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Abstract 

This paper presents the development, simulation and 

validation of 3 dimensional flexible beam models 

using Modelica. The models are based on finite ele-

ment method (FEM) application, following mathe-

matical calculations proposed by Shabana [2], and 

are 3D extensions to the 2D model developed by F. 

Schiavo [3]. The element formulation is independent 

of applied boundary conditions, making the element 

suitable for any 3D multibody simulation. 

All models use standard connectors defined in the 

Modelica multibody library, thereby guaranteeing 

full compatibility with library components. Mathe-

matical modelling details are fully analyzed, indicat-

ing motion equation development. Models also fea-

ture a graphical interface, and visualization of simu-

lation outcomes using the same 3D environment as 

the multibody library, providing the user with imme-

diate visual feedback. Finally, models are analyzed 

and validated by means of selected simulation ex-

periments, with reference to theoretical predictions 

and comparison with results obtained with commer-

cial FEM code. 

 

Keywords: flexible beam; Multibody; FEM; finite 

element formulation 

 

1 Introduction 

Whilst 2D flexible model development is widely 

covered by literature [2], its application to 3 Dimen-

sional models normally only goes as far as the initial 

stages of the mathematical development. This paper 

presents the application of 2D model redevelopment 

and implementation [3] to 3D models using Mode-

lica. At times shall descriptions made by Schiavo [3] 

are used. 

 

With the aim of creating a reusable parametric ele-

ment, is has been considered only the modelling of 

one particular scenario: a beam containing two con-

nection points, one at each end. 

 

In this paper the linear elasticity theory for thin beam 

modelling are considered, ignoring shear deforma-

tion effects and assuming uniform cross sectional 

properties throughout the element length. Cross sec-

tional dimensions compared to element length rigid 

configuration deflection are also assumed to be 

small. 

 

Taking into account the object-oriented capability of 

the Modelica language, some parametric features 

have been implemented in the model, for example: 

cross sectional beam shape (rectangular or cylindri-

cal), hollow or full section, and mesh length density 

(from 1 to N elements). This provides a parametric 

mesh of the element enabling computation of points 

along the element length and precision-

computational cost control.  

 

The implementation of other shape sections can be 

easily carried out, but are not included in the model 

in order to simplify the user interface menu. 

 

It has been also developed a model that for importing 

mass and stiffness matrix values from condensed FE 

models to 12 degrees of freedom (dof). 

 

2 Degrees of Freedom (dof) 

Consider a generic multibody system (Figure 1). The 

position, in body coordinates, of a point in a specific 

deformable body is expressed as follows: 

 

f0 uuu +=  (1) 

 

where u0 is the “undeformed” (i.e., rigid) position 

vector and uf is the deformation contribution to posi-

tion (i.e., the deformation field). 
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Figure 1: Flexible body reference systems 

 

The mathematical description of a body’s generic 

deformation requires that the deformation field be-

long to an infinite dimensional functional space, re-

quiring, in turn, an infinite number of deformation 

degrees of freedom. 

 

In this paper, the deformation field is described by an 

approximation to the functional basis space it be-

longs to, assuming that such space has a finite di-

mension, say M, so that vector uf can be expressed 

by the following finite dimensional product: 

 

ff Squ =  (2) 

 

where S is the [3×M] shape function matrix (i.e., a 

matrix of functions defined over the body domain 

and used as a basis to describe the deformation field 

of the body itself) and qf is the M-dimensional vector 

of deformation degrees of freedom. 

 

The position of a point in a deformable body can 

then be expressed in world reference as follows: 

 

( )
ff ASqAuRSquARAuRr ++=++=+= 00
 (3) 

 

where R is the vector identifying the origin of the 

body local reference system and A is the rotation ma-

trix for the body reference system. 

 

The representation of a generic deformable body in 

world reference requires then 6+M d.o.f. (i.e., 6 cor-

responding to rigid displacements and rotations and 

M to deformation fields): 

 

[ ] [ ]Tf

T

fr qRqqq θ==  (4) 

 

where R and θ represents unreformed body position 

and orientation angles and qf is a vector containing 

flexible degrees of freedom. 

