

The Modelica Association Modelica 2006, September 4th – 5th

Parametrization of Modelica Models on PC and Real time platforms

Matthias Kellner Martin Neumann Alexander Banerjee Pritesh Doshi

ZF Friedrichshafen AG

Graf-von-Soden-Platz 1, D-88046 Friedrichshafen, Germany

matthias.kellner@zf.com martin.neumann@zf.com alexander.banerjee@zf.com

Keywords: model based development, dynamic

model parametrization, SW-Tests, ZBF-Parameter,

Realtime

1 Introduction

Throughout the development process of control units

for new transmission system, computer models are

needed to perform different tasks, such as concept

evaluation and the design and testing of controllers

in MiL, HiL and SiL environments. These models

will be used within different CAE-tools and different

environments. To avoid redundancies and sources of

errors the parametrization of these models using the

same set of parameters is preferred, since these will

change during the development process. Further-

more, the parameters will be kept within at one loca-

tion. The only possibility to deal with this problem is

to keep models and parameters separated, which

means that models have to be parameterized using a

set of files. Unfortunately, some environments do not

allow file I/O operations. Even though no file I/O

operations are available, for example on Real time

platforms, there is still a strong need for flexible pa-

rametrization. Several approaches have been devel-

oped to overcome these challenges, especially for

Dymola/Modelica models which will be presented

within this paper.

In the following chapter the integrated use of vehicle

models within ZF electronics development will be

introduced. In chapters 3 and 4 the ZBF-parameter

format will be discussed as well as the different pa-

rametrization approaches. With the help of an exam-

ple the use of one of the approaches will be illus-

trated. Finally the results will be summarized and

open questions will be addressed.

2 Integrated use of powertrain mod-

els within ZF electronics develop-

ments

Within this chapter the use of simulation models

within the ZF electronics development will be illus-

trated, concentrating on passenger car applications.

The focus will be an integrated use of these models

from specification phase up to series application. The

use of Dymola models within Hardware in the Loop

(HiL)-simulation requires some adaptations within

Dymola for parametrizing models on real time plat-

forms.

Rising demands for better comfort, more power and

lower fuel consumption as well as increased integra-

tion of different systems lead to a higher weighting

on software developement. Although the develop-

ment period has to decrease, the quality of the soft-

ware and the level of customer satisfaction have to

be continuously improved. For validation and verifi-

cation purposes almost 40% of the total budget for

software development has to be invested [1].

Figure 1: Test Expenditure of Transmission Soft-

ware

Quality and scope of software

Test

expenditure

� ReUse

� Automation

� Optimization

Quality and scope of software

Test

expenditure

� ReUse

� Automation

� Optimization

267

Parameterisation of Modelica Models on PC and Real Time Platforms

The Modelica Association Modelica 2006, September 4th – 5th

As can be seen in Figure 1 the necessary testing ex-

penditures increase disproportionately due to higher

quality requirements. These ever increasing de-

mands, which are closely linked to costs, can only be

taken care of by improving efficiency. The applica-

tion of ReUse, automation and optimization of test-

ing processes can reduce the testing expenditures up

to about 30% [2].

In order to reduce the time used for developing a

new product the parallelization and decoupling of

mechanic, electronic and software development is

needed. By reusing models within different testing

environments the service expenditures can be re-

duced. Testing at an early stage in development will

also lead to a decrease in development expenditures.

Figure 2: Testing as part of the software

development process

To ensure a development of software in parallel and

independently, appropriate environments for devel-

opment and testing are needed. These should also

include simulation capabilities. In order to service

the software development process, different simula-

tion and development tools are in use, which allow

the simulation of complex full vehicle models as

well as for testing control units on HiL test rigs. All

tools have to be suitable for an integrated model

based development process orientated along the V-

model approach and also must provide thorough

analysis possibilities which can facilitate the finding

of errors at an early stage. For the modelling of pow-

ertrains the software tool Dymola is thought to be the

standard.

The electronic development simulation models are

primarily in use for testing the functionality and suit-

ability for the series application of control unit soft-

ware [4]. These tests are an essential part of the

software development process.

Dynamic models are needed to test software inde-

pendently without involving the mechanic and elec-

tronic hardware. With the help of different testing

environments the software can be tested at each level

of maturity.

Figure 2 shows the development phases and the ad-

joined testing environment and methods. The testing

environments Model-in-the-Loop (MIL), Software-

in-the-Loop (SIL) and HIL cover the whole process

of software development. Hence models are not only

needed in the conceptual phase, the left part of the

V-model, but rather in the testing phase, presented

on the right side of the V-model. In order to mini-

mize service expenditures a unitary use of simulation

models within all testing environments must be

stipulated. The consequent application of the ReUse-

concept does not only reduces the service expendi-

tures for about 50%, but also reduces expenditures

for integrating these models in the development

process while heavily simplifying the version man-

agement.

