

The Modelica Association Modelica 2006, September 4th – 5th

Online Application of Modelica Models in
the Industrial IT Extended Automation System 800xA

Rüdiger Franke
ABB AG, Power Technology Systems

Kallstadter Str. 1
68309 Mannheim, Germany

Jens Doppelhamer
ABB Corporate Research

Wallstadter Str. 59
68526 Ladenburg, Germany

Abstract

The Modelica technology and the increasing availabil-
ity of model libraries allow an efficient modeling of
complex dynamic processes. Having a good process
model at hand one might want to apply the model on-
line to improve the operation of the real process. These
online applications range from the generation of high-
level information like performance indices from pro-
cess measurements over the estimation of unmeasured
quantities in a so called soft sensor up to model based
control and online optimization.
This paper discusses the online application of Model-
ica models in an industrial control system. The mod-
els are developed and tested using a standard Model-
ica tool. Afterwards they are imported into the control
system. Here the model variables can be associated
with process signals. This way a model can be initial-
ized with current process values. A numerical solver
performs simulation, estimation or optimization activ-
ities. Solution results can either be used for diagnos-
tics or they can be fed back to the process as manipu-
lated variables.
The Dynamic Optimization system extension has been
developed for the Industrial IT System 800xA. Ex-
ploiting Aspect Object technology, the required func-
tionality for model-based applications can be inte-
grated seamlessly with the control system. Model
based applications can be set up in a modularly struc-
tured way.
The Dynamic Optimization system extension has been
used to deploy different model-based applications. A
Nonlinear Model-based Predictive Controller (NMPC)
for the start-up of steam power plants is discussed as
an example. The overall NMPC application consists of
several model-based activities, including preprocess-
ing of process values, estimation of model states, pre-
diction of optimal operations, and post-processing of
optimization results. A scheduler periodically triggers

these activities online.
Keywords: Modelica, 800xA, Industrial IT, control
system, online optimization, NMPC

1 Introduction

The Modelica technology clearly separates between
model specification and model solution. This way not
only existing models can be used with different tools,
but also different kinds model based activities can be
performed for one and the same model. Such activities
include, besides the solution of initial-value simulation
problems, also the estimation of model parameters, the
optimization of the design of a modeled process and
model-based control.
Also the increasing availability of libraries for fluid
processes is making Modelica more and more suitable
for process applications, see also [5, 8, 4].
Additional things that have to be treated in a real
model based application include the signal exchange
with the process, concepts for security and redundancy
as well as real-time scheduling of model based activi-
ties and the operator user interface.
This paper discusses the integration of dynamic op-
timization with the Industrial IT System 800xA by
ABB, allowing a rapid online deployment of model
based applications once appropriate models and model
based activities have been set up offline.

2 System 800xA overview

The architectural framework for the Industrial IT Sys-
tem 800xA is built upon ABB’s Aspect Object tech-
nology [1]. Aspect Objects relate plant data and func-
tions – the aspects, to specific plant assets – the ob-
jects. Aspect objects represent real objects, such as
process units, devices and controllers. Aspects are in-
formational items, such as I/O definitions, engineering

293

Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA

The Modelica Association Modelica 2006, September 4th – 5th

Figure 1: Plant Explorer Workplace showing the Functional Structure of an NMPC.

drawings, process graphics, reports and trends that are
assigned to the objects in the system.
Aspect Objects are organized in hierarchical structures
that represent different views of the plant. One object
may be placed multiple times in different structures.
Examples for different types of structures are:

Functional Structure: Shows the plant from the pro-
cess point of view.

Location Structure: Shows the physical layout of
what equipment is located where in the plant.

Control Structure: Shows the control network in
terms of networks, nodes, fieldbuses, and sta-
tions.