 

3 Motion Equations 

The equations are solved using a classical Lagran-

gian approach. The equation for flexible element 

motion, in body axes, can be expressed as [2],[3] (a 

general demonstration to motion equations in [2] and 

in more detail in [3]): 
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Equations are valid for a general deformable body, 

though many of the quantities involved (e.g., the Kff 

matrix) depend on specific body characteristics such 

as the shape and material properties, but do not de-

pend on element deformation. 

 

The mass matrix obtained using the formulation of 

[3], takes the following form: 
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Where mass matrix components (6) are calculated in 

the following manner, assuming that the body is a 

3D elastic continuum, with constant cross-sectional 

properties, isotropic material behaviour and is per-

fectly elastic. 
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( ) ( )∫=

iV

iiiiTiiiii dVGu~AGu~AM ρθθ  (10) 

ii

V

iiTii
f dVSu~GM

i

∫= ρθ  (11) 

∫ ++==
iV

iiiiiTiii
ff SSSdVSSM 332211ρ  (12) 

 

Where the 3D shape matrix is: 
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(13) 

 

To be able to perform the calculation at the right 

beam extremity (point B, Figure 2) it has been sup-

posed that it is calculated exactly at the average point 

of the element in order to simplify matrices that in-

tervene in the mass matrix calculation. 
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Figure 2: Beam extremities 

 

By means of this assumption the general matrices are 

simplified applying the following assumption: 

 

11 ==
ij
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l
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ξ  (14) 

02 ==
ij

ij
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l

x
η  (15) 

03 ==
ij

ij
ij

l

x
ζ  (16) 

 

In the end, by using these assumptions, the beam is 

simplified to a line due to the fact that the length of 

the beam and the height and width they are not taken 

into account. 

 

It also implies that the following terms vanish in the 

mass matrix formulation (see appendix B) 
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Following the procedure described in [3] and the 

matrix in appendix B, one can verify that the inte-

grals that appear in the expression of Skl
ij
 are given 

by:  
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(27) 

 

It can be seen that the mass matrix depends on ele-

ment deformation, and needs to be re-calculated for 

each simulation instance. 

 

The speed quadratic vector is a non-linear function 

of the widespread system of coordinates and speeds 

and includes the Coriolis effect and the effect of cen-

trifugal forces. 
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(28) 

3.1 The element point of view 

The finite element method is based upon a discretiza-

tion of the beam into N elements. It is then possible 

to define the local dimensionless abscissa as ξ=x/l, 
where x is the longitudinal local coordinate and l is 

the element length. 

 

For a single element, the generic equations of motion 

(5) can be expanded as follows: 
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(29) 

 

where the subscript el is used to refer the quantities 

of a single element. 

 

Figure 2 depicts the element coordinate systems as-

sociated with the deformation degrees of freedom: 

qf1,el and qf7,el are associated with axial compression, 

qf2,el  and qf8,el with transversal displacement, qf3,el and 

qf9,el with Z axis displacement, qf4,el and qf10,el with 

beam extremities rotation around the X axis, qf5,el and 

qf11,el with beam extremities rotation around the Y 

axis and qf6,el and qf12,el with beam extremity rotation 

around the Z axis. 

3.2 Finite Element Method Equation Assembly 

The motion equations for the entire beam can be ob-

tained by assembling the motion equations for beam 

elements as defined in the previous subsection. The 

body reference system will be the local reference 

system located at the root of the first element, so that 

the rigid degrees of freedom, common to all the ele-

ments, will refer to such a coordinate system. 

