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Abstract

This paper introduces a numerical Modelica library
that provides access to some of the most well-known
powerful libraries for numerical methods. Our ap-
proach has been to develop wrappers that allow Mod-
elica users easy access as functions both from textual
and graphical Modelica environments [9], [10]. This
library also includes additional external functions with
corresponding Modelica wrappers to interpolate data
and to read/write matrix data from/to files.
Keywords: Matrix, Lapack, SuperLU, Matrix Market
File Format, Harwell-Boeing Matrix Format, Interpo-
lation

1 Introduction

One important area of research is developing and im-
plementing fast numerical methods that can be used
to simulate physical phenomena. Researchers who
are working with simulation usually do not want to
spend time and resources implementing, debugging,
and maintaining new numerical libraries. Instead they
want to use existing libraries that are recognized as sta-
ble and efficient.
Numerical methods can be divided into different areas
such as: optimization, solution of ordinary and partial
differential equations, mesh generation, numerical in-
tegration, solution of nonlinear equations, solution of
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linear equations, eigenvalue problems, curve and sur-
face fitting, interpolation, etc. Finite element methods
is a well-known group of methods for solving PDE
problems, which typically are rather computation in-
tensive.
This paper introduces a new wrapper library called
Numeric intended for Modelica users who want to use
standard common numeric libraries as well as methods
and routines for saving and loading matrixes to/from
files.

1.1 Small Example of Using the Library

Assume that the user wants to calculate the eigen-
values for an N-by-N real nonsymmetric matrix
stored in the Matrix Market file format. The first
task would be to load the matrix file, here called
matrix.mtx. This is done by using the functions
getMatrixSize and getMatrixFile where the first one
returns the size of the matrix and the other one re-
turns the matrix data, both taking the file name as
a string argument. Functions for loading and sav-
ing matrices in Matrix Market is located in package
Numeric.MatrixIO.MatrixMarket along with other
Matrix Market functions.
Below Modelica pseudo code is shown for loading the
matrix.

Integer n = getMatrixSize("matrix.mtx");
Real A[n,n];
A=getMatrix("matrix.mtx");

More information about loading and saving data can
be found in the MatrixIO section. For the calculation
of eigenvalues Lapack [2] containsa function dgeev
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that calculates the eigenvalues along with the left and
right eigenvectors of a general matrix. The dgeev rou-
tine uses double precision but the Lapack library also
contains a corresponding function for single precision
calculations, named sgeev.
In the library outlined in this paper all Modelica wrap-
per functions for Lapack are stored in subpackages.
The wrapper for the dgeev function is located in
Numeric.Lapack.SimpleDriver, for further detail se
the section dealing with the structure of the library.
Below Modelica pseudo code is shown that outlines
the call to the calcEigenValGeneralMatrix dgeev
which uses the Lapack dgeev function for the calcu-
lations of the eigenvalues.

Real eigenvReal[size(A, 1)];
Real eigenvImag[size(A, 1)];
Real eigenVectors[n,n];
(eigenvReal, eigenvImag,
eigenVectors) =
calcEigenValGeneralMatrix_dgeev(A1);

The Modelica wrapper function
calcEigenValGeneralMatrix dgeev allows the
user to specify more input data and receive more
information from Lapack than is shown here, which is
further outlined in the Lapack section.

2 Structure of the Numeric Library

The design of this library focuses on two major issues:

• It should be easy to locate libraries and functions

• The package should be easy to maintain with all
the external library dependencies

• The package structure should allow easy addi-
tion of new external libraries and native Modelica
functions

This library contains both functions that are imple-
mented natively in Modelica and functions that act as
wrappers to C and FORTRAN 77 functions [9],[1].
The top level structure of the Numeric library can be
seen in Figure 1 with the subpackages Lapack, Su-
perLU, MatrixIO, and Interpolation

2.1 The Structure of the Numeric Package

The subpackages Lapack and SuperLU contain Mod-
elica wrapper functions that call corresponding exter-
nal functions in each external library. The MatrixIO
subpackage is further divided into subpackages that
implement different matrix file formats for saving and

Numeric

Lapack SuperLU MatrixIO Interpolation

Figure 1: Structure of numeric package

loading matrix data. The Interpolation subpackage
contains subpackages with methods both developed
natively in Modelica code but also Modelica wrapper
functions to interpolation library routines.