The idea of placing the same object in multiple struc-
tures is based on the IEC standard 1346 [9, 2]. A con-
troller is a typical example: the real controller is rep-
resented by an Aspect Object. This object is placed in
the control structure showing the logical arrangement
of the controller in the control system, in the location
structure showing the actual location, and in the func-
tional structure showing the function of the controller
for the operation of the process.
The Plant Explorer Workplace is the main tool used
to create, delete, and organize Aspect Objects and as-
pects. It is based on a structural hierarchy, similar to
Windows Explorer, as demonstrated in Figure 1. The
object hierarchy is visible on the left hand side of the

window. The upper right pane shows the aspects of an
object and the lower right pane views a selected aspect.

3 Integration of model based control

3.1 Example for a complex model-based con-
trol application

Figure 1 shows how the functional structure is set up
for an Nonlinear Model-based Predictive Controller
(NMPC) using Aspect Object technology and the Dy-
namic Optimization system extension discussed in this
section. Different Aspect Objects represent the major
processing steps of the NMPC algorithm.

1. The Preprocessor reads current measurements,
validates the data, and generates a guess for the
model state. Furthermore a short term history is
assembled.

2. The State Estimator uses the short term history
and estimates the initial model state.

3. The Optimizer predicts the optimal control into
the future, starting from the estimated initial state.

4. The Postprocessor checks optimization results
and communicates set points to the underlying
control system.

294

R. Franke, J. Doppelhamer

The Modelica Association Modelica 2006, September 4th – 5th

Figure 2: Software architecture of the Dynamic Optimization system extension.

An additional scheduler activity periodically triggers
the other activities and supervises their successful
completion.
The state estimator and the optimizer are based on
the same plant model. This model is built efficiently
on available model libraries [5]. Moreover, specific
preprocessor and the postprocessor models are formu-
lated as computational algorithms in Modelica. The
scheduler model is formulated as a state graph [12].
Based on the models, the activities are formulated as
estimation (State Estimator), optimization (Optimizer)
or initial-value simulation (Preprocessor, Postproces-
sor, Scheduler). The Dynamic Optimization system
extension provides the required aspects.

3.2 Dynamic Optimization system extension

Figure 2 shows the Dynamic Optimization system ex-
tension in the context of System 800xA. The frame-
work underlying the Industrial IT System 800xA con-
tains a scalable client-server object oriented database
as one of its key components, seen as Aspect Direc-
tory in Figure 2. This database is generally used to
store configuration data.
The System 800xA provides multiple predefined as-
pects that cover the basic functionality of a control sys-
tem, such as control connection, process graphics and

history logs of process values. Additional functional-
ity is added through system extensions.
The Dynamic Optimization system extension provides
two new aspects: the Model aspect and the Dynamic
Optimization solver aspect. The new aspects allow
the seamless integration of model-based applications.
Moreover a configuration GUI is provided as an add-in
for Microsoft Excel, allowing the efficient engineering
of model based activities. Last but not least the Dy-
namic Optimization service manages the instantiation
of solver activities in online applications.
The model integration exploits the principle of Model-
ica to clearly separate model specification and model
analysis [10]. For the applications conducted so far,
the tool Dymola [3] is used for model editing and
translation. The implementation of the executable
model is treated as a Simulink S-function [13]. The
used solver HQP [6] allows the treatment of different
model based activities, including initial value simula-
tion, estimation of model parameters and initial states
as well as nonlinear optimal control with constraints
on model inputs and outputs.

3.3 The Model Aspect

The model aspect of an aspect object provides applica-
tions with the necessary information to apply a model

295

Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA

The Modelica Association Modelica 2006, September 4th – 5th

based activity in the context of the aspects object. A
model aspect thus augments the aspect object repre-
sentation of a real-world object with model meta-data.
The responsibilities of the model aspect are:

1. Persistent Storage of the model meta-data

2. Exposing a convenient API for the programmatic
retrieval and manipulation of the model meta-
data and

3. Providing a user interface to allow viewing and
manipulating the model meta-data.

The Model aspect does not provide any functionality
nor does it deal with implementation details. Instead
it references an external implementation. In this way
available modeling tools can be applied, such as Dy-
mola, and expensive re-implementation is avoided.

