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Abstract

Using an example of the snakeboard, a vehicle with
four wheels and nonholonomic constraints, the process
of construction and verification for the sparse dynami-
cal models of the multibody systems is analyzed. Two
approaches for the formal representation of the mod-
els: object-oriented, and bond graph based are con-
sidered. Energy based similarities between these ap-
proaches are analyzed.
A detailed description of the bond graph representa-
tion for the most general type of constraint is pre-
sented. It turned out the resulting total bond graph
model of the multibody system dynamics always has
exactly a canonical junction structure. This repre-
sentation has a tight correspondence with our re-
cent object-oriented implementation of the mechani-
cal constraint architecture. As an example Modelica
implementation of the joint classes family is investi-
gated. Finally these classes are applied to construct
the snakeboard dynamic model.
Keywords: vechicle; nonholonomic; disc; wheelset;
snakeboard; object-oriented modeling; bondgraph;
canonical junction structure; joint; servoconstraint

1 Introduction

When developing a computer model of the multibody
system (MBS) dynamics it is interesting to have a uni-
fied technology to construct the models in an efficient
way. It turns out Modelica language provides a tools
to resolve such a problem successively step by step
using its natural approaches. One of them is con-
nected tightly with the so-called multiport represen-
tation of the models initially based on the bond graph
use. These latter in turn based on the idea of energy
interaction, and substantially on energy conservation

for physically interconnected subsystems of any engi-
neering type.
Moreover, Modelica introduces the notions similar to
ones of the bond graph theory, but in a way more nat-
ural for the usual engineering approaches with forces,
interfaces, parameters, equations etc. Consider in the
sequel a technology to construct a model of MBS dy-
namics with constraints of any specific type in a uni-
fied way. Note that the unilateral constraints can also
be included in the further consideration process.

2 Constraint representation via bond
graphs

Previously, when considering a unified model of the
constraint, or, in a more general way, any physical in-
teraction between two rigid/deformable bodies we de-
fined [1, 2] two classes of the kinematic and the effort
ports. These ones are the kinematic and wrench con-
nectors. It turned out the connections of such types
make it possible to construct a model of the bodies in-
teractions based on the causality physically motivated.
Namely, the constraint object imports the kinematic
information accepting it from the objects of interact-
ing bodies and reciprocally exports it in the opposite
direction. Thus the constraint “computes” an efforts
the bodies interact by.
On the other hand geometric formalisms to repre-
sent the MBS dynamics are known [3] which oper-
ates with the similar information objects: twists and
wrenches. In our approach twist is defined by the
KinematicPort class, and wrench obviously corre-
sponds to our WrenchPort class. The representa-
tion under consideration is tightly connected with the
power based approach to modeling, so-called bond
graphs [4].
Indeed, let the rigid body kinematics be defined by the
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twist (v,www), where v is the mass center velocity, and www
is the body angular velocity. Further let all the forces
acting upon the body be reduced to the wrench (F,M)
with the total force F and the total torque M. Thus
the total power of all the forces acting on the body is
computed by the known formula

W = (v,F)+(www,M)

using to represent a multibond in the bond graphs
simulating the MBS dynamics. We have in such the
case an evident canonical duality between twists and
wrenches.
Sometimes wrenches are selected as flow variables. In
other cases twists play this role. For instance similari-
ties between electricity and mechanics cause the paral-
lelism for electric current and forces/torques in one di-
mensional powertrains of mechanisms. In this case we
can set a correspondence between the Kirchhoff law
for currents and the d’Alembert principle for external
forces and forces of inertia “acting” upon the body.
In our opinion it may be interesting enough to apply an
approach dual to the first one mentioned above. Such
an approach is more natural in traditional classical me-
chanics and assumes twist for the flow variable in the
multibond. In the further course we present an illus-
tration for this approach and demonstrate its conve-
nience to construct the mechanical constraints of dif-
ferent types. Moreover, object-oriented implementa-
tion may be interpreted in both above dual approaches
in a symmetric ways.
Let us trace now the similarities between the bond
graphs and our MBS models. Evidently the pair of
classes KinematicPort/WrenchPort plays a role
of the multiport notion, and corresponding pairs of
connections in Figure 1 stand for the notion of a bond.