2.2 Structure of the Lapack Subpackage

Lapack

SimpleDriver ExpertDriver ComputionalDriver Examples

Figure 2: Structure of the Lapack subpackage and it
subpackages

The Lapack subpackage can be seen in Figure 2. This
package contains four subpackages, SimpleDriver, Ex-
pertDriver, ComputionalDriver and Examples. For
more information about SimpleDriver, ExpertDriver
and ComputianalDriver se the Lapack section. In the
Examples library different examples have been im-
plemented which explain how the Lapack subpackage
can be used in Modelica code. These examples are
mostly constructed for users who know the Modelica
language but are new to the Lapack library.

2.3 Structure of SuperLU package

The SuperLU subpackage has been divided into li-
brary subpackages, Driver, Computation, Utility as
well as a section called Examples that has been added.
The packaged structure can be view in Figure 3. For
detailed information about the Driver, Computation
and Utility subpackages se the SuperLU subpack-
age. In the Example subpackage to SuperLU different
Modelica examples have been implemented that show
how the SuperLU library can be used
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SuperLU

Driver Computation Utility Examples

Figure 3: Structure of Lapack package with its sub-
packages

2.4 Structure of MatrixIO package

MatrixIO

MatrixMarket HarwellBoeing Examples

Figure 4: Structure of Lapack package

The MatrixIO packages implement support for differ-
ent matrix file formats. Currently the Matrix-Market
and the Harwelll-Boeing subpackages are supported
with functions for saving and loading dense and sparse
matrix data. An overview of the MatrixIO package can
be viewed in Figure 4. For more detailed information
about the Matrix Market and the Harwell-Boeing se
corresponding sections. Examples that show how ma-
trix data can be loaded and saved are implemented in
the Examples subpackage.

2.5 Structure of the Interpolation subpack-
age

Interpolation

CubicSpline Examples

Figure 5: Structure of the Interpolation subpackage

The Interpolation subpackage is designed with the
same idea as the other packages. Currently the sub-

package is divided into two subpackages, CubicSpline
and Examples, se Figure 5. The CubicSpline subpack-
age contains both native Modelica function implemen-
tations and Modelica wrapper functions for use of ex-
ternal cubic spline function implemented in C code.
The Examples subpackage contains easily understand-
able examples that show both how the Modelica imple-
mented versions and the external version can be called
from Modelica code.
For further details about cubic spline se the Interpola-
tion subpackage section.

3 Library Design Issues

As already mentioned, the main idea is to create a
Modelica package where different numerical methods,
format handling functions, and solvers can be readily
available for use from Modelica. Several design issues
have been addressed on how to handle documentation
from the external libraries and variable nameing in the
external functions. Without the library documentation
the package would be hard to use and a user who
is familiar with the corresponding non-Modelica
package will be confused if the input/output variable
has changed name in the Modelica wrapper function.

3.1 Naming Conventions

The Modelica Numeric library uses function and vari-
able names from the original package as a postfix part
of the name along with a more explanatory Java-style
name comprising the beginning of the name. This will
give new users more understanding of functions and
variables, without reading the detailed documentation
for each variable. Users who are familiar with the
corresponding non-Modelica libraries will recognize
functions and variables due to the postfix part of the
name.
An example is the Modelica wrapper function
calcEigenValGeneralMatrix dgeev which is intro-
duced in the Introduction part of this paper. The first
part of the function name tells the user that it calculates
the eigenvalues for a general matrix and the postfix
part specifies that the dgeev function is used. The same
naming convention is used for variables. The dgeev
function has a variable named JOBVL that specifies
it the left eigenvalues should be calculated or not. In
the Modelica wrapper function this variable is named
calcLeftEigenV_JOBVL which are a more self
explanatory Java-style name along with the Lapack
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variable name as a postfix part of the name.