Since in reality the integration of ZF products

strongly varies among the different customer appli-

cations, a vast amount of different models are

needed. One major objective is then to generate a

universal model that can be configured for the ap-

propriate customer application by solely changing

model parameters.

One major disadvantage of Modelica is the inability

to easily parametrize models for different develop-

ment platforms. Therefore, an approach has been

developed in ZF that has the ability to separate mod-

els from the parameters. The model parameters are

stored within standardized ZF-ASCII-files, which

will then be loaded at initialization [3]. In order to

ensure a parametrization of models with ZBF-data

on platforms without file I/O, e.g. dSPACE, modifi-

cations and adaptations within Dymola have been

done. These procedures will be described in the fol-

lowing chapters.

3 ZBF-Format and Parametrization

of models on platforms With File

I/O

The ZBF-Format will be discussed in chapter 3.1,

with an emphasis on its advantages in comparison to

other parameter formats. In the following paragraphs

an approach will be discussed which enables a pa-

rametrization of models by using ZBF-data within

environments with File I/O.

268

M. Kellner , M. Neumann, A. Banerjee, P. Doshi

The Modelica Association Modelica 2006, September 4th – 5th

3.1 ZBF-Parameter

As stated in the previous chapter, there is a strong

need to separate models from parameters. A detailed

description of the ZBF-format can be found in [3].

For the sake of completeness an example of the

ZBF-format is included in Figure 3.

Figure 3: Parameterization with File I/O

ZBF originated from the strong need for exchange of

formatted data between different Excel-programs.

Thereinafter a broad use has been promoted for C

und C++ calculation programs. It has been finally

declared as a standard within ZF.

A big advantage of the ZBF-format is that it allows

the provision of parameters which do not comply

with SI-units, something usual for transmission de-

sign (e.g. [rev/min] instead of [1/s]) New approaches

such as XML are not in use, since a large amount of

programs are already able to read ZBF-data files.

Furthermore, it is quite simple to transfer ZBF-data-

files to Excel and edit these data files by using sim-

ple test editors.

With the help of an easy example, the differences of

these different formats can be illustrated. A scalar

parameter in ASCII such as the moment of inertia of

the engine can be given as:

ZBF:
JMot [kgm/s^2] 1.5

XML:
<Identifizierer>
<name>JMot</name>
<einheit>kgm/s^2</einheit>
<wert>1.5</wert>
</Identifizierer>

NetCDF:
netcdf motor{
dimensions:
One = 1;
variables:
float JMot(One);
JMot:long_name = "Motor-
trägheitsmoment";
JMot:units = "kgm/s^2";
data:
JMot = 1.5;
}

3.2 Parametrization of models on platforms

with File I/O

For the development of control function, models are

used by CAE-tools running on PC-platforms with a

file I/O operating system. A description of the ap-

proach on how to parameterize models on platforms

with file I/O has been given in [3]. A short summary

of the approaches in the forthcoming chapter, to-

gether with the necessary terms, will be presented

next.

The parameters which are usually scalars, vectors

and matrices are stored separately form the model at

a central location (Figure 4). In order to read these

data files, an appropriate parser will be linked to the

model at the time of compilation. With the help of

the parser, the model then reads all the necessary

data at initialization and all parameters will be stored

within a special data structure.

Figure 4: Parameterization with File I/O

The use of self developed C-Functions which will be

linked to the model during compiling help to find the

parameter and assign it to the component. Hence the

model can be implemented within different CAE-

applications, which run on an operating system with

file I/O. The big advantage is that there is no need to

modify the parametrization process based on what is

required for the present application.

Model Parser Para-
meter

I/O

J1 [kgm^2] 0.1

; scalar parameter

InU [-] 0 1 2

OutY [-] 0 1 2

; two vectorial parameters

Test_Table2D[

[-] U1 [-] 0 1 2

2 Y [-] -2 -1 0

1 Y [-] -1 0 1

0 Y [-] 0 1 2

Test_Table2D]

; Two-Dimensional-Table

269

Parameterisation of Modelica Models on PC and Real Time Platforms

The Modelica Association Modelica 2006, September 4th – 5th

4 Parameterization of models on

platforms Without File I/O

For controller testing, Dymola models have to be

implemented in environments, such as SiL and HiL,

with programs that do not allow for file I/O opera-

tions, such as dSPACE. Therefore another method

has to be used. Moreover, the strong need for rapid

prototyping calls for flexible parameterization within

these environments. In the following chapter two

realizations will be discussed. The first one will be

referred to as “static parameterization” and the sec-

ond “dynamic parameterization”.