3.3.1 Persistent Storage of the Model Meta-Data

The responsibility of actually storing the model meta
data delegated by the model aspect to the Aspect
Directory, ensuring qualities like security, redun-
dancy and scalability and providing functionality like
backup/restore and import/export of data. The stored
data includes:

• Declaration of model variables in categories (Pa-
rameter, Input, Output, State, Generic),

• Values for model variables, e.g. for parameters,

• References to process signals, e.g. for inputs and
outputs,

• Structural information for hierarchical sub-model
structure,

• Reference to the implementation of the model.

3.3.2 APIs for Retrieval and Manipulation of
Model Meta-Data

The 800xA framework also defines a generic means
of exposing the data of aspect objects: Aspects can
make their data available as a set of named proper-
ties with values of simple types (String, Real, Boolean,
etc). Through these framework defined, generic inter-
faces to aspect properties, the model data can be made
available to generic applications, i.e. non model-based
ones. These generic interfaces were specially designed
to ease access from many programming environments
and languages. As an example, a tool providing im-
port and export of aspect data to and from Excel could

use these generic interfaces. Another key component
of the Industrial IT System 800xA can make data ex-
posed as aspect properties available for clients using
the widely recognized OPC standard for data access.
For the convenience of model based applications, the
model meta-data is also made available in a more
structured way, using collections of complex types for
model variables, their connection to process signals
and other model meta-data. These API can be seen as a
facade of the underlying, lower-level data structure ex-
posed via the generic interfaces described above. Sup-
port for resolving references to process variables espe-
cially suited for modeling applications is added on this
layer.

3.3.3 User Interface Integration

The framework underlying the Industrial IT System
800xA strongly supports user interface integration of
the constituent applications. A consistent look and
feel, support for services like drag-and-drop or copy-
and-paste and the seamless integration of an applica-
tions user interface into workplaces like the Plant Ex-
plorer Tool can be easily achieved based on that sup-
port as well as role based customization and security of
a workplace, i.e. the ability to adapt and restrict the ap-
plications user interfaces depending on the role of the
current user of the system. Based on this framework
features, and analog to the two levels model meta-data
API described above, the model aspect provides three
views of the model meta-data:
The first one reflects the lower-level data structure as
a set of aspect object properties that can be viewed
and individually manipulated (if sufficient permission
is granted). This generic UI component is not specific
to modeling application; it actually ships with the In-
dustrial IT System 800xA Core and is reused by the
model aspect to provide users with a well known view
of the underlying data.
The second view specially presents information about
the model variables in an Excel-like grid. Model vari-
ables can be sorted and filtered by their category (in-
put, output, parameter, state or generic) and associated
with process variables by drag-and-drop of aspect ob-
jects, e.g. from a tree view in a Plant Explorer, and
selection of control connection aspects and properties
from combo boxes in the grid. Features like undo
functionality, sorting and Excel-like auto fill of this
variable table is provided by the underlying, 3rd party,
grid implementation.
Last but not least the third view embeds an Internet
Explorer control that can be configured with an URL.

296

R. Franke, J. Doppelhamer

The Modelica Association Modelica 2006, September 4th – 5th

This view can e.g. be used to launch the modeling ap-
plication Dymola to view the Modelica model graphi-
cally.

3.3.4 Mathematical view on a model

Mathematically, a model has the form of a hybrid dif-
ferential algebraic equation system (hybrid DAE)

0 = F[x(t), ẋ(t),m(t),u(t),z(t),y(t),p, t], (1)

F : IRnx × IRnx × IRnm × IRnu × IRnz × IRny

×IRnp × IR1 7→ IRnx ,

m(t) := G[x(t),m(t),u(t),z(t),y(t),p, t], (2)

G : IRnx × IRnm × IRnu × IRnz × IRny

×IRnp × IR1 7→ IRnm .

Here x denote continuous-time states, m are discrete
modes, u and z are controlled and not-controlled in-
puts, respectively, y are outputs and p are model pa-
rameters. Discrete modes are variables that change
their values only at discrete time instants, so called
event instants te, see [10].

