu∈ if variable v appears in equation u.

When using a model for simulation, it is a basic re-
quirement that there are as many equations as vari-
ables, and that we can determine a mapping between
equations and variables in such a way that each
equation is related one and only one variable. If the
requirement is satisfied, we call the model structural
nonsingularity. Otherwise, the mode is structurally
singular.
Therefore, a crucial step of checking for structural
singularities is to assign each variable vi to a unique
equation ej such that vi appears in ej. If it is impossi-
ble to pair variables and equations in this way then
the model is structurally singular. This assignment
procedure can be realized by calculating a perfect
matching in the bipartite graph associated with the
system of equations. If the perfect matching does not
exist then the corresponding system of equations is
structurally singular.
For a structurally singular model, we can isolate the
over-determined and under-determined subsets of
equations by the DM decomposition[4]. However,
when applied to a large system of equations, the DM
decomposition finds a large under-determined or
over-determined block, which is less helpful for lo-
calizing the structural singularities, so methods to
help are necessary.
To check for structural singularities of DAE systems,
we should not distinguish between the appearance of
x and the appearances of its derivative, the appear-
ances of x& are considered as appearances of x. Thus
to check if the DAE system 0),,(=txxF & is struc-

turally singular, we check if the algebraic system
0),,(=txxF is structurally singular with respect to x.

2.2 Generating fictitious equations

A complete Modelica model is always made up of
components, which maybe consist of other sub-
components. For a composite model, the structural
singularities may be caused by improper use of com-
ponents, or come from structurally singular compo-
nents. So if a composite model is structurally singu-
lar, we should check for structural singularities of its
components to determine whether the singularities
comes from its components or not.
However, a component of a model always has out-
side connections to communicate with the rest of the
model. If we isolate a component from the environ-
ment where it is used, and check for structural singu-
larities of the component, we can not determine
which connection equations generated by outside
connections should be included into the system of
equations resulting from the component. The reason
is connections between components are often acausal,
i.e., the data flow in connection is not explicitly
specified.
The object-oriented modeling methodology uses en-
ergy flow for modeling[5,6]. It is necessary for the
modeler, when designing model interfaces, to guar-
antee that connecting such models in an arbitrary
fashion will always ensure that power, momentum,
and mass are balanced at the interfaces. This means
that the sum of incoming energy flows must equal
the sum of outgoing energy flows at connection
points. Hence, acausal connections in Modelica
models in fact are a kind of connection based on en-
ergy flow.
Therefore, when checking for structural singularities
of components, we disregard the connection equa-
tions generated by outside connections, and use some
fictitious equations to compensate the lost constraints
in the following way.
1. We generate a fictitious equation for each flow
variable and make the equation contain all variables
appearing in the same connector with the flow vari-
able.
2. We generate for each input variable a fictitious
equation which assigns a value to the corresponding
input variable.
3. Potential variables may be more than flow vari-
ables in a connector. In such case, we assume some
outside constraints on these redundant potential vari-
ables. To construct the most general constraint, we
generate a fictitious equation for each redundant po-

350

J.-W. Ding, L.-P. Chen, F.-L. Zhou, Y.-Z. Wu, G.B. Wang

The Modelica Association Modelica 2006, September 4th – 5th

tential variable, and make these equations contain all
potential variables of all the connectors. Let C de-
note a model component, k be the number of the fic-
titious equations added for the redundant potential
variables, r be the number of connectors of C, im be
the number of potential variables in the ith connector,

in be the number of flow variables in the ith connec-
tor, p be the number of variables of C, and q be the
number of equations of C. There is the following
dependence:

0=k , if 0)(
1

<+− ∑
=

r

i
inqp ;

∑
=

+−=
r

i
inqpk

1

)(, if

 ∑∑
==

−≤+−≤
r

i
ii

r

i
i nmnqp

11

)()(0 ;

∑
=

−=
r

i
ii nmk

1

)(, if ∑∑
==

−≥+−
r

i
ii

r

i
i nmnqp

11

)()(.