Figure 1: Architecture of Constraint

Furthermore, in this way we can associate an ob-
ject of the RigidBody class with 1-junction, while
0-junction is associated with the object of the class
Constraint. The relevant general bond graph rep-

resentation of the constraint in any MBS may be de-
picted as it shown in Figure 2.

Figure 2: Architecture of Constraint: Bond Graph
Representation

All multibonds here consist of the twist (v,www) sig-
nals representing the flow component, and the wrench
(F,M) signals as an effort. Causality of an iner-
tance elements arranges according to the Newton–
Euler system of ODEs. Left and right transform-
ers are to shift the twist from the mass center to the
contact point according to the known Euler formula:
(v,www) 7→ (v + [www,r],www), where the vector r begins at
the corresponding center of mass and ends at the con-
tact point. Reciprocally the wrenches shift to the body
mass center from point of the contact in a following
way: (F,M) 7→ (F,M +[r,F]). As one can see easily
the transformers conserve the power.
Central transformer is responsible for the transfer to
orthonormal base at the contact point with the com-
mon normal unit vector and two others being tangent
ones to both contacting bodies’ surfaces supposed reg-
ular enough. For definity we interpret here the case of
usual contact interconnection between the bodies by
their outer/inner surfaces. If the inertial coordinates of
these vectors compose columns of the orthogonal rota-
tional matrix Q then shifting from bottom to top across
the transformer in Figure 2 we will have for the flow
signals: (v,www) 7→ (Qv,Qwww). Likewise when shifting
in a reverse direction we have a transformation of the
efforts: (F,M) 7→ (Q−1F,Q−1M) also conserving the
power. Organization of the 0-junction depicted in Fig-
ure 2 provides a possibility to compute exactly the rel-
ative velocities at the constraint contact point.
Note that it is a usual practice to attach the inertance el-
ement to 1-junction, in particular because of its causal-
ity nature, see for example [5, 6]. Figure 2 in some
degree can remind us an element of the lumped model
for the flexible beam dynamics.
Causality for some multibonds inside the constraint
object is defined individually for each particular scalar
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bond [7] depending on the type of the constraint and
is assigned finally after the whole MBS model com-
pilation. For instance, if the constraint is of the slip-
ping type at a contact then supposing decompositions
of the relative velocities and contact forces v = vn +vt,
F = Fn +Ft we have the following flow constraint, el-
ement FC, vn = 0 representing one scalar kinematic
equation for the normal relative velocity, and the effort
constraint, element EC, Ft = 0, M = 0 representing
two scalar equations for the tangent contact force plus
three scalar equations for the contact torque. Nonzero
tangent force at the contact may arise due to the re-
sistive element, see the bottom right multibond. If
we will continue to build the bond graph model for
the whole MBS in a proposed way then finally we
can arrive exactly to the so-called canonical junction
structure [7] useful for the formal procedures of the
bond graph optimal causality assignment. For this we
have to add an intermediate 0-junctions for elements
attached to 1-junction in the constraint component C,
see Figure 2.
Leaving some multibonds without the causality as-
signment and trusting this work to compiler we apply
a so-called acausal modeling [8]. On the other hand
if we will act in a manner close to the real cases of
constraints with the flexibility then instead of the con-
straint elements FC/EC, we have to use an element
of the compliance with the causality uniquely deter-
mined, see Figure 3.

Figure 3: Bond Graph of Constraint with Compliance

Further we analyze one example of the constraint fre-
quently occurring in engineering applications: we con-
sider an object classification of the joint constraint.

3 Implementation of the joint con-
straint

For simplicity and clearness we will apply the compo-
nent library to simulate the dynamics of MBSs with bi-

lateral constraints [1]. Application of the components
for the unilateral constraints [2] doesn’t change any-
thing in principle. The only difference is that dynam-
ics of the moving bodies becomes more complicated.
For example in the latter case a vehicle under simula-
tion get an ability to bounce over the uneven surface it
rolls on. In addition, its wheels can slip while moving.
Thus in frame of the current paper we suppose that
nonholonomic constraints implemented exactly, with-
out any slip or separation with respect to (w. r. t.) the
surface.