3.4 The Dynamic Optimization solver Aspect

A model can be applied to perform one or more model-
based activities. A second aspect, the Dynamic Op-
timization aspect has been developed to interface a
numerical solver, hold the solver configuration, and
to exchange data between the solver and the control
system. The exchanged data includes: configuration
data, current process values (like sensor values and
controller set-points), and history logs. Predictions are
written back to the control system as history logs with
future time stamps. Each aspect is working with its
own instance of the numerical solver, allowing multi-
ple model-based activities to run at the same time.
The integrated solver HQP is primarily intended for
structured, large-scale nonlinear optimization [6]. It
implements a Sequential Quadratic Programming al-
gorithm that treats nonlinear optimization problems
with a sequence of linear-quadratic sub-problems. The
sub-problems are formed internally by simulating the
model and by analyzing sensitivities. They are solved
with an interior point method that is especially suited
for a high number of inequality constraints, e.g. result-
ing from the discretization of path constraints. See [7]
and [6] for more details about the solver.
Based on the system model (1),(2), several model-
based activities can be formulated and solved numer-
ically over a time horizon [t0, t f]. The treated model
based activities include

• Initial value simulation for specified initial states
x(t0) and model inputs,

• Estimation of model parameters and initial states,

• Nonlinear optimal control with constraints on
model inputs and outputs,

• Steady-state simulation, estimation and optimiza-
tion at one time instant.

An initial-value simulation covers hybrid DAEs
(1),(2). However, optimization and estimation prob-
lems can currently only be solved for a simplified hy-
brid DAE F, G′ of the form:

m(t) := G′[m(t),z(t), t], (3)

G′ : IRnm × IRnz × IR1 7→ IRnm ,

where discrete modes do not depend on states or opti-
mized variables.

3.4.1 Simulation Problem

The model behavior is completely determined by the
system equations F and G, if initial states x0 = x(t0),
external inputs u(t),z(t), t ∈ [t0, t f], and parameters p
are given. The outputs y(t), t ∈ [t0, t f] can then be ob-
tained by solving the system of differential equations
using initial-value simulation.
However, often some of the required information is not
explicitly known, but can be obtained by minimizing
a cost function. In many of those cases, a feasible so-
lution can be further specified by constraining model
variables. Optimization is a universal tool for treating
those inverse problems.

3.4.2 Estimation Problem

An example for an inverse problem is the estimation of
unknown parameters p and/or initial states x0 based on
measured inputs and outputs. The estimation problem
can be solved by minimizing a least squares criterion

nȳ

å
i=1
‖y(ti)− ȳ(ti)‖2 → min

x0,p
(4)

for the set of measurement data {ȳ(ti), ti ∈ [t0, t f], i =
1, . . . ,nȳ}.

3.4.3 Optimization Problem

The control inputs u(t), t ∈ [t0, t f] or the initial states
x0 might be free to be chosen so that a criterion

F0[t f ,x(t f)] +
Z t f

t0
f0[t,x(t),u(t)]dt → min

x0,u(t)
, (5)

297

Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA

The Modelica Association Modelica 2006, September 4th – 5th

F0 : IR× IRnx 7→ IR,

f0 : IR× IRnx × IRnu 7→ IR.

is minimized subject to constraints on model inputs
umin(t)≤ u(t)≤ umax(t) and outputs ymin(t)≤ y(t)≤
ymax(t), t ∈ [t0, t f].
Generally it cannot be guaranteed that a solution exists
for an optimization problem with output constraints as
the model outputs are determined by model states and
model inputs. This is why output constraints should be
relaxed to soft constraints, augmenting the optimiza-
tion criterion (5) with penalties for violations. The
HQP solver provides support for soft constraints.

3.4.4 Steady-state problem

The dynamic estimation and optimization problems
discussed above can also be formulated as steady-state
problems at one time instant t = t0 = t f . The steady-
state condition

ẋ(t) = 0 (6)

is formulated as constraint for the HQP optimization
solver.