Let then m and L be the mass and length of the entire 

beam, and N the number of elements used, so that 

l=L/N. With X̂
r
 indicating the reference system unit 

vector along the beam axis, the expression of the 

generic position uj of a point of element j can be ex-

pressed as: 

 

( )[ ] fjeljfjeljj qBSX̂ljlqBSuu +−+=+=
r

10 ξ  (30) 

 

where u0j is the position of the root of the j
th
 element, 

Sel is the shape functions matrix defined by (31), Bj is 

the so-called connectivity matrix and qf is a vector 

containing the deformation degrees of freedom for 

the whole beam. Matrices Bj have the following 

form: 

 

( ) ( )[ ] N,,j,OIOB jN,j,j K1366136 =∀= −−  (31) 

 

The connectivity matrices are used to relate vector qf, 

which contains the deformation degrees of freedom 

for the entire beam, to the corresponding j
th
 element, 

according to the expression: 

 

fjel,f qBq
j
=  (32) 

 

4 Modelica Implementation 

The finite element model formulation has been im-

plemented using the Modelica language, creating 

thus a new component, called FlexBeamFem3D 

(Figure 4). The component interfaces are two stan-

dard mechanical flanges from the new MultiBody 

library [4]. The choice of connector makes the com-

ponent fully compatible with the Modelica Multi-

body library, so that it is possible to directly connect 

the flexible beam component to the predefined mod-

els, such as mechanical constraints (revolute joints, 

prismatic joints, etc.), parts (3D rigid bodies) and 

force elements (springs, dampers, forces, torques). 

 

 
Figure 4: Component icon 

 

The models also have a graphical interface, with a 

visualization of simulation outcomes within the same 

3D environment used in the Multibody library, pro-

viding the user with immediate visual feedback. 

 

Mathematical modelling details are partially indi-

cated below in Modelica characteristic language: 

 

parameter SI.Density rho=7800 "Material Volume 

Density"; 

parameter SI.Length L=0.2 "Beam Length"; 

parameter SI.Height a=0.005 "Height of section"; 

parameter SI.Breadth b=0.02 "Breath of section"; 

parameter SI.ModulusOfElasticity E=210e9 "Mate-

rial Youngs modulus"; 

parameter SI.ShearModulus G=8.077e10 "Material 

Shear modulus"; 
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parameter SI.SecondMomentOfArea J1=7.025e-10 

"Cross sectional inertia 1"; 

parameter SI.SecondMomentOfArea J2=3.33333e-9 

"Cross sectional inertia 2"; 

parameter SI.SecondMomentOfArea J3=2.08333e-

10 "Cross sectional inertia 3"; 

parameter Real Alpha=1e-3 "Rayleigh structural 

damping proportional to mass [sec^-1]"; 

parameter Real Beta=5e-5 "Rayleigh structural 

damping proportional to stiffness [sec]"; 

parameter Integer N(min=2) = 2 "Number of Ele-

ments"; 

 

Dynamic equations for the 3D flexible beam model 

are as follows: 

 

[m*identity(3), transpose(StbarCross), Sbar]*[aa - 

g_0; za; ddqf] = QvR +matrix(fa + fb_a); 

 

[StbarCross, Ithth_bar, Ithf_bar]*[aa - g_0; za; 

ddqf] = QvAlpha + matrix(ta + tb_a + 

cross(({L,0,0} + S1*B[N, :, :]*qf), fb_a)); 

 

[transpose(Sbar), transpose(Ithf_bar), mff]*[aa - 

g_0; za; ddqf] = Qvf + Qef - matrix(Kff*qf) - ma-

trix((Alpha*mff + Beta*Kff)*dqf); 

 

Using the degrees of freedom qf and the derivate of 

degrees of freedom dqf, information can be passed 

from Frame B to Frame A as indicated in the follow-

ing equations: 

 

FrameB.R=Modelica.Mechanics.MultiBody.Frames.

absoluteRotation(FrameA.R, R_rel); 

 

R_rel=Modelica.Mechanics.MultiBody.Frames.axes

Rotations({1,2,3},{qf[(6*N)-2],qf[(6*N)-1],qf[6*N]}  

,{dqf[(6*N)-2],dqf[(6*N)-1],dqf[6*N]}); 

 

5  Simulations 

The different flexible beam models have been vali-

dated by several simulation analyses performed in 

the Dymola simulation environment [1] and com-

pared with a general purpose commercial FEM code 

(ANSYS). 

5.1 First example (Static) 

As a preliminary result, a 3D simulation has been 

performed applying movement to the free extremity 

of a cantilever beam (Figure 5).  

