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Abstract

Although leaf springs are one of the oldest suspension
components they are still frequently used, especially
in commercial vehicles. Being able to capture the leaf
spring characteristics is of significant importance for
vehicle handling dynamics studies. The conventional
way to model leaf springs is to divide the spring into
several rigid links connected to each other via rota-
tional stiffnesses. This can easily be done with the
Modelica Standard Library, but it results in hard-to-
use models with long simulation times. The models in
this paper are designed as generalized force elements
where the position, velocity and orientation of the axle
mounting gives the reaction forces in the chassis at-
tachment positions.

Keywords: Leaf spring; Vehicle dynamics; Com-
mercial vehicle suspensions

1 Introduction

The commercial VehicleDynamics Library [1] is cur-
rently undergoing expansions to suite heavy vehicles
(figure 1), requiring models of new components such
as leaf springs. This paper covers one technique to
generate a leaf spring that has good simulation perfor-
mance and still captures the following characteristics.

• The axle attachment position will deflect in an arc
shape in the longitudinal-vertical plane under ver-
tical loading conditions [3].

• Leaf spring suspension designs have two anti roll
bar effects. The springs are stiff in roll (twist)
which counteracts the vehicles roll motion if the
spring is mounted to a rigid axle as in figures 8
and 10. If the axle is mounted asymmetrically,
that is not centered on the middle of the spring,
the axle will twist as the vehicle rolls. This will
resist vehicle roll as well [4].

• The effective length of the leaf spring varies with
deflection causing a varying spring rate. The
models in this paper require large deflections
for the effect to be seen, but this effect can be
higher for other shapes and mounting types of the
spring [3].

The basic idea for the model is to use five massless
links connected with rotational elasticities with the
axle mounted at the center of the middle link. A mass-
less approximation is reasonable since the masses in-
volved in rigid axles, wheels and the body of the ve-
hicle are considerably higher than the mass of the leaf
spring. The implemented leaf spring can easily be ex-
tended with masses connected to the frames at the leaf
springs three mounting positions. The shape of the

Figure 1: Tractor with leaf spring suspension in a
shaker rig

leaf spring will be determined by the rotations between
each link, except for the roll angles. These angles are
left out of the equations of motion since they have very
little impact on the leaf spring’s shape. The roll resis-
tance is handled as a rotational stiffness added to the
torque equilibrium equations instead.
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2 Reference MultiBody model

The model used as a basis for comparison is designed
with components from the Multi-body package. The
model consists of six rigid links connected by rota-
tional stiffnesses that allow the center position to de-
flect in a plane. This design forms a planar loop and is
only useful for vertical plane comparison.

Figure 2 illustrates a primitive suspension model
assembled from two multi-body leaf springs. A trans-
lational joint is used to handle the distance variations
in length between the mounting positions against the
leaf springs. A spring is applied to the translational
joint to control the lateral motion of the axle. The sim-
ulation time increases significantly with a stiffer trans-
lational spring. A more realistic model can be assem-
bled by adding revolute joint for the lateral and roll
motion as well, but the simulation time for just one
planar leaf spring is already long.

Figure 2: Multi body rigid axle suspension

3 Equations of motion

Lagrange’s method, equation (1), is used to derive
the equations of motion resolved in the generalized
coordinates (p1y...p4y, p1z...p4z) as illustrated in fig-
ure 3. Together with the stiffnesses indicated in fig-
ure 4, these form the expressions for the potential en-
ergy U in equation (2).

dL
dt

∂L
∂q̇

− ∂L
∂q

+
∂R
∂q̇

= Fqi (1)

L = T −U (2)

In the sequel, it is assumed that the spring is massless
giving T = 0. Viscous damping is applied over the

generalized coordinates, giving

R =
i

∑
i=1

1
2
·di · q̇2

i (3)

where qi and di denotes each generalized coordinate
and the corresponding damping coefficient.