Remind that according to our technology of the con-
straint construction [1] two connected bodies are iden-
tified by convention with the letters A and B fixed for
each body. All kinematic and dynamic variables and
parameters concerned one of the bodies are equipped
with the corresponding letter as a subscript.

Class Joint plays a key role in the future model of a
vehicle we will build. Joint is a model derived from
the base class Constraint. Remind [2] that in order
to make a complete definition of the constraint object
behavior for the case of rigid bodies one has to com-
pose a system of twelve algebraic equations w. r. t. to
twelve coordinates of vectors FA, MA, FB, MB consti-
tuting the wrenches acting upon the connected bodies.

First six equations always present in the base model
Constraint due to Newton’s third law. For defin-
ity suppose these six equations are used to express six
components of FB, MB depending on FA, MA. Thus
six components of FA, MA remain as unknowns. To
determine them each constraint of rigid bodies need in
six additional independent algebraic equations. These
equations can include components of force and torque
directly, or be derived from the kinematic relations
corresponding to specific type of the constraint.

In the case of the joint constraint being investigated
here let us represent the motion of the body B as a
complex one consisting of the body A convective mo-
tion w. r. t. an inertial frame of reference which is
similar to the Modelica Standard MultiBody Library
model World, and a relative motion w. r. t. the body
A. An absolute motion is one of the body B w. r. t.
inertial system.

Define the joint constraint with help of the following
parameters: (a) a unit vector nA defining in the body A
an axis of the joint; (b) a vector rA fixed in the body
A and defining a point which constantly stays on the
axis of the joint; (c) a vector rB fixed in the body B
and defining a point which also constantly stays on the
axis of the joint. The main task of the base joint class
is to keep always in coincidence the geometric axes
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fixed in each of the bodies.
First of all one has to compute the radii vectors of the
points fixed in the bodies w. r. t. inertial system

Ra = rOa +Tara (a = A,B),

where [2] rOa is the position of the a-th body center
of mass, Ta is its current matrix of rotation. The joint
axis has the following components

nAi = TAnA

in the inertial frame of reference. According to the
equation for relative velocity for the marked point of
the body B defined by the position RB we have

vBa = vBe +vBr,
vBa = vOB +[wwwB,TBrB] ,
vBe = vOA +[wwwA,RB− rOA ] ,

(1)

where vBa, vBe, vBr are an absolute, convective, and
relative velocities of the body B marked point, wwwA, wwwB

are the bodies angular velocities.
Furthermore, according to the computational experi-
ence of the dynamical problems simulation the pre-
compiler work is more regular if the kinematic equa-
tions are expressed directly through accelerations. In-
deed, otherwise the compiler tries to perform the for-
mal differentiation of equations for the velocities when
reducing an index of the total DAE system. Frequently
this leads to the problems either in time of translation
or when running the model.
In the first case usually diagnostics of the compiler es-
sentially helps the developer. In the second case the
model has an unpredictable behavior, and only man-
ual preliminary reduction “regularizes” the simulation
process. Thus we differentiate equations (1) and ob-
tain an equations for the relative linear acceleration in
the form

aBa = aOB +[eeeB,TBrB]+ [wwwB, [wwwB,TBrB]] ,
aBe = aOA +[eeeA,RB− rOA ]+ [wwwA, [wwwA,RB− rOA ]] ,
aBa = aBe +2 [wwwA,vBr]+aBr,
aBr = µnAi,

(2)
where aBa, aBe, aBr are an absolute, convective, and
relative accelerations of the body B marked point, eeeA,
eeeB are the bodies angular accelerations.
We also need in an analytic representation of the con-
ditions that the only projections of the bodies angular
velocities and accelerations having a differences are
ones onto the joint axis. Corresponding equations have
a form

wwwB = wwwA +wwwr,
eeeB = eeeA +[wwwA,wwwr]+ eeer,
eeer = lnAi,

(3)

where wwwr, eeer are the relative angular velocities and ac-
celerations.
The Modelica code of the class Joint reads

