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Abstract 

Along with its benefits, object-oriented modeling 
with Modelica language also brings the risk of miss-
ing or redundant equations, thus leads to an under-
constrained problem or an over-constrained problem. 
This paper aims at facilitating debugging of structur-
ally singular model through an analyzer in terms of 
reducing the number of tests to correct the model. 
When checking for singularities of a component, the 
analyzer first uses some fictitious equations to re-
place the constraint equations generated by the out-
side connections of the component, and then identi-
fies whether the singularities derive from the com-
ponent or not by structural analysis. The checking 
procedure is done recursively. The proposed ana-
lyzer can automatically identify faulty components 
that are responsible for the singularities. 
Keywords: Modelica; debugging; structural analysis; 
structural singularity 

1 Introduction 

The need for mathematical modeling and simulation 
in engineering is continuously rising since technical 
systems become increasingly complex and physical 
prototyping becomes too expensive. Modelica is an 
object-oriented equation based language for efficient 
modeling and simulation of complex, heterogeneous, 
multi-domain physical systems described by ordi-
nary differential and algebraic equations. Modelica 
allows describing simulation models in a declarative 
object-oriented manner, so that a model can be used 
to solve various problems and model components 
easily can be modified to describe similar systems. 
Following object-oriented modeling methodology, a 
Modelica model is structured as closely as possible 
to the corresponding physical system. In particular, 
models are defined in acausal form, independently of 
the context in which it is used. Complex models can 
be realized by aggregating more submodels and their 
connections within a composite larger model, which 

may in turn be connected to other models. For con-
tinuous time modeling, by assembling the declarative 
equations of component models, this form of model 
representation gives rise to a larger scale system of 
differential algebraic equations (DAEs). 
Along with its benefits, object-oriented modeling 
with Modelica language often unconsciously leads to 
an under-constrained problem or an over-constrained 
problem. In such situations, numerical solvers fail to 
find correct solutions to the underlying system of 
equations. Due to the high-level abstraction of equa-
tion based models, it is extremely hard to find and 
localize model singularities. Moreover, especially for 
complex physical systems, the underlying system of 
equations is of very large dimension. Even if a mod-
eler suspects a redundant equation, it is very time-
consuming to identify the equation in a large scale 
system of equations. Therefore, it is a key problem to 
check for the singularity of the model before using it 
for analysis or design purposes, or before generating 
the simulation code. 
To address the aforementioned problem, Bunus and 
Fritzson[1,2] have developed a debugging framework 
for Modelica models and have adapted traditional 
debugging techniques and algorithms to it. Equations 
and variables that probably cause the irregularities 
are isolated by applying graph decomposition tech-
niques and reduced by using structural information 
and semantic information. The developed algorithms 
and methods help to statically detect and repair a 
broad range of errors without having to execute the 
simulation model. 
This paper focuses on checking for structural singu-
larities of equation based models. Our goal is to de-
velop an analyzer, called Model Singularity Analyzer 
(MSA), to help the modeler to localize model singu-
larities more quickly and more efficiently.  
The paper is organized as follows: Section 2 dis-
cusses the three main steps of the MSA. The exam-
ples are demonstrated in Section 3. Section 4 gives a 
comparison of the MSA to existing methods. Section 
5 presents our conclusions. 
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2 Structural analysis 

2.1 Detecting structural singularities 

Before solving a Modelica model, the Modelica 
source code is first translated into a so called  “flat 
model”, which is a flat set of equations, constants, 
parameters and variables. For continuous time mod-
eling, the flat model can be described by a system of 
differential algebraic equations of the form 

0),,,,( =tpuxxF &                              (1) 

where x is the variable vector, u is the input vector, p 
is the parameter vector and t is time.  
The system of equations resulting from a Modelica 
model can naturally be represented as a bipartite 
graph },,{ 21 EVVG =  where V1 denotes the set of 
equations, V2 denotes the set of variables, and there 
is an edge Ee∈  between a variable 2Vv∈  and an 
equation 1Vu∈  if variable v appears in equation u. 