3.2 Documentation

The issue about documentation has been ad-
dressed by including the external function docu-
mentation into the Modelica wrapper function doc-
umentation node. Below the first part of the
documentation for the Modelica wrapper function
calcEigenValGeneralMatrix dgeev is shown.
First in the documentation comes a specification of
the difference between the native function call and
the Modelica wrapper function call. In the Modelica
wrapper function the LDA, LDVL and LDVR vari-
ables are not needed, and therefore have been removed
from the Modelica interface. After the library anno-
tation the Fortran function declaration follows along
with version and argument documentation. Further
down comes the purpose and argument documenta-
tion. In this example only four arguments are shown.

annotation( Documentation(info="Lapack

#### Numerical Library annotation ###
Variables that has been excluded
in Numerical Library

LDA = size(A,1);
LDVL = size(A,1);
LDVR = size(A,1);

#####################################

SUBROUTINE DGEEV( JOBVL, JOBVR, N, A,
LDA, WR, WI, VL, LDVL, VR,
LDVR, WORK, LWORK, INFO )

-- LAPACK driver routine (version 3.0)
Univ. of Tennessee, Univ.
of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National
Lab,and Rice University
December 8, 1999

.. Scalar Arguments ..
CHARACTER JOBVL, JOBVR
INTEGER INFO, LDA, LDVL, LDVR,
LWORK, N
..
.. Array Arguments ..
DOUBLE PRECISION A( LDA, * ),
VL( LDVL, * ), VR( LDVR, * ),
WI( * ), WORK( * ), WR( * )

..

Purpose

=======

DGEEV computes for an N-by-N real
nonsymmetric matrix A, the
eigenvalues and, optionally,
the left and/or right eigenvectors.

The right eigenvector v(j) of A
satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate
of u(j).

The computed eigenvectors are
normalized to have Euclidean norm
equal to 1 and largest component real.

Arguments
=========

JOBVL (input) CHARACTER*1
= ’N’: left eigenvectors of
A are not computed;
= ’V’: left eigenvectors of
A are computed.

JOBVR (input) CHARACTER*1
= ’N’: right eigenvectors of
A are not computed;
= ’V’: right eigenvectors of
A are computed.

N (input) INTEGER
The order of the matrix A. N >= 0.

A (input/output) DOUBLE PRECISION
array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten.

4 Lapack

Lapack is one of the most widely used libraries for
solving many common numerical problems in lin-
ear algebra. The library includes routines for solv-
ing systems of simultaneous linear equations, find-
ing least square solutions of overdetermined sys-
tems of equations, solving eigenvalue problems, and
solving singular value problems [2]. The Modelica
Numeric.Lapack sublibrary is divided into three dif-
ferent parts: Basic Routines, Advanced Routines and
Computational Routines.
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• Basic Routines solves a specified problem with a

few options. Examples of functionality in basic
routines are finding the eigenvalues of a matrix
or solving a set of linear equations.

• Advanced Routines allows the user to control the
calculations more by taking more options and re-
turning more information than the simple driver
routines. An example can be calculation of error
bounds or normalizing matrices to improve accu-
racy.

• Computational Routines shall more be seen as
routines designed to perform a specific task, such
as a LU factorization or reduction of a real sys-
tem matrix to tridiagonal form. Usually these
functions are used to construct more advanced
functions in the Basic and Advanced routines li-
braries. The routines are categorized in systems
of linear equations, eigenvalue problems, orthog-
onal factorization, and singular value decomposi-
tion.

4.1 Example

An example of the simple driver routines is the dgeev
function that calculates right and left eigenvalues and
eigenvectors for an N-by-N real nonsymmetric matrix.
This calculation can be described as finding the eigen-
values λ and corresponding eigenvectors z6=0 as equat-
tion (1) and (2) describe.

Az = λz (1)

A = AT where A is real (2)

When all eigenvalues and eigenvectors have been cal-
culated equation (3) is solved.