Figure 3: Definition of generalized coordinates and
geometry properties.

Figure 4: Parameters for stiffness and damping.

The potential energy stored in the spring is given
by
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(4)

where wP1x,y,z and cP1x,y,z are the displacements and
stiffnesses of the front eye bushing. wP2r,l denote the
lateral and radial displacement of the shackle with
cP2r,l as the corresponding stiffnesses.
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A non linear bushing description including a linear

and a cubic stiffness gives the forces

F =
Z w

0
k1 ·w2 + k2︸ ︷︷ ︸

c

dw (5)

and the potential energy

E =
Z w

0
F dw (6)

which can be used in equation (2) instead of the lin-
ear model. The forces will in this case depend on

Figure 5: Force deflection diagram for front bushing

c(p1y,p2y,p1z,p2z) and w(p1y,p2y,p1z,p2z) for the front bush-
ing. This results in a force deflection diagram for the
front bushing seen in figure 5.

The displacements for the front eye bushing and
the shackle are given by

w̄P1 = r̄rel1 − (ā1 +Ty1 ·Tz1 · ā2

+Ry1 ·Rz1 ·Ty2 ·Tz2 · ā3)
(7)

and

w̄P2 = r̄rel2 − (ā4 +Ty3 ·Tz3 · ā5

+Ty3 ·Tz3 ·Ty4 ·Tz4 · ā6)
(8)

respectively. Since the leaf spring is assumed to be
rigidly mounted to the axle, it is convenient to resolve
the equations for motion and force balance in the axle
frame. The vectors r̄rel1 and r̄rel2 are expressed in the
axle frame’s coordinate system. The transformation
matrices used to describe the end positions depending
on the generalized coordinates used in equation (7) and
(8) are given by

Ty =

 cos(pXy) 0 sin(pXy)
0 1 0

−sin(pXy) 0 cos(pXy)

 (9)

and

Tz =

cos(pXy) −sin(pXy) 0
sin(pXy) cos(pXy) 0

0 0 1

 (10)

where X represents the respective generalized coordi-
nate. L from equation (2) is now completely described
with the eight generalized coordinates and the stiffness
parameters. When solving equation (1) with respect
to the generalized coordinates, two sets of non-linear
equations appear. Since these sets do not depend on
each other but only are a function of the axle’s posi-
tion, they can be used separately if there is a need to
model half a leaf spring in conjunction with, for in-
stance, an air spring.

The complexity of the equation system increases
rapidly with added degrees of freedom. If, for in-
stance, roll stiffness is added to the leaf spring in
the same way as the other elasticities, it will expand
the equation systems from two systems with four un-
knowns to two systems with six unknowns. Each ex-
pression in the equation systems will also expand since
equations 7 and 8 must be modified with additional
transformation matrices for the roll angles.

Instead of adding the roll degree of freedom, the
roll torque is added externally as described in the next
section by terms in equation 17 and 18. This approach
is considered valid since the roll angles are small un-
der normal operation conditions and the spring is rela-
tively stiff in roll compared to the bushings.

Five links seem to be a reasonable compromise
that achieve a fast simulated model but still captures
the essential spring characteristics, this discretization
is also used in [2]. Possibly, a larger number of links
could be used if the equations of motion were to be
linearized. This might cause problems with the ini-
tial curvature which requires large angles between the
links.

4 Force generation

The displacements and the displacement’s derivative
together with the stiffness and damping coefficients
give the forces in the mounting positions to the chassis.
The forces in the chassis mounts are given by equation
(11) and (14),

f̄P1 = CP1 · w̄P1 + ¯̇wP1 ·dP1 − f̄0P1 (11)

fP2r = cP2r · (wP2r − sP0)+ ẇP2r ·dP2r − f0P2z (12)

fP2l = cP2l ·wP2l + ẇP2l ·dP2l (13)
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f̄P2 = fP2r · n̂P2r + fP2l · n̂P2l (14)

where C is a diagonal (3x3) matrix with the transla-
tory stiffnesses for the front eye bushing. The damp-
ing of the front bushing is currently set as one value
for all directions. n̂P2l,r denote unit vectors in the ra-
dial and lateral directions of the shackle. The length
of the shackle used for describing the shackles radial
displacement in equation (12) is named s0P.