When using a model for simulation, it is a basic re-
quirement that there are as many equations as vari-
ables, and that we can determine a mapping between 
equations and variables in such a way that each 
equation is related one and only one variable. If the 
requirement is satisfied, we call the model structural 
nonsingularity. Otherwise, the mode is structurally 
singular.  
Therefore, a crucial step of checking for structural 
singularities is to assign each variable vi to a unique 
equation ej such that vi appears in ej. If it is impossi-
ble to pair variables and equations in this way then 
the model is structurally singular. This assignment 
procedure can be realized by calculating a perfect 
matching in the bipartite graph associated with the 
system of equations. If the perfect matching does not 
exist then the corresponding system of equations is 
structurally singular.  
For a structurally singular model, we can isolate the 
over-determined and under-determined subsets of 
equations by the DM decomposition[4]. However, 
when applied to a large system of equations, the DM 
decomposition finds a large under-determined or 
over-determined block, which is less helpful for lo-
calizing the structural singularities, so methods to 
help are necessary. 
To check for structural singularities of DAE systems, 
we should not distinguish between the appearance of 
x and the appearances of its derivative, the appear-
ances of x&  are considered as appearances of x. Thus 
to check if the DAE system 0),,( =txxF &  is struc-

turally singular, we check if the algebraic system 
0),,( =txxF  is structurally singular with respect to x. 

2.2 Generating fictitious equations 

A complete Modelica model is always made up of 
components, which maybe consist of other sub-
components. For a composite model, the structural 
singularities may be caused by improper use of com-
ponents, or come from structurally singular compo-
nents. So if a composite model is structurally singu-
lar, we should check for structural singularities of its 
components to determine whether the singularities 
comes from its components or not. 
However, a component of a model always has out-
side connections to communicate with the rest of the 
model. If we isolate a component from the environ-
ment where it is used, and check for structural singu-
larities of the component, we can not determine 
which connection equations generated by outside 
connections should be included into the system of 
equations resulting from the component. The reason 
is connections between components are often acausal, 
i.e., the data flow in connection is not explicitly 
specified. 
The object-oriented modeling methodology uses en-
ergy flow for modeling[5,6]. It is necessary for the 
modeler, when designing model interfaces, to guar-
antee that connecting such models in an arbitrary 
fashion will always ensure that power, momentum, 
and mass are balanced at the interfaces. This means 
that the sum of incoming energy flows must equal 
the sum of outgoing energy flows at connection 
points. Hence, acausal connections in Modelica 
models in fact are a kind of connection based on en-
ergy flow. 
Therefore, when checking for structural singularities 
of components, we disregard the connection equa-
tions generated by outside connections, and use some 
fictitious equations to compensate the lost constraints 
in the following way. 
1. We generate a fictitious equation for each flow 
variable and make the equation contain all variables 
appearing in the same connector with the flow vari-
able.  
2. We generate for each input variable a fictitious 
equation which assigns a value to the corresponding 
input variable. 
3. Potential variables may be more than flow vari-
ables in a connector. In such case, we assume some 
outside constraints on these redundant potential vari-
ables. To construct the most general constraint, we 
generate a fictitious equation for each redundant po-
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tential variable, and make these equations contain all 
potential variables of all the connectors. Let C de-
note a model component, k be the number of the fic-
titious equations added for the redundant potential 
variables, r be the number of connectors of C, im  be 
the number of potential variables in the ith connector, 

in  be the number of flow variables in the ith connec-
tor, p be the number of variables of C, and q be the 
number of equations of C. There is the following 
dependence: 
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is the number of fictitious equations 

added for flow variables. 
The aim of case 1 is to construct a general energy 
flow constraint equation. To explain the idea, we 
first define a generic physical connector class as fol-
lows:  
connector generic 