Where ∑
=

r

i
in

1

is the number of fictitious equations

added for flow variables.
The aim of case 1 is to construct a general energy
flow constraint equation. To explain the idea, we
first define a generic physical connector class as fol-
lows:
connector generic

Real e; //potential variable
flow Real f; //flow variable

end generic;
We assume c1 and c2 are two instances of the con-
nector class generic. According to Modelica seman-
tics, the connection connect(c1, c2) produces two
equations, namely: c1.e=c2.e and c1.f+c2.f=0. From
this two connection equations, we can get c1.e*c1.f+
c2.e*c2.f =0. We further assume c1.e*c1.f=C, where
C is a constant, then c2.e*c2.f=–C. Since we only
focus on which variables appear in each equation
rather than how they appear when checking for struc-
tural singularities, we can use the general form equa-
tions f1(c1.e, c1.f)=0 to express c1.e*c1.f=C, and
f2(c2.e,c2.f)=0 to express c2.e*c2.f=–C. However,
there are sometimes more than one matched flow
variable and potential variable in a connector. Hence,
without loss of generality, we generate for each flow
variable a general form equation which contains all
flow and potential variables of a connector, i.e.,
g(e1,e2,…,f1,f2,…)=0, where fi(i=1,2,…) is flow
variable, ei(i=1,2,…) is potential variable.

The fictitious equations generated for flow variables
can be regarded as constraint equations about power,
momentum, and mass which passes connectors. This
is because that, in any physical system, the power
can be written as the product of two adjugate vari-
ables, called the potential and the flow in Modelica
language. For example, in electrical systems the
power P=v*i where v denotes the voltage and i de-
notes the current, and in translational mechanical
systems the momentum P=v*f where v denotes the
velocity and f denotes the force.
By generating fictitious equations, we can obtain the
system of equations resulting from a component. By
checking for structural singularities of the system of
equations, we can determine that the component is
structurally singular or not.

2.3 Locating faulty components

A connector can be connected, and also be not con-
nected. When checking for singularities of a compo-
nent, two possibilities are considered. It is noticed
that, once a connector is assumed to be not con-
nected, all other connectors of the same component
are considered to be connected. If a connector is as-
sumed to be not connected, the fictitious equations
for flow variables of the connector are not generated,
instead flow variables are set to zero.
If a structurally singular component is make up of
subcomponents, the checking procedure can be done
recursively, until the fault component is a primitive
component, or each subcomponent of the fault com-
ponent is structurally nonsingular.
For that, we introduce the following definition.
Definition 1. Let C be a structurally singular com-
ponent. C is a minimal structurally singular (MSS)
component if either of the following two conditions
is satisfied:
1. C is a primitive component described in terms of
equations;
2. C is a composite component consisting of other
connected subcomponents, and none of its subcom-
ponents is structurally singular.
We therefore propose the following strategy for lo-
cating structural singularities in Modelica models.
Our aim is to locate all the MSS components of a
structurally singular model. First, we check whether
a perfect matching exists or not in the bipartite graph
associated with a whole model. This can be done by
solving the maximum matching problem[7,8]. If a per-
fect matching does not exist, we apply the DM de-
composition to isolate the over-determined and un-
der-determined subsets of equations. Then we check

351

An Analyzer for Declarative Equation Based Models

The Modelica Association Modelica 2006, September 4th – 5th

for structural singularities of each component in turn
to determine whether the singularities derive from
the component or not. So it is very natural to con-
sider the following subproblem procedure.
Procedure P(C)
Input: a structurally singular component C
Output: the structurally singular subcomponent set
T
begin

set T :=∅ ;
let Q be a subcomponent set; set Q :=∅ ;
add the subcomponents of C to Q;
for each C'∈ Q do
 begin

generate fictitious equations for C';
obtain the system of equations E of C';
construct the bipartite graph G for E;
determine a maximum matching W in G;

 if W is not perfect then
 add C' to T;

end
end
By performing the above subproblem procedure, we
can obtain all the singular subcomponents of a singu-
lar component, if they exist. For each singular sub-
component, we further perform the above procedure
to obtain its singular subcomponents. This procedure
is performed iteratively until the singular subcompo-
nent is a MSS component. Clearly, the recursive ap-
plication of the above procedure can construct a tree
of subproblems. By using the depth first rule, we
obtain our algorithm which outputs all the MSS
components of a structurally singular model. The
algorithm is described as follows:
Algorithm 1: Obtaining the MSS components
Input: a structurally singular component M
Output: the MSS components set S
begin