A = ZΛZT (3)

Where Λ is a diagonal matrix whose diagonal elements
are the eigenvalues, Z is an orthogonal matrix whose
columns are the eigenvectors [3].
As described previously the Model-
ica wrapper function for dgeev is called
calcEigenValGeneralMatrix dgeev and is shown be-
low, where the documentation part has been removed
in this example.

function calcEigenValGeneralMatrix_dgeev

input Real A[:, size(A, 1)];
input String calcLeftEigenV_JOBVL = "N"

"Left eigenvectors of A
are not computed";
input String calcRighEigenV_JOBVR = "V"
"Right eigenvectors of A
are computed";
output Real eigenReal_WR[size(A, 1)]
"Real part of eigenvalues";
output Real eigenImag_WI[size(A, 1)]
"Imaginary part of eigenvalues";
output Real leftEigenVectors_VL
[size(A, 1),size(A, 1)]
"Left Eigenvectors";
output Real reightEigenVectors_VR
[size(A,1), size(A,1)]
"Right Eigenvectors";
output Integer INFO
"=0 successful computation";

protected
Integer N=size(A, 1)
"The order of the matrix";
Integer LWORK=10*N
"MAX size if JOBVL = V or
JOBVR = V LWORK >= 4*N";
Real WORK[LWORK];

external "Fortran 77" dgeev(
calcLeftEigenV_JOBVL, calcRighEigenV_JOBVR,
N, A, N, eigenReal_WR, eigenImag_WI,
leftEigenVectors_VL, N,
reightEigenVectors_VR, N,
WORK, LWORK, INFO)
annotation (Library="lapack");

end calcEigenValGeneralMatrix_dgeev;

The first argument is the Matrix A which the eigenval-
ues and eigenvectors are to be calculated for. The fol-
lowing two arguments, calcLeftEigenV JOBVL and
calcRighEigenV JOBVR, determine if the right or/and
left eigenvalues/eigenvectors are to be calculated. In
the default setting only the right eigenvalues are calcu-
lated.
In the output section the eigenvalues variable comes
first then the left and right eigenvectors and last an in-
formation flag that tells if the calculation could be per-
formed.
Variables that don’t add to the functionality of the
Modelica wrapper function but are needed for the La-
pack implementation have been placed in the protected
section. For the function outlined above the working
variables LWORK and WORK have been placed here,
along with the variable N that specifies the order of the
matrix.
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5 SuperLU

For solving large, sparse, nonsymmetric systems of
linear equations the SuperLU library is commonly
used [11]. The SuperLU library is available either in C
or in Fortran code. Here our Modelica implementation
uses the Fortran interface for maximum performance.
The SuperLU library starts by performing an LU
decomposition [15] with partial pivoting and trian-
gular systems solved through forward and backward
substitution.
The LU decomposition can handle non-square matri-
ces, but it is only for square matrices the triangular
solver is used. For improving backward stability
interactive refinement subroutines are used. The
library also contains routines provided to equilibrate
the system, estimate the condition number, calculate
the relative backward error and estimate error bounds
for re-fined solutions.
The SuperLU subpackage is divided into three parts:
Driver, Computation, and Utility. In the Driver
subpackage functions for solving systems of linear
equation are provided. In the Computation subpack-
age specified computational routines are provided
instead of a complete driver as in the Driver package.
Using this pack-age the user can develop a new com-
putation driver in the Modelica environments. The
last package is the Utility subpackage that supplies the
user with routines for creating and destroy SuperLU
matrices.

5.1 Examples

Take the function dgstrf as an example in the
Numeric.SuperLU.Computational sublibrary. It
performs a LU factorization of a general sparse m-
by-n matrix, A, using partial pivoting with row inter-
changes. Factorization has the form of equation (4)

Pr ∗A = L∗U (4)

where Pr is a row permutation matrix, L is lower tri-
angular with unit diagonal elements and U is upper
triangular. The documentation for the function call
dgstrf can be found in the SuperLU documentation
[11], [12].

6 Interpolation

In many engineering and science areas data is gath-
ered either from sampling real observations or by sim-

ulations where data is created at certain time intervals.
Interpolation is a technique which uses the sequence
of known values to estimate the value of an unknown
point [14]. Given a sequence of known sample points,
xk, and the corresponding values, yk, the interpola-
tion tries to fit a function, f , that which when given
an value in xk, returns the corresponding value in yk,
shown in equation (5).

f (xk) = yk where k = 1,2,3, .....n (5)

This method of trying to find f is commonly known as
curve fitting and the function f is then called the inter-
polant.
When calculating a value for an unknown data point,
α, a control has to be made that ,α, lies inside the se-
quence of known values, se equation (6).

min(xk)≤α≤max(xk) (6)

No interpolation can be performed if the data point is
lying outside the sequence xk. To calculate the inter-
polated value the point is inserted in the interpolation
function, f (α) and the function is evaluated. In the
Numeric package a cubic spline interpolation scheme
has been implemented both in native Modelica code
and by using external library. The external library can
be reached through a Modelica function that acts as a
wrapper.