Real e;    //potential variable 
flow Real f;    //flow variable 

end generic; 
We assume c1 and c2 are two instances of the con-
nector class generic. According to Modelica seman-
tics, the connection connect(c1, c2) produces two 
equations, namely: c1.e=c2.e and c1.f+c2.f=0. From 
this two connection equations, we can get c1.e*c1.f+ 
c2.e*c2.f =0. We further assume c1.e*c1.f=C, where 
C is a constant, then c2.e*c2.f=–C. Since we only 
focus on which variables appear in each equation 
rather than how they appear when checking for struc-
tural singularities, we can use the general form equa-
tions f1(c1.e, c1.f)=0 to express c1.e*c1.f=C, and 
f2(c2.e,c2.f)=0 to express c2.e*c2.f=–C. However, 
there are sometimes more than one matched flow 
variable and potential variable in a connector. Hence, 
without loss of generality, we generate for each flow 
variable a general form equation which contains all 
flow and potential variables of a connector, i.e., 
g(e1,e2,…,f1,f2,…)=0, where  fi(i=1,2,…) is flow 
variable, ei(i=1,2,…) is potential variable.  

The fictitious equations generated for flow variables 
can be regarded as constraint equations about power, 
momentum, and mass which passes connectors. This 
is because that, in any physical system, the power 
can be written as the product of two adjugate vari-
ables, called the potential and the flow in Modelica 
language. For example, in electrical systems the 
power P=v*i where v denotes the voltage and i de-
notes the current, and in translational mechanical 
systems the momentum P=v*f where v denotes the 
velocity and f denotes the force.  
By generating fictitious equations, we can obtain the 
system of equations resulting from a component. By 
checking for structural singularities of the system of 
equations, we can determine that the component is 
structurally singular or not.  

2.3 Locating faulty components 

A connector can be connected, and also be not con-
nected. When checking for singularities of a compo-
nent, two possibilities are considered. It is noticed 
that, once a connector is assumed to be not con-
nected, all other connectors of the same component 
are considered to be connected. If a connector is as-
sumed to be not connected, the fictitious equations 
for flow variables of the connector are not generated, 
instead flow variables are set to zero. 
If a structurally singular component is make up of 
subcomponents, the checking procedure can be done 
recursively, until the fault component is a primitive 
component, or each subcomponent of the fault com-
ponent is structurally nonsingular. 
For that, we introduce the following definition. 
Definition 1. Let C be a structurally singular com-
ponent. C is a minimal structurally singular (MSS) 
component if either of the following two conditions 
is satisfied: 
1. C is a primitive component described in terms of 
equations; 
2. C is a composite component consisting of other 
connected subcomponents, and none of its subcom-
ponents is structurally singular. 
We therefore propose the following strategy for lo-
cating structural singularities in Modelica models. 
Our aim is to locate all the MSS components of a 
structurally singular model. First, we check whether 
a perfect matching exists or not in the bipartite graph 
associated with a whole model. This can be done by 
solving the maximum matching problem[7,8]. If a per-
fect matching does not exist, we apply the DM de-
composition to isolate the over-determined and un-
der-determined subsets of equations. Then we check 
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for structural singularities of each component in turn 
to determine whether the singularities derive from 
the component or not. So it is very natural to con-
sider the following subproblem procedure. 
Procedure P(C) 
Input: a structurally singular component C 
Output: the structurally singular subcomponent set 
T 
begin 

set T :=∅ ; 
let Q be a subcomponent set; set Q :=∅ ; 
add the subcomponents of C to Q; 
for each C'∈ Q do 
    begin 

generate fictitious equations for C'; 
obtain the system of equations E of C'; 
construct the bipartite graph G for E; 
determine a maximum matching W in G; 

    if W is not perfect then 
    add C' to T; 

end 
end 
By performing the above subproblem procedure, we 
can obtain all the singular subcomponents of a singu-
lar component, if they exist. For each singular sub-
component, we further perform the above procedure 
to obtain its singular subcomponents. This procedure 
is performed iteratively until the singular subcompo-
nent is a MSS component. Clearly, the recursive ap-
plication of the above procedure can construct a tree 
of subproblems. By using the depth first rule, we 
obtain our algorithm which outputs all the MSS 
components of a structurally singular model. The 
algorithm is described as follows: 
Algorithm 1: Obtaining the MSS components 
Input: a structurally singular component M 
Output: the MSS components set S 
begin 