4.1 Static Parameterization

Within environments that do not allow file I/O op-

erations one straight forward approach is to attach

the parameter files to the existing Code. This will be

done by converting the ZBF-files into C-code files

and storing the parameters in a single character-

string. Afterwards, these files will be linked to the

model including the Parser throughout compilation

(Figure 5).

Figure 5: Static Parameterization

A slight extension of the existing Parser algorithm

allows for proper parsing of the string and hence

parameterization of the model at initialization. This

approach is very useful in situations where parame-

ters do not change very often or the model has to be

exported as a single binary source.

4.2 Dynamic Parameterization

In order to test the robustness of a controller for

various model settings, the static approach can be

extended. This is done by changing the parameters

directly within the code. Therefore a method is used

which has been applied in dSPACE for easy re-

parameterization of models on their hardware.

For this purposes the Dymola model will be im-

ported into Matlab/Simulink as an S-Function. An

extra parameter will be added to the S-Function dur-

ing its generation by modifying the SimStruct to

Dymola interface file ss2dym.c. Using this additional

parameter the new set of ZBF parameter files can be

passed on to the model in the form of an array of

double values. An array is generated by Matlab from

the default set of parameter in order to locate the pa-

rameter memory which will be needed later for re-

parameterization (Figure 6).

Figure 6: Dynamic Parameterization

The model with the additional S-function parameter

(Figure 7) is exported into the dSPACE Real-Time

platform using the Matlab RTI workshop. While ex-

porting the model into dSPACE, the double array is

converted into C-Code and subsequently linked to

the model. This guarantees that the appropriate

memory space can be accessed for dynamic re-

parameterization. An SDF-file for dSPACE simula-

tor is generated as well.

Finally the parameters can be transferred from the

PC to the computer with the RT-OS with the help of

Control-Desk. Fortunately, the re-parameterization

can be done outside of Matlab. With the help of a

python script the model parameter files will be re-

parsed on the PC-platform with a regular file I/O,

where the parameters will be converted into a double

array of the same structure as the one for exporting

purpose.

Model Parser Parameter Parser

Model Parser
Parameter
Memory

Parser

Para-
meter

dSPACE

Python-
Script

with RT-OS

PC

with

Win-OS

270

M. Kellner , M. Neumann, A. Banerjee, P. Doshi

The Modelica Association Modelica 2006, September 4th – 5th

Figure 7: Additional S-Function Parameter

In order to “reload” the new parameters, the default

parameters within the Real-Time model are accessed

by another python script using the read/write rou-

tines from rtplib and ControlDesk. The length of the

array is matched with that of the default array and

the default parameter in the model is overwritten

with new one. Finally, the initialization flag is acti-

vated and the model is re-initialized.

5 Dynamic ZBF-Parametrization of a

passenger car model on dSPACE-

HIL-Simulator

For Dymola vehicle models at ZF, all relevant me-

chanical, electrical and hydraulic modules needed for

software development and HiL testing have been

modelled.

Figure 8: Modelica Libraries for HIL Tests

With the help of commercialized model packages,

for example PowerTrain and MultiBody, as well as

ZF-specific packages, as ZFLib, Hybrid and CarSim,

powertrain models can be developed for different

testing purposes (vgl.Figure 8).

In Figure 9 a vehicle model is shown as it is used for

HIL-Simulation at ZF. It consists of the following

sub-modules: engine, alternator, torque converter

with torque converter clutch, ZF automatic transmis-

sion, rear axis, simple vehicle model with brakes,

Control units (electrical/hydraulical), signal bus and

I/O-interfaces.

Figure 9: Dymola-Vehicle used in MIL, SIL and

HIL environments

The degree of detail in the powertrain modules has to

be adapted according to the field of application.

Models which are used for testing purposes require a

thorough consideration of internal interactions. For

example the interaction of a set of clutches while

doing a change in ratio requires a detailed applica-

tion of system hydraulics modelling. Whereas the

vehicle module has been simplified to a minimum

and the engine has been represented by look-up ta-

bles in order to guarantee real time capability.

Due to the fact that ZF products will be implemented

in different vehicle settings there will be a vast vari-

ety of models. The only possibility for dealing with

this situation is following a modular approach, stor-

ing modules in libraries and separating models from

data. The models can be parametrized by using data

sets which relate to a specific version of vehicle set

up. The basis for the parameter format is the ZBF-

format, which has been described in chapter 3.1. The

parametrization process of a vehicle model which is

used for HiL-testing of a control unit on a dSPACE

is explained in the following section.