The force and torque equilibria are given by

0̄ = f̄P4 + f̄P1 + f̄P2 (15)

and

0̄ = t̄P4 + t̄P1 + t̄P3 + r̄rel1 × f̄P1 + r̄rel2 × f̄P3 (16)

respectively. The roll stiffness is modeled as a rota-
tional spring and added to the torque equilibrium. The
roll angle is the only variable that has an impact on the
torque acting on the front bushings. This gives

pr · cr · n̂x = t̄P1. (17)

as the resulting torque. The force is calculated in the
lower shackle mount and must be transformed as

t̄P2 = f̄P3 × n̂P2 · s0P + pr · crn̂x (18)

.pr is the spring’s roll angle with the corresponding ro-
tational stiffness cr. The unit vector in the x direction
of the axle frame’s coordinate system is denoted n̂x.

5 Implementation

The primitive model of the leaf spring requires geom-
etry positions in a two dimensional plane. For the
model to be useful, a wrapper is needed to translate
the initial three dimensional positions to parameters
for the leaf spring. This is done according to equation
22 though 29. The location of the primitive model’s

Figure 6: Leaf spring primitive and wrapped model

hard points are illustrated in figure 6.

The transformation matrix T in which the planar
positions are resolved is given by the base vectors
(nx,ny).

n̄x = r̄0CS − r̄0PS (19)

n̄y = (r̄0PS − r̄0BS)× (r̄0CS − r̄0BS) (20)

Equation (20) is unsolvable when the vectors are par-
allel. This is taken care of by an assertion which en-
courages the user to enter ny manually.

r̄1 =T (r̄0PS − r̄0CS) (21)

r̄2 =T (r̄0BS − r̄0CS) (22)

The vectors (r1,r2) resolved in T have y-values equal
to zero, and can thus be used to extract the positions
for the four hard points used in the primitive model
according to equations (23) though (26).

¯rP1 = 0̄ (23)

r̄P2 = r̄P3 + s0P · (sin(p0P),cos(−p0P)) (24)

r̄P3 = (r1x,r1z) (25)

r̄P4 = (r2z,r2z) (26)

The leaf spring’s curvature is defined as 1/R where
R is the radius of the leaf springs shape. The imple-
mented models have a curvature that depends on the
hard points for the three mounting positions. There is
one curvature for the rear part generated from the axle
and the lower shackle mounts position and one for the
front part generated in the same way as for the rear.

Figure 7: Pretension forces

To enable an easy way to determine the shape of
the leaf spring and the ride height of the vehicle at the
design configuration it is necessary to specify a preten-
sion value corresponding to the load when the vehicle
is at rest. The forces from pretension are given by

f0P1x + f0P3x = 0 (27)

f0P1z − f0 + f0P3z = 0 (28)
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f0P3z · rP3P1x − f0P3x · rP3P1z − f0 · rP4P1x = 0 (29)

f0P3z = f0P3 ·−
r0P3P2z

|r0P3P2|
(30)

f0P3x = f0P3 ·−
r0P3P2x

|r0P3P2|
(31)

and indicated in figure 7. These forces are calculated
initially and added as static values in equation (11) and
(12).

Figure 8: Semi trailer boogie suspension

Figure 9: Leaf spring and double wishbone suspension

The implemented leaf spring models can be used
in numerous designs, here presented in a semi trailer
boogie suspension, figure 8, and in a double wishbone
design, figure9. One of the axles in the semi trailer
suspension is assembled as shown in figure 10. Fig-
ure 9 illustrates another leaf spring model without a
shackle mounted between two wishbones and with the
center attachment mounted to the chassis. This model
is based on the same technique as the standard leaf
spring model.