set S :=∅ ; 
if M is composite then 

begin 
let L be the list of components; 
set L :=P(M); 
while L is not empty do 

begin 
let C be the last component in L; 
remove C from L; 

        if C is composite then 
        begin 

let K be a component set;  
set K :=P(C); 
if K=∅  then 

add C to S; 
else 

add each element of K to the end 
of L; 

end 
else 

add C to S; 
end 

end 
else 

add M to S; 
end 
Finally, for each MSS component it is desirable to 
give the user some hints what is wrong. If a MSS 
component is a composite component, we inform the 
user that some subcomponents of the MSS compo-
nent may be improperly used. If a MSS component is 
a primitive component, we produce some hints by 
locating critical parts of the component that are re-
sponsible for singularities. For an over-constrained 
problem, the redundant equations must appear in 
both the over-determined subset and the MSS com-
ponent. Similarly, for an under-constrained problem, 
the free variables must appear in both the under-
determined subset and the MSS component. 

3 Examples 

The first example is an oscillator model depicted in 
figure 1. A mass Ma is hanging in a spring Sa which 
is connected to a fixed housing Fa. The mass Ma is 
subject to the gravitational force and the force from 
the spring. It is given an initial position s = −0.5, 
which is offset from the equilibrium position and 
therefore starts an oscillating movement up-and-
down. The positive coordinate direction is upward in 
the figure, which applies to both positions and forces. 
The Modelica description of the oscillator is pre-
sented as follows: 
model Oscillator 

Mass Ma(L=1, s(start=-0.5)); 
Spring Sa(s_rel0=2, c=10000); 
Fixed Fa(s0=1.0); 

equation 

352

J.-W. Ding, L.-P. Chen, F.-L. Zhou, Y.-Z. Wu, G.B. Wang



 

The Modelica Association  Modelica 2006, September 4th – 5th 

 
connect(Sa.flange_b, Fa.flange_b); 
connect(Ma.flange_b, Sa.flange_a); 

end Oscillator; 

 
Figure 1. The oscillator Model 

The component model Spring and Fixed are avail-
able in Modelica class libraries. The definition of the 
component model Mass is presented as follows: 
model Mass 

extends Rigid; 
parameter Real m =1; 
constant Real g =9.81; 
Real v; 
Real a; 

equation 
v = der(s); 
a = der(v); 
flange_b.f = m*a – m*g; 
v = 6;  //an additional equation 

end Mass; 
In order to obtain an over-constrained problem, we 
introduce an additional equation (v=6) in the model 
Mass. The set of equations generated from the Oscil-
lator model is presented in table 1. 

Table 1. The set of equations and variables corre-
sponding to the Oscillator model 

e1: Ma.v = der(Ma.s) 
e2: Ma.a = der(Ma.v) 
e3: Ma.flange_b.f=Ma.m*Ma.a 

-Ma.m *Ma.g 
e4: Ma.v=6 
e5: Ma.flange_a.s=Ma.s-Ma.L/2 
e6: Ma.flange_b.s=Ma.s+Ma.L/2 
e7: Sa.f=Sa.c*(Sa.s_rel-Sa.s_rel0) 
e8: Sa.s_rel=Sa.flange_b.s 