6.1 Cubic Spline

A cubic spline is a function that is defined as a piece-
wise third-order polynomial function which passes
through a set of points. To create a solvable system a
boundary condition is commonly placed on the second
derivate of each polynomial end point. If the bound-
ary condition is that the second derivative is equal
to zero the spline is commonly called a natural cu-
bic spline which gives a tridiagonal system that eas-
ily can be solved. Different boundary conditions can
be used for creating other spline interpolation scheme
[4] [7]. Suppose that the function f is to be inter-
polated, given by the data (xi, fi), i = 0, ....,N where
fi = f (zi) and zi form an order of sequence such as
a = x0 < x1 < ... < xN = b. From this the cubic inter-
polation function S∈C2[a,b] can be described for each
interval [xi,xi+1] as equations (7) and (8) along with
the fact that the polynomials are smoothly adjusted
(10) and that the interpolation condition (13) is sat-
isfied [13].
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S(x)≡Si(x) (7)

Si(x) = ai,0 +ai,1(x− xi)

+ai,2(x− xi)2 +ai,3(x− xi)3 (8)

for x∈[xi,xi+1] , i = 0, .....,N−1 (9)

Sr
i−1(xi−0) = Sr

i (xi +0) (10)

i = 1, ...,N−1 (11)

r = 0,1,2 (12)

Sr
i−1(xi−0) = Sr

i (xi +0) (13)

i = 1, ...,N−1 (14)

r = 0,1,2 (15)

7 MatrixIO

While working with numerical applications the ability
to save and load matrix data in an efficient file format
is often needed. Here we decided not to create our
own file format but rather to build in support for the
most common formats. This gives the user the ability
to work with existing data and to easier exchange data
with other users. We have chosen to support the Matrix
Market [6] [5] and Harwell-Boeing [8] formats.

7.1 Harwell-Boeing Matrix Format

The Harwell-Boeing format is today one of the most
popular text-file exchange formats for sparse matrixes.
The file format starts with a header block where the
first line contains the title and an identifier. The sec-
ond line contain the number of lines for each of the
data blocks and the total number of lines in the file,
excluding the header. The third line contains a three
character string denoting the matrix type and the num-
ber of rows and column entries. The fourth line con-
tains the variable Fortran format for the following data
block and the fifth line is only present if there is a right
hand side of the matrix. The data is stored in an 80-
column, fixed length format where each matrix begins
with a multiple line header block, which is followed
by two, three or four data blocks.
Using this information the correct storage can be allo-
cated before the actual matrix data is accessed [8].

7.2 Matrix Market Format

The Matrix Market format provides a powerful and
simple file format for storing and exchanging matrix
data. The format is based on an ASCII file format
that is based on a collection of affiliated formats which
share certain design elements. So far, we have fo-
cused on supplying routines for accessing two of these
design elements, general sparse matrices and general
dense matrices.
In the general sparse matrices version only the non-
zero entries are stored, and for each value the cor-
responding matrix coordinates is stored. For general
dense matrices the array format is the most efficient,
and the data is provided in a column-oriented order.
In both of the formats an arithmetic field is defined
that specifies the matrix entries, i.e, real, complex, in-
teger, pattern. The format also specifies the symmetry
structure such as general, symmetric, skew-symmetric
or Hermitian [6].

7.3 Examples

The easiest way to read a Matrix Market file is using
the functions getMatrixSize and getMatrixFile.
getMatrixSize takes the file name as argument and
reads the size of the matrix so that the a matrix
with the correct size can be allocated. The function
getMatrixFile also takes the filename as argument and
reads the matrix data and store it in the corresponding
data structure. A Modelica pseudo code example can
be seen below where a matrix is loaded from a file
called matrix.mtx.

Integer n = getMatrixSize("matrix.mtx");
Real A[n,n];
A=getMatrix("matrix.mtx");

During the process of reading the file and storing it
in the MatrixMarket format messages are provided
through the ModelicaMessage() function.
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