Figure 10: Diagram view of leaf spring axle carriage

6 Parametrization

The parameters needed for the leaf spring consists of
positions, stiffnesses, dampings, and animation prop-
erties.

Figure 11: Elasticity parameters
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Figure 11 displays the elasticity parameters for the

primitive model. The default value for the internal
rotational stiffnesses are calculated from the vertical
and lateral stiffness under the assumption that the leaf
spring will deflect in the shape of an arc. The internal
rotational stiffnesses can be set manually to enable the
user to customize the deflection profile.

The parametrization can easily be changed to suite
different specific types of leaf springs in terms of shape
and asymmetric stiffness.

7 Validation and results

Figure 12: Leaf spring test rig

The validation of the standard leaf spring has been
carried out by comparing the model to a reference
multi-body model described in section 2. A test rig,
figure 12, has been used to generate the dynamic and
kinematic comparison. As seen in figure 13 the verti-

Figure 13: Vertical plane kinematics comparison

cal plane kinematics of the leaf spring modeled with
rigid elements are virtually the same as for the model
described by Lagrange’s equation. Both models are
damped via viscous damping over each generalized
coordinate and corresponding revolute joint for the

multi-body model. The vertical plane dynamics for the
different models are very similar to each other as long
as the excitation does not consist of high frequency
components as in figure 14.

The fact that the standard model has both stiff-
ness and damping in the mount positions makes it a
bit complicated to compare these results, but with-
out fine tuning of the stiffness and damping they per-
form as shown in figure 13.The differences can easily
be related to the bushings in the mount positions and
the massless approximation used in the standard leaf
spring.

Figure 14: Vertical plane dynamics

Figure 15: Cpu time used for simulation of the differ-
ent suspension models

A suspension assembled as in figure 10 simulates
approximately 18 times faster then the reference sus-
pension, as shown in figure 15.

A comparison of the kinematic and dynamic be-
havior of two multi body leaf springs with five versus
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Figure 16: Kinematic comparsion between nine and
five link leaf spring

Figure 17: Dynamic comparison between nine and five
link leaf spring

nine links is illustrated in figure 16 and 17. The dif-
ferences between the models are small which implies
that the five link leaf spring meets the requirements for
vehicle handling simulations.

The shackle has big influence on the leaf spring’s
kinematics. The shape of the leaf spring in the com-
parison results in larger deflection in bounce than in
rebound, figure 16. This because the shackle’s lower
mount towards the spring always moves upwards with
deflection. Other geometries would give different re-
sults.

8 Summary

The leaf spring model is essential for heavy vehicle
handling dynamics simulations. The proposed model

is superior to the multi-body reference model with re-
spect to simulation time and it is much easier to pa-
rameterize the geometry positions and to implement
it in suspension designs. The model is equipped to
deal with the specific characteristics of a leaf spring.
It is possible to add forces through the same equations
as the pretension but varying over time. This enables
a user to add additional force elements as damping
via hysteresis or air springs. The standard leaf spring
model fulfills all the requirements specified in section
1.
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namics Library — Overview and Applications
Modelon., Homepage: http://www.modelon.se/.
In Proceedings of Modelica’2006, Vienna,
Sep. 2006.

[2] Georg Rill, Norbert Kessing, Olav Lange and Jan
Meier: Leaf Spring Modelling for Real Time Ap-
plications In the 18th IAVSD-Symposium in At-
sugi, Japan 2003, 2003.

[3] SAE: Spring Design Manual ISBN: 1-56091-
680-X, 1996.

[4] A grimm, C. Winkler and ,R. Sweet Mechanics of
Heavy Duty Truck Systems. University of Michi-
gan transportation research institute, UK , 2004.

211

Leaf Spring Modeling