-Sa.flange_a.s 
e9: Sa.flange_a.f=-Sa.f 
e10: Sa.flange_b.f=Sa.f 

v1: Ma.s 
v2: Ma.v 
v3: Ma.a 
v4: Ma.flange_a.s
v5: Ma.flange_a.f 
v6: Ma.flange_b.s
v7: Ma.flange_b.f
v8: Sa.s_rel 
v9: Sa.f 
v10: Sa.flange_a.s
v11: Sa.flange_a.f
v12: Sa.flange_b.s

e11: Fa.flange_b.s=Fa.s0 
e12: Ma.flange_b.s=Sa.flange_a.s 
e13: Ma.flange_b.f+Sa.flange_a.f=0 
e14: Fa.flange_b.s=Sa.flange_b.s 
e15: Fa.flange_b.f+Sa.flange_b.f=0 
e16: Ma.flange_a.f=0 

v13: Sa.flange_b.f
v14: Fa.flange_b.s
v15: Fa.flange_b.f

Performing the DM decomposition, the over-
constrained subgraph is found and represented 
graphically in figure 2, where the covered edges by 
the maximum matching are marked by thick lines. 

 
When check for structural singularities of the com-
ponent Ma, we first assume that both the connectors 
flange_a and flange_b are connected, and generate 
e1': f(Ma.flange_a.f, Ma.flange_a.s)=0 for the flow 
variable  Ma.flange_a.f and e2': f(Ma.flange_b.f, Ma. 
flange_b.s)=0 for the flow variable Ma.flange_b.f. 
The corresponding bipartite graph to the component 
Ma is shown in figure 3, where a maximum match-
ing is marked by thick lines. 

 
In figure 3, e3 is a free vertex, so the component Ma 
is structurally singular, and there exists one redun-
dant equation. It means the primitive component Ma 
is a MSS component. The equations that appear in 
both the over-constrained subgraph and the compo-
nent Ma are e1, e2, e3, e4 and e6, one of which is 
redundant. Similarly, by generating fictitious, we can 
determine the components Sa and Fa are structurally 

Figure 3. The bipartite graph corresponding to the 
component Ma with a maximum matching 

v2

e1

v1 v3 v4 v5 v6 

e2 e3 e4 e5 e6 e1' 

v7 

e2'

e1

v1 v2 v3 v6

e2 e3 e4 e6

v8

e7

v7 v9 v10 v11 v12 

e8 e9 e11 

v14

e12 e13 e14

Figure 2. The over-constrained subgraph 
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nonsingular. In this case, the following message is 
presented to the modeler. 

 
The second example is an AC motor model depicted 
in figure 5. This model contains components from 
the two domains: mechanical domain and electrical 
domain.  

 
Figure 5.  The AC motor model 

The Modelica description of the ACMotor model 
appears as follows: 
model ACMotor 

SineVoltage Vs(V=220,freqHz=50); 
Resistor Ra(R=0.5); 
Inductor La(L=0.1); 
EMF Emf; 
Inertia Jm(J=0.001); 

Ground G1; 
equation 

connect(Vs.p, Ra.p); 
connect(Ra.n, La.p); 
connect(La.n, Emf.p); 
connect(Emf.flange_b, Jm.flange_a); 
connect(Emf.n, G1.p); 
connect(Vs.n, G1.p); 

end ACMotor; 
The component models Inductor, EMF, Inertia and 
Ground are available in Modelica class libraries. In 
order to make the ACMotor singular, the following 
Resistor model is defined.  
model Resistor 

extends OnePort; 
parameter Real R=1; 
Real s; 

equation 
R*i = v+s; 
p.v=12; 

end Resistor; 
The complete set of equations (shown in Table 2) 
generated from the ACMotor class consists of 37 
differential algebraic equations and 37 variables. 
This is a structurally singular problem where under-
constrained and over-constrained situations appear 
simultaneously. The DM decomposition will find the 
over-constrained, well-constrained and under con-
strained subgraphs. The over-constrained subgraph 
contains equations e1, e4, e9, e20, e29, e30 and e37, 
and variables v1, v3, v5, v7, v25 and v29. The well-
constrained subgraph contains equation e33 and 
variable v34. All other equations and variables are 
contained in the under-constrained subgraph. Be-
cause of space limitation, the over-constrained and 
under-constrained subgraphs are not depicted here. 