partial model Joint
extends Constraint;
parameter Real[3] nA;
parameter SI.Position[3] rA;
parameter SI.Position[3] rB;
SI.Position[3] RA;
SI.Position[3] RB;
SI.Velocity[3] vBa;
SI.Velocity[3] vBe;
SI.Velocity[3] vBr;
SI.Acceleration[3] aBa;
SI.Acceleration[3] aBe;
SI.Acceleration[3] aBr;
SI.AngularVelocity[3] omegar;
SI.AngularAcceleration[3] epsilonr;
Real[3] nAi;
SI.Force F; // Force along axis
SI.Torque M; // Torque about axis
SI.Acceleration mu;
SI.AngularAcceleration lambda;

equation
RA = InPortA.r + InPortA.T*rA;
RB = InPortB.r + InPortB.T*rB;
nAi = InPortA.T*nA;
vBa = InPortB.v +
cross(InPortB.omega,
InPortB.T*rB);

vBe = InPortA.v +
cross(InPortA.omega,
RB - InPortA.r);

vBa = vBe + vBr;
aBa = InPortB.a +
cross(InPortB.epsilon,
InPortB.T*rB) +

cross(InPortB.omega,
cross(InPortB.omega,
InPortB.T*rB));

aBe = InPortA.a +
cross(InPortA.epsilon,
RB - InPortA.r) +

cross(InPortA.omega,
cross(InPortA.omega,
RB - InPortA.r));

aBa = aBe + aBr +
2*cross(InPortA.omega, vBr);

aBr = mu*nAi;
omegar = InPortB.omega -
InPortA.omega;

epsilonr = InPortB.epsilon -
InPortA.epsilon -
cross(InPortA.omega, omegar);

epsilonr = lambda*nAi;
F = OutPortA.F*nAi;
M = OutPortA.M*nAi;
OutPortA.P = RA;
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OutPortB.P = RA;

end Joint;

Besides the kinematic scalars µ, l we will need in their
reciprocal values F = (FA,nAi), M = (MA,nAi) corre-
spondingly. Note that the class described above is a
partial one and can be used to produce any imaginable
model of the joint type constraint. To obtain a com-
plete description of the joint model one has to add to
the behavioral section exactly two equations. One of
them is to define one of the values µ, F (translatory
case). Other equation is intended to compute one of
the values l, M (rotary case).
Regarding the general scheme depicted in Figure 2 we
can conclude that the equations (1), (2), (3) together
implement implicitly the constraint transformer to the
joint local coordinate system and four scalar flow con-
straints forbidding relative translatory and rotary mo-
tions in the direction orthogonal to the joint axis. For
derived classes only two free scalar bonds remain.
Here we encounter the known complementarity rules
once more in a way similar to one described in [2]. In
our context the variables in the pairs (µ,F), (l,M) are
mutually complement, where one of µ, l is to be uti-
lized for the flow constraint and one of F , M is used to
compose the effort constraint. All the variables men-
tioned complete the set of constraints for the remain-
ing yet unused joint axis creating thus two final scalar
constraint elements in the bond graph of Figure 2.
Namely, the equations (2) implementing the Coriolis
theorem for accelerations simultaneously implement,
in an implicit manner, two scalar flow constraints, FC-
elements, from the bottom left corner of the multi-
bondgraph model in Figure 2. These flow constraints
due to compiler restrictions constructed using acceler-
ations instead of the velocities being used in a classic
bond graph approach. The constraints have an obvi-
ous kinematic sense: they prevent the relative motion
of the body B marked point in two directions normal
to the joint axis fixed in the body A.
In addition, the equations (3) implement two other
scalar flow constraints, this time for the rotary mo-
tion. These constraints forbid the relative rotation of
the body B w. r. t. body A about two axes each nor-
mal to the joint axis mentioned above which is rigidly
connected with the body A.
Note, that the construct of equations (2) and (3) is such
that they allow the body B relative motion along and
about the joint axis of the body A thus implement-
ing the kinematic pair with two DOFs. Returning to
Figure 2 of the general constraint multi-bondgraph we
can conclude that the vertical multibond attached to 0-

junction implements flow variables corresponding to
the relative body B motion w. r. t. body A in iner-
tial coordinates. Such a description supposes an ex-
istence of the special coordinates reference frame con-
nected with the body A at its joint constraint marked
point. The transformation to these coordinates is im-
plemented exactly via corresponding transformer, cen-
tral in the triangle block C. The transformer itself nests
in formulae of equations (2) and (3).
Consider several examples of the classes derived from
the Joint model for the several particular types of
joints. The model FixedIdealJoint is defined by
the equations