The parameters have to be stored in ZBF-data files

as well as an appropriate allocation within the model

has to be done. Afterwards the model will be in-

271

Parameterisation of Modelica Models on PC and Real Time Platforms

The Modelica Association Modelica 2006, September 4th – 5th

cluded in a Simulink block. For the first time gener-

ating the model S-function the parameters will be

read from file and stored in a double array within

Matlab. At the same time the S-function will be sup-

plemented by an additional parameter, which most

often is referred to as the third parameter. This pa-

rameter is the essential link to the double array.

Whenever the model is transferred to dSPACE by

applying the RTI-Workshop the double array will be

converted into a C-File and afterwards linked to the

model. All described steps will be done automati-

cally.

With the help of the described dynamic parametriza-

tion approach (see chapter 4.2) model parameters can

be changed on the dSPACE-simulator. This is done

by applying appropriate Python-scripts which allow

for an easy change of parameters without starting the

implementation process once again. This approach is

quite essential, since not all dSPACE-HiL-simulators

at ZF provide a Matlab development environment.

Bild 10: ControlDesk Interface

Appyling ControlDesk a graphical I/O user interface

is set up, which interactes with the model on the

dSPACE board. All necessary inputs and outputs of

the testing environment can easily be monitored or

changed. Typically the hardware configuration, e.g.

the control unit variant and CAN-Bus-system can be

selected. All control inputs of the Dymola-model

such as ignition, selection of gear ratio, throttle and

brake pedal position can be changed manually or

automatically.

Finally by applying the mentioned Python-scripts

within the windows-OS the appropriate set of ZBF-

parameters of a vehicle variant will be read from file.

By activating the third parameter within the model-

SDF-file, parameters will be mapped into the allo-

cated memory space of the model which is imple-

mented on the dSPACE platform. Hence parameters

can easily be changed while the model is operating at

running time.

6 Summary and Outlook

In order to use models within different tools and en-

vironments models and parameters have to be kept

separate from each other. Within ZF these parameter

files are set up according to a standardized descrip-

tion referred to as ZBF. Approaches have been de-

veloped which enable a uniform and unanimous use

of these files on all simulation platforms independent

of whether they provide file I/O routines or not. For

environments with file I/O, typically PC platforms,

an approach based on linking a Parser algorithm to

the model has been outlined in [3]. For environments

without file I/O two realizations referred to as static

and dynamic parameterization have been developed,

where the latter allows for flexible parameterization.

The static method generates a single source from

model, parser and parameters. The dynamic method

utilizes the method used by dSPACE. With the help

of a Python script, the parameters will be read from

ZBF files and directly mapped into the parameter

memory of the model, hence facilitating the modifi-

cation of parameters on Real-Time platforms.

Future work includes the issue of overruns occurring

at initialization, presenting opportunities for im-

provements, especially for some specific environ-

ments which do not allow for overruns even at ini-

tialization. The optimization of code can also be pos-

sibility by applying the parameter evaluation feature

within Dymola, which changes parameters into

numbers and hence simplifies the code. Presently,

his is not possible whenever parameter-files are in

use. An extension which allows for optimization

even when parameter files are in use can be very

helpful if a more efficient Dymola code is to be de-

veloped.

272

M. Kellner , M. Neumann, A. Banerjee, P. Doshi

The Modelica Association Modelica 2006, September 4th – 5th

7 References

[1] G. Bauer, M. Gromus, M. Neumann

and C. Tapia. Model-based software

development in production applica-

tions with a closed-loop controlled

lockup clutch in a ZF 6-speed trans-

mission, Fisita 2004

[2] H. Deiss, B. Aumann, T. Schober

Time to Market in der Softwareent-

wicklung - Reuse und Standardisie-

rung bei Getriebesteuerungen - E-

lektronik im Kraftfahrzeug, Baden-

Baden 2000, Germany

[3] J. Köhler and A. Banerjee Usage of

Modelica for transmission simula-

tion in ZF, pp. 587-592, Gerhard

Schmitz, Editor, Proceedings of the

4
th
 International Modelica Confer-

ence, Hamburg March 7-8, 2005,

Germany

[4] R. Gonzelez-Ramos, M. Neumann,

A. Banerjee and J. Köhler Standard

drive train models for increased

Testing Efficiency, pp. 243, Pro-

ceedings of the 4
th
 IAV Symposium,

Berlin Juli 9-10, 2005, Germany

273

Parameterisation of Modelica Models on PC and Real Time Platforms