Table 2. The set of equations and variables corresponding to the AC motor model 
e1:Vs.v = Vs.p.v-Vs.n.v 
e2: 0 = Vs.p.i+Vs.n.i 
e3: Vs.i = Vs.p.i 
e4: Vs.v = Vs.V*sin(2*Vs.PI*Vs.freqHz *time) 
e5: Ra.v = Ra.p.v-Ra.n.v 
e6: 0 = Ra.p.i+Ra.n.i 
e7: Ra.i = Ra.p.i 
e8: Ra.R*Ra.i = Ra.v+Ra.s 
e9: Ra.p.v = 12 
e10: La.v = La.p.v-La.n.v 
e11: 0 = La.p.i+La.n.i 
e12: La.i = La.p.i 
e13: La.L*der(La.i) = La.v 

v1: Vs.p.v 
v2: Vs.p.i 
v3: Vs.n.v 
v4: Vs.n.i 
v5: Vs.v 
v6: Vs.i 
v7: Ra.p.v 
v8: Ra.p.i 
v9: Ra.n.v 
v10: Ra.n.i 
v11: Ra.v 
v12: Ra.i 
v13: Ra.s 

Error: The model Oscillator is structurally singular. 
The singularity comes from the component Ma. 
There is 1 redundant equation in the equations: 

v = der(s); 
a = der(v); 
flange_b.f = m*a- m*g; 
v = 6; 
flange_b.s = s+L/2; 

Figure 4. The error message for the model Oscillator
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e14: Emf.v = Emf.p.v-Emf.n.v 
e15: 0 = Emf.p.i+Emf.n.i 
e16: Emf.i = Emf.p.i 
e17: Emf.w =der(Emf.flange_b.phi) 
e18: Emf.k*Emf.w = Emf.v 
e19: Emf.flange_b.tau = -Emf.k*Emf.i 
e20: G1.p.v = 0 
e21: Jm.w = der(Jm.phi) 
e22: Jm.a = der(Jm.w) 
e23: Jm.J*Jm.a = Jm.flange_a.tau+Jm.flange_b.tau 
e24: Jm.flange_a.phi = Jm.phi 
e25: Jm.flange_b.phi = Jm.phi 
e26:Jm.flange_a.phi=Emf.flange_b.phi 
e27: Emf.flange_b.tau+Jm.flange_a.tau = 0 
e28: Emf.n.i+G1.p.i+Vs.n.i = 0 
e29: G1.p.v = Emf.n.v 
e30: Vs.n.v = Emf.n.v 
e31: Emf.p.i+La.n.i = 0 
e32: La.n.v = Emf.p.v 
e33: Jm.flange_b.tau = 0 
e34: La.p.i+Ra.n.i = 0 
e35: Ra.n.v = La.p.v 
e36: Ra.p.i+Vs.p.i = 0 
e37: Vs.p.v = Ra.p.v 

v14: La.p.v 
v15: La.p.i 
v16: La.n.v 
v17: La.n.i 
v18: La.v 
v19: La.i 
v20: Emf.v 
v21: Emf.i 
v22: Emf.w 
v23: Emf.p.v 
v24: Emf.p.i 
v25: Emf.n.v 
v26: Emf.n.i 
v27: Emf.flange_b.phi 
v28: Emf.flange_b.tau 
v29: G1.p.v 
v30: G1.p.i 
v31: Jm.flange_a.phi 
v32: Jm.flange_a.tau 
v33: Jm.flange_b.phi 
v34: Jm.flange_b.tau 
v35: Jm.phi 
v36: Jm.w 
v37: Jm.a 

 
When check for structural singularities of the com-
ponent Ra, if we assume the connector p is con-
nected and the connector n is not connected, we can 
determine that Ra is structurally singular. The bipar-
tite graph corresponding to Ra is presented in figure 
6, where e1':f(Ra.p.v, Ra.p.i)=0 is the fictitious equa-
tion generated for flow variable Ra.p.i, and e2': 
Ra.n.i=0 is used to set flow variable Ra.n.i to zero. 

 
In figure 6, e6 and v11 are free vertices, so the primi-
tive component Ra is a MSS component. All other 
components of the model ACMotor are structurally 
nonsingular.  