3.5 Discrete-Time Optimal Control Problem

Dynamic Optimization and Estimation problems are
treated internally as discrete-time optimal control
problems, applying multi-stage control vector param-
eterization. The time horizon [t0, t f] is divided into
K stages with t0 = t0 < t1 < .. . < tK = t f . The con-
trols u(t) are described in each interval [tk, tk+1], k =
0, . . . ,K−1 as function of the discrete-time input vari-
ables uk ∈ IRm. The unknown parameters p are con-
verted to state variables with the state equation ṗ = 0
and with unknown initial values p0 = p(t0). They
are described together with the continuous-time model
states x(t) with the discrete-time state variables xk ∈
IRn,n = nx + np. The state equation (1) is solved for
the stage k with the initial values xk and the controls
uk using a numerical integration formula.
This results in the multistage optimization problem:

FK(xK) + å
k

f k
0 (xk,uk) → min

uk,x0

, (7)

FK : IRn 7→ IR1, f k
0 : IRn× IRm 7→ IR1

with respect to the discrete-time system equations

xk+1 = fk(xk,uk), (8)

fk : IRn× IRm 7→ IRn

and the additional constraints

ck
min ≤ ck(xk,uk) ≤ ck

max,

cK
min ≤ cK(xK) ≤ cK

max, (9)

ck : IRn× IRm 7→ IRmk ,cK : IRn 7→ IRmK .

Note that initial conditions of the system model are
formulated as general constraints (9) as well. Dis-
cretization formulae, known parameter values, and
predetermined disturbances are included into the
discrete-time functions FK , f k

0 , fk, ck, and cK . The
discrete-time functions are assumed to be two times
continuously differentiable with respect to their vari-
ables.

3.6 Large-Scale Nonlinear Programming
Problem

Discrete-time optimal control problems can be solved
as structured large-scale nonlinear optimization prob-
lems. This has the main advantage that powerful meth-
ods for large-scale nonlinear optimization can be ap-
plied to their efficient solution [11].
The discrete-time control and state variables for all
stages k are collected to one large vector of optimiza-
tion variables

v =

x0

u0

x1

u1

...
xK−1

uK−1

xK

. (10)

One specific feature of the optimization approach dis-
cussed here is that the discrete-time state variables at
all stages are treated as optimization variables as well,
even though they are determined by initial conditions
and the control parameters. This leads to a signifi-
cant increase of the size of the optimization problem.
However, the consideration of states as constrained
optimization variables generally improves robustness
and efficiency of the solution. For instance trajectory
constraints can be formulated directly on the discrete-
time state variables. Furthermore the separation of the
overall problem into multiple stages often leads to a
reduction of the required number of nonlinear itera-
tions. The computational overhead is relatively low if
the number of state variables nx is not too high, com-
pared to the number of control variables nu and if the
sparse multistage structure of the large-scale nonlinear
optimization problem is exploited appropriately.

298

R. Franke, J. Doppelhamer

The Modelica Association Modelica 2006, September 4th – 5th

Figure 3: Simplified process diagram of a power plant.

4 Application example

A Nonlinear Model-based Predictive Controller
(NMPC) for power plant start-up serves as example.
The start-up problem is challenging as it is highly non-
linear in the covered large range of operation. Thermal
stress occurring in thick walled components needs to
be kept in given limits. Multiple manipulated variables
have to be coordinated. A long prediction horizon is
required to fulfill the constraints during a start-up.

Figure 3 shows a process diagram of a power plant.
Feed water enters through pre-heaters and the econ-
omizer into the evaporator (lower left side). Satu-
rated steam leaving the evaporator gets super-heated
within several super-heater stages (the example dia-
gram shows five super-heater stages and 4 parallel
streams in the upper left part). The live steam leav-
ing the boiler goes to the turbine (the example shows 2
turbine sections). There the thermal energy gets trans-
formed to mechanical energy, driving the generator.
Afterwards the steam gets condensed and water flows
back to the feed water tank (lower right side of the di-

agram).

During start-up, the boiler first has to produce steam as
required for starting the turbine. Within this phase, the
steam bypasses the turbine through the high-pressure
(HP) and low pressure (LP) bypass valves. The boiler
gets heated up by several hundred degrees centigrade.
This causes spatial temperature differences in thick
walled parts, in particular headers behind the super-
heaters and spherical fittings in the live steam pipe.
Depending on the material properties, the spatial tem-
perature differences cause thermal stress, which again
causes fatigue up to destruction. This is why the ther-
mal stress needs to be carefully observed and kept in
prescribed limits.