µ = 0, M = 0

and prevents the relative motion along the joint axis
but allows free rotation about it. It is exactly a revolute
joint without any control for the rotary motion. The
model FreeIdealJoint is defined by the equations

F = 0, M = 0

permitting free translation along and free rotation
about the joint axis. Class SpringIdealJoint de-
scribed by the equations

F = cn+dṅ, M = 0, n̈ = µ

with an initial data n(t0) = 0, ṅ(t0) = 0 for the relative
translatory position n provides a viscoelastic compli-
ance with the stiffness c and damping d. The rotary
motion remains free. This model is useful to simulate
almost rigid constraints to avoid the potential problems
with so-called statically undefinable systems of forces
acting upon the ideal rigid bodies.
The model FixedControlledJoint with the be-
havior defined by the equations

µ = 0, M = f (t,j, j̇) , j̈ = l (4)

provides the rotating torque as a control effort with
the prescribed control function f (t,j, j̇). Initial data
j(t0) = j0, j̇(t0) = j̇0 are prepared according to the
initial data concerning the joint. From the bond graph
viewpoint the second equation in (4) can be imple-
mented as a combination of the source effort, compli-
ance, and resistance elements. This type of joint cor-
responds to the Revolute joint constraint of Model-
ica Standard Library from the ModelicaAdditions
package. Such a joint can be driven by the electromo-
tor.
The model FreeSlideJoint defined by the equa-
tions

F = 0, l = 0
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provides free, without any resistance, relative sliding
along the joint axis without any rotation about it. As
one can see this is a prismatic type of joint.
We can reformulate the FixedControlledJoint

model creating the model FixedServoJoint in a
following useful way

µ = 0, l = f (t,j, j̇) , j̈ = l

thus composing a kinematic restricting constraint, so-
called servoconstraint. The function f (t,j, j̇) sup-
posed as a prescribed one. Initial data for the angle
j of the relative rotation are prepared in the same way
as for (4). It is clear one can create a lot of other dif-
ferent combinations of equations to construct the joint
constraints needed in engineering applications.
The derived joint classes described here are to close
the system of kinematic equations (2) and (3) complet-
ing them mainly by two scalar additional equations,
each playing a role of an either FC-element, like µ = 0,
or EC-element, like F = 0. Any time to be able to
construct a consistent system of equations for the total
model we have to follow the guidelines of the comple-
mentarity rules.
These latter correspond to the notions of the bond
graph theory in a natural way. Indeed, the theory of
bond graphs is based on the energy interactions. Every
our multibond being an energy/power conductor re-
flects complementarity by its twist/wrench duality. To
close the total DAE system for the model under devel-
opment we have to “close” or rather to “seal” each free
scalar bond in EC/FC-element of the block C in Fig-
ure 2 by the corresponding one scalar equation for flow
or effort variable. Thus here we outline the main rule
to compose equations for the models of constraints for
MBS of any type in a consistent way when applying
the object-oriented approach. In the further course we
present an example for the systematic application of
the rules mentioned.

4 Example of the snakeboard

The snakeboard [9], see Figure 4, represents a four
wheeled vehicle moving in field of gravity on a hor-
izontal surface due to the servocontrol of a relative ro-
tation of wheelsets and a flywheel located at the mid-
point of the coupler and having a vertical axis of rota-
tion. The flywheel simulates a torso of the snakeboard
rider.
We will construct the model hierarchically step by step
verifying and integrating the parts into an assembly
units. Ideal mechanical system of the snakeboard has

Figure 4: The Snakeboard

three degrees of freedom (DOF). But we will add new
DOFs on some stages of modeling either to make the
model more physically oriented or to apply any proce-
dures of regularization.

4.1 Dynamics of the rolling disc

This problem is a classic one of dynamics [10] and has
a visual representation depicted in Figure 5

Figure 5: Visual Model of the Rolling Disc

Disc, the Body B, supposed an axisymmetric rigid
body which is able to roll on the another body, hori-
zontal surface, only by the curve fixed in the Body B.
In our case this curve supposed a circle relocated in
the plane

zB = 0 (5)

of the Body B coordinate system OBxByBzB and has
the fixed radius R, see Figure 6. In the current paper
we assume that the nonholonomic constraints are im-
plemented in an accurate sense as bilateral constraints.