set S :=∅ ;
if M is composite then

begin
let L be the list of components;
set L :=P(M);
while L is not empty do

begin
let C be the last component in L;
remove C from L;

 if C is composite then
 begin

let K be a component set;
set K :=P(C);
if K=∅ then

add C to S;
else

add each element of K to the end
of L;

end
else

add C to S;
end

end
else

add M to S;
end
Finally, for each MSS component it is desirable to
give the user some hints what is wrong. If a MSS
component is a composite component, we inform the
user that some subcomponents of the MSS compo-
nent may be improperly used. If a MSS component is
a primitive component, we produce some hints by
locating critical parts of the component that are re-
sponsible for singularities. For an over-constrained
problem, the redundant equations must appear in
both the over-determined subset and the MSS com-
ponent. Similarly, for an under-constrained problem,
the free variables must appear in both the under-
determined subset and the MSS component.

3 Examples

The first example is an oscillator model depicted in
figure 1. A mass Ma is hanging in a spring Sa which
is connected to a fixed housing Fa. The mass Ma is
subject to the gravitational force and the force from
the spring. It is given an initial position s = −0.5,
which is offset from the equilibrium position and
therefore starts an oscillating movement up-and-
down. The positive coordinate direction is upward in
the figure, which applies to both positions and forces.
The Modelica description of the oscillator is pre-
sented as follows:
model Oscillator

Mass Ma(L=1, s(start=-0.5));
Spring Sa(s_rel0=2, c=10000);
Fixed Fa(s0=1.0);

equation

352

J.-W. Ding, L.-P. Chen, F.-L. Zhou, Y.-Z. Wu, G.B. Wang

The Modelica Association Modelica 2006, September 4th – 5th

connect(Sa.flange_b, Fa.flange_b);
connect(Ma.flange_b, Sa.flange_a);

end Oscillator;

Figure 1. The oscillator Model

The component model Spring and Fixed are avail-
able in Modelica class libraries. The definition of the
component model Mass is presented as follows:
model Mass

extends Rigid;
parameter Real m =1;
constant Real g =9.81;
Real v;
Real a;

equation
v = der(s);
a = der(v);
flange_b.f = m*a – m*g;
v = 6; //an additional equation

end Mass;
In order to obtain an over-constrained problem, we
introduce an additional equation (v=6) in the model
Mass. The set of equations generated from the Oscil-
lator model is presented in table 1.

Table 1. The set of equations and variables corre-
sponding to the Oscillator model

e1: Ma.v = der(Ma.s)
e2: Ma.a = der(Ma.v)
e3: Ma.flange_b.f=Ma.m*Ma.a

-Ma.m *Ma.g
e4: Ma.v=6
e5: Ma.flange_a.s=Ma.s-Ma.L/2
e6: Ma.flange_b.s=Ma.s+Ma.L/2
e7: Sa.f=Sa.c*(Sa.s_rel-Sa.s_rel0)
e8: Sa.s_rel=Sa.flange_b.s

-Sa.flange_a.s
e9: Sa.flange_a.f=-Sa.f
e10: Sa.flange_b.f=Sa.f

v1: Ma.s
v2: Ma.v
v3: Ma.a
v4: Ma.flange_a.s
v5: Ma.flange_a.f
v6: Ma.flange_b.s
v7: Ma.flange_b.f
v8: Sa.s_rel
v9: Sa.f
v10: Sa.flange_a.s
v11: Sa.flange_a.f
v12: Sa.flange_b.s

e11: Fa.flange_b.s=Fa.s0
e12: Ma.flange_b.s=Sa.flange_a.s
e13: Ma.flange_b.f+Sa.flange_a.f=0
e14: Fa.flange_b.s=Sa.flange_b.s
e15: Fa.flange_b.f+Sa.flange_b.f=0
e16: Ma.flange_a.f=0

v13: Sa.flange_b.f
v14: Fa.flange_b.s
v15: Fa.flange_b.f

Performing the DM decomposition, the over-
constrained subgraph is found and represented
graphically in figure 2, where the covered edges by
the maximum matching are marked by thick lines.