A boiler model was built using the Modelica technol-
ogy [5]. The model needs to be carefully designed so
that is expresses the relationship between optimized
control actions (fuel flow rate and valve positions) and
constrained process values (pressures, temperatures
and thermal stresses). In the example described here, a
system of differential-algebraic equations (DAE) with
about 1000 variables was built. The Dynamic Opti-

299

Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA

The Modelica Association Modelica 2006, September 4th – 5th

Figure 4: Traditional start-up. The dots show actual process values and limits, the light lines show predictions
of process values over 90 minutes that are recalculated every minute. The dark lines show the most recent
prediction.

Figure 5: Optimized start-up performed with the NMPC online in closed loop.

300

R. Franke, J. Doppelhamer

The Modelica Association Modelica 2006, September 4th – 5th

Figure 6: Operator display showing the optimal start-up predicted by the NMPC, in addition to current process
values and history logs.

mization aspect system was used offline to identify
model parameters based on data logs available for his-
torical start-ups.
Figure 4 shows major process values for a start-up that
was performed using well tuned standard control. The
plant model was used online, open loop to check its
ability to predict the future behavior of the process.
The fuel flow rate and the HP bypass position are ma-
nipulated variables. The most important process vari-
ables are the furnace temperature, live steam pressure,
temperature and flow rate, as well as thermal stresses.
It can be seen that the allowed limits for thermal stress
are not exploited during long time periods on the one
hand side and that they exceed the allowed limits at
other times (in particular DT HP header). The model
was able to predict the behavior of the plant suffi-
ciently well.
During a run of the NMPC, an optimization problem is
solved online every minute. The time horizon (predic-
tion and control) is 90 minutes in the example. It gets
divided into 90 sample periods. The optimized ma-
nipulated variables are parameterized piecewise linear.
All other model variables are evaluated at the sample
time points. This means that overall about 91000 vari-

ables are present in the online optimization problem.
The solution time is about five minutes for a cold start
of the solver and about 40 seconds for a subsequent
solver run.

Figure 5 shows the results of a start-up performed with
the NMPC. Due to optimized use of the manipulated
variables fuel flow rate and HP bypass position, the
constraint on thermal stress of the HP header stays ac-
tive during almost one hour. After about 50 minutes
the fuel flow rate accidentally shot over, resulting in a
violation of the thermal stress constraint. It can be seen
how the NMPC reacted by immediately throttling the
HP bypass valve and by reducing the fuel flow rate.
Overall the start-up time could be reduced with the
NMPC by about 20 minutes and the start-up costs by
about 10% in a 700 MW coal fired power plant.

Figure 6 shows an operator display for boiler start-up
optimization. Traditionally an operator display shows
current process values and history logs. As a by-
product of model predictive control, the operator can
additionally see the prediction of the future behavior
of the plant. As the NMPC runs integrated with the
control system, this display can easily be configured.