The horizontal plane, Body A, is defined by its normal
unit vector such that radius vector rP = {xP,yP,zP} of
the contact point P has to satisfy an equation of the
horizontal plane

(rP,nA) = 0. (6)

Further denoting the Body B current orientation matrix
by TB and by rOB its center of mass position vector we
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Figure 6: Rolling Disc

obtain the system of three equations

TBr = rP− rOB (7)

defining the dependence between the vector rP and the
vector r of the contact point position in the Body B
coordinate system.
On the other hand the vector ttt tangent to the circle
at the contact point can expressed in the disc coordi-
nates as ttt = {−yB,xB,0} because the vectors ttt and
r = {xB,yB,zB} are to be orthogonal mutually and to
be situated in the disc plane permanently. In addition,
in inertial system the path vector TBttt has to lie in the
horizontal plane. Then also holds the condition

(nA,TBttt) = 0. (8)

The system of six equations (5), (6), (7), (8) together
compose the one w. r. t. six variables xP, yP, zP, xB, yB,
zB and implements in a simple and effective way the
model Disc on Base derived from the class Roll[1].
Verification of the model outlined above was based on
the comparison of its simulation results with ones ob-
tained for the corresponding classic problem defined
by the system of ODEs [10]

Ṁ = [M,www]+m [ṙ, [www,r]]+mg[r,ggg],
ġgg = [ggg,www]

expressed w. r. t. the Body B rotating system. Here
M = Iwww + m[ṙ, [www,r]] is the vector of the disc angular
momentum computed w. r. t. the contact point, I =
diag(Ixx, Iyy, Izz) is the central principal inertia tensor
of the disc, www is its angular velocity, r is the vector
already mentioned above, ggg is the unit vector nA but
expressed w. r. t. the Body B system such that satisfy
the relations

xB =− Rgx√
1− g2

z

, yB =− Rgy√
1− g2

z

, zB = 0.

The simulations showed a high degree of accordance
between the two above models of the rolling disc dy-
namics. Errors increase inevitably and for the vectors
www, M, ggg components are of the order 10−7 over the
time interval of the several hundreds units.

4.2 Model of the wheelset

This model plays an important role when construct-
ing the simplest vehicle models. It is assembled using
the considered model of the rolling disc. Visual model
of the wheelset depicted in Figure 7, where the Rotate
and Flip commands were applied to symmetrize the di-
agram. Application of the model FixedIdealJoint
for the joints connecting the wheels and a rod of the
wheelset axis is impossible due to the uncertainty for
forces acting along this axis. If the contact points with
a floor supposed without slipping then introduction of
the compliance in the joints is a natural way to avoid
the degeneracy mentioned. Making this we add two
DOFs to the mechanical system of the wheelset. One
else additional DOF has the rod rotating independently
about its, and of the wheelset, axis. Compliances are
implemented by the model SpringIdealJoint.

Figure 7: Visual Model of the Isolated Wheelset

To verify the wheelset model built the following sys-
tem of DAEs was applied

max = X1 +X2 +Xext, may = Y1 +Y2 +Yext,
maz = Z +Zext,

(9)

ax =−R
2

(j̈1 + j̈2) , ay = 0, az =
R2

2L

(
j̇2

1− j̇2
2

)
,

(10)
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Idzj̈1 = RX1, Idzj̈2 = RX2, Irzj̈r = 0, (11)

j̇ [Idz (j̇1 + j̇2)+ Irzj̇r] = L
2 (Y2−Y1)−RZ +Mextx,

Irzj̈ = L
2 (X1−X2)+Mexty,

(12)
Lj̇ = R(j̇1− j̇2) (13)

which is written w. r. t. moving coordinate system con-
nected with the wheelset according to Figure 8 in an
evident way. This system of coordinates performs a
convective motion tracing the motion of the rod which
plays a role of the wheelset axis shaft.