When check for structural singularities of the com-
ponent Ma, we first assume that both the connectors
flange_a and flange_b are connected, and generate
e1': f(Ma.flange_a.f, Ma.flange_a.s)=0 for the flow
variable Ma.flange_a.f and e2': f(Ma.flange_b.f, Ma.
flange_b.s)=0 for the flow variable Ma.flange_b.f.
The corresponding bipartite graph to the component
Ma is shown in figure 3, where a maximum match-
ing is marked by thick lines.

In figure 3, e3 is a free vertex, so the component Ma
is structurally singular, and there exists one redun-
dant equation. It means the primitive component Ma
is a MSS component. The equations that appear in
both the over-constrained subgraph and the compo-
nent Ma are e1, e2, e3, e4 and e6, one of which is
redundant. Similarly, by generating fictitious, we can
determine the components Sa and Fa are structurally

Figure 3. The bipartite graph corresponding to the
component Ma with a maximum matching

v2

e1

v1 v3 v4 v5 v6

e2 e3 e4 e5 e6 e1'

v7

e2'

e1

v1 v2 v3 v6

e2 e3 e4 e6

v8

e7

v7 v9 v10 v11 v12

e8 e9 e11

v14

e12 e13 e14

Figure 2. The over-constrained subgraph

353

An Analyzer for Declarative Equation Based Models

The Modelica Association Modelica 2006, September 4th – 5th

nonsingular. In this case, the following message is
presented to the modeler.

The second example is an AC motor model depicted
in figure 5. This model contains components from
the two domains: mechanical domain and electrical
domain.

Figure 5. The AC motor model

The Modelica description of the ACMotor model
appears as follows:
model ACMotor

SineVoltage Vs(V=220,freqHz=50);
Resistor Ra(R=0.5);
Inductor La(L=0.1);
EMF Emf;
Inertia Jm(J=0.001);

Ground G1;
equation

connect(Vs.p, Ra.p);
connect(Ra.n, La.p);
connect(La.n, Emf.p);
connect(Emf.flange_b, Jm.flange_a);
connect(Emf.n, G1.p);
connect(Vs.n, G1.p);

end ACMotor;
The component models Inductor, EMF, Inertia and
Ground are available in Modelica class libraries. In
order to make the ACMotor singular, the following
Resistor model is defined.
model Resistor

extends OnePort;
parameter Real R=1;
Real s;

equation
R*i = v+s;
p.v=12;

end Resistor;
The complete set of equations (shown in Table 2)
generated from the ACMotor class consists of 37
differential algebraic equations and 37 variables.
This is a structurally singular problem where under-
constrained and over-constrained situations appear
simultaneously. The DM decomposition will find the
over-constrained, well-constrained and under con-
strained subgraphs. The over-constrained subgraph
contains equations e1, e4, e9, e20, e29, e30 and e37,
and variables v1, v3, v5, v7, v25 and v29. The well-
constrained subgraph contains equation e33 and
variable v34. All other equations and variables are
contained in the under-constrained subgraph. Be-
cause of space limitation, the over-constrained and
under-constrained subgraphs are not depicted here.

Table 2. The set of equations and variables corresponding to the AC motor model
e1:Vs.v = Vs.p.v-Vs.n.v
e2: 0 = Vs.p.i+Vs.n.i
e3: Vs.i = Vs.p.i
e4: Vs.v = Vs.V*sin(2*Vs.PI*Vs.freqHz *time)
e5: Ra.v = Ra.p.v-Ra.n.v
e6: 0 = Ra.p.i+Ra.n.i
e7: Ra.i = Ra.p.i
e8: Ra.R*Ra.i = Ra.v+Ra.s
e9: Ra.p.v = 12
e10: La.v = La.p.v-La.n.v
e11: 0 = La.p.i+La.n.i
e12: La.i = La.p.i
e13: La.L*der(La.i) = La.v

v1: Vs.p.v
v2: Vs.p.i
v3: Vs.n.v
v4: Vs.n.i
v5: Vs.v
v6: Vs.i
v7: Ra.p.v
v8: Ra.p.i
v9: Ra.n.v
v10: Ra.n.i
v11: Ra.v
v12: Ra.i
v13: Ra.s

Error: The model Oscillator is structurally singular.
The singularity comes from the component Ma.
There is 1 redundant equation in the equations:

v = der(s);
a = der(v);
flange_b.f = m*a- m*g;
v = 6;
flange_b.s = s+L/2;