301

Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA

The Modelica Association Modelica 2006, September 4th – 5th

5 Conclusions

The Modelica technology and the available model li-
braries allow an efficient modeling of many processes.
Nevertheless nowadays the application of the models
normally remains restricted to simulation studies con-
ducted offline. A considerable additional effort is re-
quired to bring a model online and to deploy a mature
model-based application.
The Dynamic Optimization system extension has been
developed for the Industrial IT System 800xA by ABB
to integrate model-based applications. Exploiting the
powerful framework of the System 800xA, the effort
for the development of the Dynamic Optimization sys-
tem extension could be restricted to few additional
software components. The new Model aspect exposes
model data to the System 800xA. An additional mod-
eling application like Dymola is used to build a Mod-
elica model and to export C-code. The C-code is com-
piled to a stand-alone executable Dll and loaded by
the HQP optimization solver at runtime. The new Dy-
namic Optimization aspect configures the HQP solver
for a specific model based activity and it exchanges
data like model parameters, process values and his-
tory logs between System 800xA and the HQP solver.
The new aspects can be combined with other exist-
ing aspects in Aspect Objects. This allows the flexi-
ble structuring of complex model-based applications,
consisting of multiple models and model-based activ-
ities. A configuration GUI has been developed as Ex-
cel add-in, which turned out to be a good compromise
between development effort and achieved productiv-
ity. The Dynamic Optimization service manages the
instantiation of solver activities in online applications.
The Dynamic Optimization system extension has been
applied so far in a number of different model-based ap-
plications. Nonlinear Model-based Predictive Control
(NMPC) for the start-up of power plants is discussed
in this paper as an example. The overall controller con-
sists of four different model-based activities, including
the pre-processing of process signals, the estimation of
the model state, the prediction of the optimal start-up,
and the post-processing of optimization results. The
process models are based on the Modelica.Media and
Modelica.Fluid libraries. The scheduling and super-
vision of the four activities has been implemented in
the same framework as additional model-based activ-
ity, based on the Modelica.StateGraph library.
After the successful application of the NMPC to the
start-up of a 700 MW coal fired power plant, several
more start-up optimizations are currently being de-
ployed in gas, oil and coal fired power plants.

References

[1] ABB Automation Technologies. Industrial
IT System 800xA – System Architecture
Overview. http://www.abb.com, Document Id:
3BUS092080R0101, 2005.

[2] L.G. Bratthall, R. van der Geest, H. Hoffmann, E. Jel-
lum, Z. Korendo, R. Martinez, M. Orkisz, C. Zeidler,
and J. S Andersson. Integrating hundred’s of products
through one architecture – the Industrial IT architec-
ture. In International Converence on Software Engi-
neering. Orlando, Florida, USA, 2002.

[3] Dynasim AB. Dymola: Dynamic Modeling Labora-
tory. http://www.dynasim.se.

[4] J. Eborn, H. Tummescheit, and K. Prölß. Aircondi-
tioning – a Modelica library for dynamic simulation
of AC systems. In Proceedings of the 4th Interna-
tional Modelica Conference. Modelica Association,
Hamburg-Harburg, Germany, March 2005.

[5] H. Elmqvist, H. Tummescheit, and M. Otter. Mod-
eling of thermo-fluid systems – Modelica.Media and
Modelica.Fluid. In Proceedings of the 3rd Interna-
tional Modelica Conference. Modelica Association,
Linköping, Sweden, November 2003.

[6] R. Franke, E. Arnold, and H. Linke. HQP: a solver
for nonlinearly constrained large-scale optimization.
http://hqp.sourceforge.net.

[7] R. Franke, K. Krüger, and M. Rode. Nonlinear model
predictive control for optimized startup of steam boil-
ers. In GMA-Kongress 2003. VDI-Verlag, Düsseldorf,
2003. VDI-Berichte Nr. 1756, ISBN 3-18-091756-3.

[8] R. Franke, K. Krüger, and M. Rode. On-line optimiza-
tion of drum boiler startup. In Proceedings of the 3rd
International Modelica Conference. Modelica Asso-
ciation, Linköping, Sweden, November 2003.

[9] International Electrotechnical Commission. Industrial
systems, installations and equipment and industrial
products – structuring principles and reference desig-
nations. IEC Standard 61346, 1996.

[10] Modelica Association. Modelica – A Unified Object-
Oriented Language for Physical Systems Modeling,
Version 2.2. http://www.modelica.org, 2005.

[11] Walter Murray. Sequential quadratic programming
methods for large-scale problems. Computational Op-
timization and Applications, 7(1):127–142, 1997.

[12] M. Otter, J. Årzén, and A. Schneider. StateGraph –
a Modelica library for hierarchical state machines. In
Proceedings of the 4th International Modelica Con-
ference. Modelica Association, Hamburg-Harburg,
Germany, March 2005.

[13] The MathWorks, Inc. Simulink: for model-based and
system level design. http://www.mathworks.com.

302

R. Franke, J. Doppelhamer