Figure 8: Top View of the Wheelset

The DAE system consists of twelve equations w. r. t.
twelve unknowns: j1, j2, j, jr, ax, ay, az, X1, X2, Y1,
Y2, Z. Let us give a more detailed explanations to these
DAEs. The subsystem of equations (9) represents the
theorem for the center of mass motion of the wheelset.
Here m = 2md + mr is the total mass of the wheelset,
md , mr are the masses of the wheel simulated by the
disc and the rod of the wheelset axis, R is the wheels
radius, L is the rod length. The variables ax, az, ay

are correspondingly the tangent, normal, and binormal
components of the masscenter acceleration.
The variables X1, X2, Y1, Y2 are the projections to the x,
y axes of the contact forces acting to the wheels from
the surface. The value Z = Z1 + Z2 is used because
z-projections of the contact forces can’t be computed
individually for the reason of degeneration of the prob-
lem along the z-axis. This discussed above problem
is resolved due to the compliance introduced for the
joints.

In the kinematic equations (10) all signs are adjusted
such that j1, j2 are the angles of the wheels relative
rotation, j̇1, j̇2, j̈1, j̈2 are their relative angular veloc-
ities and angular accelerations. Point C is a center of
velocities for the rigid planar convective motion of the
Ozx coordinate system.
The equations (11) represent z-projections of the Euler
dynamic equations for the discs and the rod considered
separately. We conclude from the third equation that
the rod relative angular velocity is the integral of the
motion: j̇r = const. Remind we consider rotations in
the joints as an ideal, without friction, ones.
First of the equations (12) is the dynamical one for
the angular momentum of the whole wheelset w. r. t.
the axis Ox. The second equation is the projection of
the same vector equation to the axis Oy. Further the
parameters Idz, Irz are the moments of inertia for the
wheel and rod w. r. t. the axis Oz, Iy = 2Idy + Iry where
Idy, Iry are the moments of inertia for the disc and shaft
w. r. t. the axis Oy. The angle j is one of the convec-
tive rotation about the Oy axis. The kinematic equa-
tion (13) is derived from a simple geometric consider-
ations, see Figure 8.
We can add an external force Fext = {Xext,Yext,Zext}
and rotating torque Mext = {Mextx,Mexty,Mextz} to the
right hand sides of equations (9), (11), (12). Regarding
the equations (11) one can distribute the torque Mextz

between all three bodies of the wheelset in an any de-
sirable way.
Computational experiments show a high degree of
concordance between our “physically oriented” model
of the wheelset and the ideal model described above
if the parameters of stiffness c and damping d in the
joint objects of class SpringIdealJoint are large
enough. Namely, in simulations we have used the val-
ues c = 1000, d = 5000.

4.3 Model of the vehicle

Let us construct at last a complete model of the snake-
board. Its visual representation see in Figure 9, where
rotation and flipping were applied to the graphic im-
ages of the objects as it has been done for the wheelset
visual model. Similar to the wheelset case we have
here a static indeterminacy along the coupler axis if
one supposed a rigid body. To avoid this degenera-
tion we splitted it into two equal parts and connected
them via viscoelastic joint, with an axis along the cou-
pler, using the model SpringIdealJoint with the
stiffness and damping large enough for the longitudi-
nal compliance of the snakeboard.
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Figure 9: Visual Model of the Snakeboard

To perform a comparison with the known re-
sults [9] three servoconstraints were introduced to
the model. These servoconstraints imitate the con-
trol of the robot-snakeborder and are implemented by
the FixedServoJoint class which defines a relative
rotation of the bodies by the prescribed angle. To
be more precise in the class mentioned the control
is given by a law of the relative acceleration with a
proper initial values of the angle and the angular ve-
locity.
Servoconstraints are mounted at the joints between
the coupler and the wheelsets, and between the fly-
wheel and, for definity, the left part of the cou-
pler. The joints mentioned correspond to the objects
LeftJoint, RightJoint, and CJoint in Figure 9.
All three servoconstraints can be described by the
equations

j f = a f sin(w f t +b f ), jb = ab sin(wbt +bb),
y = ay sin

(
wyt +by

)
,

where j f , jb are the angles of the front and rear (back)
wheelsets relative to the coupler rotation correspond-
ingly, y is the angle of the flywheel rotation w. r. t. the
coupler, to be more exact relative to its left (rear) part,
the object LBar in Figure 9, a f , ab, ay are the corre-
sponding amplitudes of libration, w f , wb, wy are their
frequencies, and b f , bb, by are their initial phases.
According to [9] three types of the snakeboard gait
were under verification:

1. “drive”: ab =−a f , w f = wb = wy;

2. “rotate”: ab =−a f , 2w f = 2wb = wy;

3. “parking”: ab =−a f , 3w f = 3wb = 2wy.