Figure 4. The error message for the model Oscillator

354

J.-W. Ding, L.-P. Chen, F.-L. Zhou, Y.-Z. Wu, G.B. Wang

The Modelica Association Modelica 2006, September 4th – 5th

e14: Emf.v = Emf.p.v-Emf.n.v
e15: 0 = Emf.p.i+Emf.n.i
e16: Emf.i = Emf.p.i
e17: Emf.w =der(Emf.flange_b.phi)
e18: Emf.k*Emf.w = Emf.v
e19: Emf.flange_b.tau = -Emf.k*Emf.i
e20: G1.p.v = 0
e21: Jm.w = der(Jm.phi)
e22: Jm.a = der(Jm.w)
e23: Jm.J*Jm.a = Jm.flange_a.tau+Jm.flange_b.tau
e24: Jm.flange_a.phi = Jm.phi
e25: Jm.flange_b.phi = Jm.phi
e26:Jm.flange_a.phi=Emf.flange_b.phi
e27: Emf.flange_b.tau+Jm.flange_a.tau = 0
e28: Emf.n.i+G1.p.i+Vs.n.i = 0
e29: G1.p.v = Emf.n.v
e30: Vs.n.v = Emf.n.v
e31: Emf.p.i+La.n.i = 0
e32: La.n.v = Emf.p.v
e33: Jm.flange_b.tau = 0
e34: La.p.i+Ra.n.i = 0
e35: Ra.n.v = La.p.v
e36: Ra.p.i+Vs.p.i = 0
e37: Vs.p.v = Ra.p.v

v14: La.p.v
v15: La.p.i
v16: La.n.v
v17: La.n.i
v18: La.v
v19: La.i
v20: Emf.v
v21: Emf.i
v22: Emf.w
v23: Emf.p.v
v24: Emf.p.i
v25: Emf.n.v
v26: Emf.n.i
v27: Emf.flange_b.phi
v28: Emf.flange_b.tau
v29: G1.p.v
v30: G1.p.i
v31: Jm.flange_a.phi
v32: Jm.flange_a.tau
v33: Jm.flange_b.phi
v34: Jm.flange_b.tau
v35: Jm.phi
v36: Jm.w
v37: Jm.a

When check for structural singularities of the com-
ponent Ra, if we assume the connector p is con-
nected and the connector n is not connected, we can
determine that Ra is structurally singular. The bipar-
tite graph corresponding to Ra is presented in figure
6, where e1':f(Ra.p.v, Ra.p.i)=0 is the fictitious equa-
tion generated for flow variable Ra.p.i, and e2':
Ra.n.i=0 is used to set flow variable Ra.n.i to zero.

In figure 6, e6 and v11 are free vertices, so the primi-
tive component Ra is a MSS component. All other
components of the model ACMotor are structurally
nonsingular.

In this case, only the equation e9 appears in both the
over-constrained subgraph and the component Ra.
The variables that appear in both the under-
constrained subgraph and the component Ra are v8,
v9, v10, v11, v12 and v13. For this model, the error
message is presented in figure 7.

The third example is a modified AC motor depicted
in figure 8, where the motor contains two ground
points instead of one. The Modelica description of
the modified motor model appears as follows:
model ModifiedMotor

Error: The model ACMotor is structurally singular.
The singularity comes from the component Ra.
There is 1 redundant equation in the equations:

p.v=12;
1 equation is missing for the variables:

p.i;
n.v;
n.i;
v;
i;
s;

Figure 7. The error message for the model ACMotor
Figure 6. The bipartite graph corresponding to the

component Ra with a maximum matching

v8

e5

v7 v9 v10 v11 v12

e6 e7 e8 e9 e1' e2'

v13

355

An Analyzer for Declarative Equation Based Models

The Modelica Association Modelica 2006, September 4th – 5th

SineVoltage Vs(V=220,freqHz=50);
Resistor Ra(R=0.5);
Inductor La(L=0.1);
EMF Emf;
Inertia Jm(J=0.001);
Ground G1;

equation
connect(Vs.p, G2.p);
connect(Ra.p, G2.p);
connect(Ra.n, La.p);
connect(La.n, Emf.p);
connect(Emf.flange_b, Jm.flange_a);
connect(Emf.n, G1.p);
connect(Vs.n, G1.p);

end ModifiedMotor;
All the component models of the model Modified-
Motor are available in Modelica class libraries.