In this case, only the equation e9 appears in both the 
over-constrained subgraph and the component Ra. 
The variables that appear in both the under-
constrained subgraph and the component Ra are v8, 
v9, v10, v11, v12 and v13. For this model, the error 
message is presented in figure 7. 

 
The third example is a modified AC motor depicted 
in figure 8, where the motor contains two ground 
points instead of one. The Modelica description of 
the modified motor model appears as follows: 
model ModifiedMotor 

Error: The model ACMotor is structurally singular. 
The singularity comes from the component Ra.  
There is 1 redundant equation in the equations: 

p.v=12; 
1 equation is missing for the variables: 

p.i; 
n.v; 
n.i; 
v; 
i; 
s; 

Figure 7. The error message for the model ACMotor
Figure 6. The bipartite graph corresponding to the 

component Ra with a maximum matching 
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SineVoltage Vs(V=220,freqHz=50); 
Resistor Ra(R=0.5); 
Inductor La(L=0.1); 
EMF Emf; 
Inertia Jm(J=0.001); 
Ground G1; 

equation 
connect(Vs.p, G2.p); 
connect(Ra.p, G2.p); 
connect(Ra.n, La.p); 
connect(La.n, Emf.p); 
connect(Emf.flange_b, Jm.flange_a); 
connect(Emf.n, G1.p); 
connect(Vs.n, G1.p); 

end ModifiedMotor; 
All the component models of the model Modified-
Motor are available in Modelica class libraries. 

 
Figure 8.  The AC motor with two ground points 

The modified motor model also leads to a structur-
ally singular problem where under-constrained and 
over-constrained situations appear simultaneously. 
When checking for structural singularities, all the 
components are determined to be structurally non-
singular. So the top model ModifiedMotor is the 
MSS component.  
In this case, the singularities are caused by improper 
use of components. To correct the model, one should 
remove the redundant ground point G2 instead of 
some equations and variables. Hence, for this model 
the following message is presented. 

 

4 Comparison 

The three examples presented in Section 3 illustrate 
that the MSA can automatically identify fault com-
ponents and localize model singularities. It is very 
useful for the modeler to correct singular models. 
For a complex singular model, it is advisable to lo-
calize model singularities in such a way. 
Currently, there are only a few methods that can help 
the modeler to debug singular equation-based models. 
For the first and the second examples, the method 
proposed in [1,2] is helpful, and can present efficient 
messages. However, for the third example where the 
singularities are not caused by equations and vari-
ables, the method can not deal with it. Moreover, it 
may be less efficient to debug complex models only 
by using structural information and semantic infor-
mation. 
If a structurally singular problem is caused by an 
over-constrained or under-constrained component, 
Dymola can identify such singular components. For 
the first example, Dymola can find the faulty com-
ponent Ma and give the modeler efficient message. 
For the second example, Dymola does not find the 
faulty component Ra and considers the singularity is 
at the top level, and only informs the modeler that 
there is 1 one equation too many in a set of 7 equa-
tions and that 1 equation is missing for a set of 33 
variables. For the third example, Dymola also con-
sider the singularity is at the top level, and inform 
the modeler that there is 1 one equation too many 
and that 1 equation is missing, so the presented mes-
sage is less helpful.  

5 Conclusions 

In this paper we have discussed an analyzer for de-
clarative equation-based models. The examples pre-
sented in Section 3 are all quite trivial. However, 
they illustrate that it is possible to identify faulty 
components of a structurally singular model. From 
the modeler’s point of view, the MSA is very benefi-
cial because it can make correcting structurally sin-
gular models more quickly by automatically identify-
ing faulty components and providing efficient error 
messages to show what is wrong. 
The proposed techniques and strategies are also suit-
able for other object-oriented equation based model-
ing languages and not only for Modelica.  

Error: The model ModifiedMotor is structurally 
singular.  
The singularity may be caused by improper use 
of the components. 
Please check whether the components are used 
properly or not. 

Figure 9. The error message for the modified motor
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