The simulations results showed a full coincidence of
the gait types for our regularized model and the ide-
alized model of the paper [9]. All types of the be-
havior are demonstrated in Figures 10, 11, 12, where
the flywheel masscenter projections to the xz plane are
presented. In [9] for the ideal model when deriving
the DAEs of the snakeboard motion for simplicity of
the model the wheels rotary motion and the wheelsets
translatory motion weren’t taken into account. In such
a sense from the dynamical point of view our model is
more complete.

Figure 10: Masscenter Trajectory for “Drive” Gait

Figure 11: Masscenter Trajectory for “Rotate” Gait

If we introduce a small parameter playing a role of the
scaling multiplier for the inertia moments and masses
for the motion types neglected in [9] then if its value
is small enough, 10−7 for our simulations, the mo-
tions compared become practically indistinguishable,
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Figure 12: Masscenter Trajectory for “Parking” Gait

see for instance the plot of the snakeboard masscenter
x-components difference for the models under com-
parison, Figure 13, in the case of the “Rotate” gait.
Animation shot in the case of the ”drive” type gait see
in Figure 14.

Figure 13: Closeness of Models

A set of different laws of the snakeboard control per-
formed by the robot-snakeborder generating the mass-
center trajectories like astroid, cycloid, eight, 3-rose,
4-rose is presented in [11]. The port-controlled Hamil-
tonian representation of the simplified ideal snake-
board model from [9] with its bond graph implemen-
tation is investigated in [12].
Considering balance of energy in the total model one
can remark here that servodrives applied between the
coupler on one side and the flywheel and wheelsets on
the other one are implemented correspondingly in the
objects

CJoint, LeftJoint, RightJoint

of the class FixedServoJoint. Such kinematic con-
straints are known in the bond graph theory to be able

Figure 14: Animation of “Drive” Gait

to inject into the system any amount of energy needed
to hold the desired motion. On the other hand energy
loses due to the resistance elements encapsulated in
the objects

Spring,
LeftWheels.Joint1, LeftWheels.Joint2,
RightWheels.Joint1, RightWheels.Joint2,

of the class SpringIdealJoint.
Thus the class FixedServoJoint implements two
scalar FC-elements from the general bond graph de-
picted in Figure 2 for the rotary and translatory mo-
tions, while the class SpringIdealJoint imple-
ments one C-element, ideal elastic compliance, in
combination with R-element, resistance due to viscos-
ity, for the translatory motion plus one EC-element for
the rotary motion. Remind that all motions supposed
here as a relative ones of the body B w. r. t. body A in
each of the constraint objects considered.

5 Conclusion

We can make now our brief list of conclusions in the
following form:

• A unified multi-bondgraph representation of the
MBS dynamics in a sufficiently simple way with
the canonical junction structure is possible.

• The representation depicted in Figure 2 can be
used as a guideline to construct the consistent sys-
tem of DAEs in a systematic way. In other words
we can say that multi-bondgraph constructs like
ones of Figure 2 are to be used as a regular basis
for more informal object-oriented approach.
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• An object-oriented representation makes it possi-

ble to develop the constraints models adopted to
the specific types of the bodies interconnections
in a fast and effective manner implementing the
corresponding bond graph formalisms in a more
natural and informal way mainly by chains of in-
heritance for the behavior (equations) and prop-
erties thus gradually filling the complete multi-
bondgraph description.

• An acausal modeling accelerates the modeling re-
leasing a developer from the problem of causal-
ity assignment if s/he takes into account some re-
quirements like complementarity rules.

• Introducing the compliance into the model may
be useful and effective preserving the principal
properties of the MBS like anholonomity etc.

Enumerate also some possible directions of the further
work:

• Development of the vehicle models more compli-
cated then considered here.

• Development of the more complicated contact
models taking into account friction and a unilat-
eral nature of the constraints.

• Account of the road uneven surfaces of different
types.
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