Figure 8. The AC motor with two ground points

The modified motor model also leads to a structur-
ally singular problem where under-constrained and
over-constrained situations appear simultaneously.
When checking for structural singularities, all the
components are determined to be structurally non-
singular. So the top model ModifiedMotor is the
MSS component.
In this case, the singularities are caused by improper
use of components. To correct the model, one should
remove the redundant ground point G2 instead of
some equations and variables. Hence, for this model
the following message is presented.

4 Comparison

The three examples presented in Section 3 illustrate
that the MSA can automatically identify fault com-
ponents and localize model singularities. It is very
useful for the modeler to correct singular models.
For a complex singular model, it is advisable to lo-
calize model singularities in such a way.
Currently, there are only a few methods that can help
the modeler to debug singular equation-based models.
For the first and the second examples, the method
proposed in [1,2] is helpful, and can present efficient
messages. However, for the third example where the
singularities are not caused by equations and vari-
ables, the method can not deal with it. Moreover, it
may be less efficient to debug complex models only
by using structural information and semantic infor-
mation.
If a structurally singular problem is caused by an
over-constrained or under-constrained component,
Dymola can identify such singular components. For
the first example, Dymola can find the faulty com-
ponent Ma and give the modeler efficient message.
For the second example, Dymola does not find the
faulty component Ra and considers the singularity is
at the top level, and only informs the modeler that
there is 1 one equation too many in a set of 7 equa-
tions and that 1 equation is missing for a set of 33
variables. For the third example, Dymola also con-
sider the singularity is at the top level, and inform
the modeler that there is 1 one equation too many
and that 1 equation is missing, so the presented mes-
sage is less helpful.

5 Conclusions

In this paper we have discussed an analyzer for de-
clarative equation-based models. The examples pre-
sented in Section 3 are all quite trivial. However,
they illustrate that it is possible to identify faulty
components of a structurally singular model. From
the modeler’s point of view, the MSA is very benefi-
cial because it can make correcting structurally sin-
gular models more quickly by automatically identify-
ing faulty components and providing efficient error
messages to show what is wrong.
The proposed techniques and strategies are also suit-
able for other object-oriented equation based model-
ing languages and not only for Modelica.

Error: The model ModifiedMotor is structurally
singular.
The singularity may be caused by improper use
of the components.
Please check whether the components are used
properly or not.

Figure 9. The error message for the modified motor

356

J.-W. Ding, L.-P. Chen, F.-L. Zhou, Y.-Z. Wu, G.B. Wang

The Modelica Association Modelica 2006, September 4th – 5th

Acknowledgement

This work was supported by the National Natural
Science Foundation of China (Grant No. 60574053),
the National High-Tech Development 863 Program
of China (Grant No. 2003AA001031), and the Na-
tional Basic Research 973 Program of China (Grant
No. 2003CB716207).

References

[1] Bunus P, Fritzson P. Automated static analy-
sis of equation-based components. Simula-
tion: Transactions of the Society for Model-
ing and Simulation International, 2004,
80(8):321-345

[2] Bunus P. An empirical study on debugging
equation-based simulation models. In Pro-
ceedings of 4th International Modelica Con-
ference, Hamburg, Germany, 2005

[3] Asratian A S, Denley T, Häggkvist R. Bipar-
tite Graphs and their Applications, Cam-
bridge University Press, 1998

[4] Dulmage A L, Mendelsohn N S. Coverings
of bipartite graphs. Canadian Journal of
Mathematics, 1963, 10:517-534

[5] Cellier FE, Elmqvist H, Otter M. Modeling
from Physical Principles. The Control Hand-
book, CRC Press, pp.99-108

[6] Fritzson P. Principles of object-oriented
modeling and simulation with Modelica 2.1,
IEEE Press, 2003

[7] Hopcroft J E, Karp R M. An n5/2 algorithm
for maximum matchings in bipartite graphs.
SIAM Journal of Computing, 1973, 2(4):
225-231

[8] Uno T. Algorithms for enumerating all per-
fect, maximum and maximal matchings in
bipartite graphs. In Lecture Note in Com-
puter Science 1350, Springer-Verlag, 1997,
pp. 92-101

357

An Analyzer for Declarative Equation Based Models