 

Figure 5:Beam 3D 

Beam displacement and rotation analytical form cal-

culation follows: 
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Variables used in the simulation are expressed in the 

following table: 

 

Variable Value 

Rho (kg/m
3
) 7800 

L (m) 1 

a (m) 0.02 

b (m) 0.06285 

E (Pa) 210e9 

G (Pa) 8.077e10 

J1(m
4
) 1.33242e-7 

J2(m
4
) 4.138e-7 

J3(m
4
) 4.19e-8 

Alpha 1e-3 

Beta 5e-5 

N 2 

Applied moment M (N.m) 2*π*E*I/L 
 

The simulation has been performed by connecting 10 

elements in series (Figure 6), to overcome the as-

sumption of small displacements in the internal de-

velopment of the element. 
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Figure 6: Modeling in Dymola 

 

Figure 7 shows the results obtained where the 3D 

position of the beam’s extremities is plotted at the 

end of the simulation. As expected, X and Y posi-

tions describe a circle since as this was verified in 

the theoretical analysis. The same results are ob-

tained, irrespective of the direction of movement 

applied. 
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Figure 7: Results obtained 

 

By means of this simulation correct element re-

sponse to static flexion has been obtained. 

5.2 Second example (Dynamic) 

In this example (Figure 8) the dynamical operation 

of a flexible pendulum articulated to one of its ends 

has been analysed. The initial position of the flexible 

element is horizontal (X direction) and gravity is 

applied in the vertical direction (Z direction). 

 

g 

Z 

X

 

Figure 8: Articulated pendulum 

 

Figure 9 shows the comparison of the results ob-

tained with Dymola, ANSYS code and considering a 

rigid element. The mechanical properties of the beam 

are the same as in the previous example except L 

being 0.2. This simulation can be performed with 

one or more elements because the large displacement 

of the end is mainly governed by the revolute joint, 

the flexibility acting only in the longitudinal direc-

tion of the beam. 
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Figure 9: Results obtained with different programs 

 

Between the rigid model and the flexible model there 

is a lack of coordination in frequency where the rigid 

element is advanced with regard to the flexible 

model. The results concur with those obtained in 

ANSYS. 

 

6 Generalization and model versions  

In the general and parametric 3D model created, 

modifications have been performed in order to intro-

duce mass and stiffness (matrices calculated for ex-

ample using ANSYS). In this case the matrix of mass 

becomes constant along the simulation as well as it 

happens with the matrix of stiffness and besides 

Coriolis's terms though they appear are not updated. 

 

By means of this simplification the computational 

cost decreases because the reduction in the calcula-

tion of the equations of movement. It must be 

pointed out that a calculation error is made, however 

this error could be fully undertaken. 
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7 Conclusions 

To date, there has been no evidence of a Dymola 

model that can simulate flexible mechanisms in 3D 

and therefore the importance of the model created, as 

its correct operation has been verified, both statically 

and dynamically. 

 

This development in flexible element simulation, 

based on Modelica programming language, enables 

the simulation of flexible 3D mechanisms and the 

integration of these model into other disciplines, for 

example, control tasks. 

 

The only drawback to the implemented model is the 

large number of equations required to solve the prob-

lem, this slows down simulation and requires power-

ful simulation equipment. Although, compared to 

other simulation programs, the 3D flexible model 

created Dymola is about 100 times faster than the 

same model simulated in ANSYS. 

 

To overcome this limitation a simplified model has 

been implemented that considers a fixed mass matrix 

and a single element (no discretisation), that speeds 

up simulation, and is suitable for preliminary model-

ing steps. 

 

The developed model can be easily implemented for 

any type of constant shape along its length.  

 

Future work will include non-constant shape beams 

and the development of a model based on the as-

sumed modes theory [3] considering free boundaries. 

 

This flexible model will be used for the development 

of a wearable robotics where the mechanism mass is 

key. 

A Structural Stiffness Matrix 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) 





































































−

−

−

−

−−−

−

−

−

−

−−−

−

−

=

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI
l

GJ

l

GJ
l

EI

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI
l

EA

l

EA

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI
l

GJ

l

GJ
l

EI

l

EI

l

EI

l

EI
l

EI

l

EI

l

EI

l

EI
l

EA

l

EA

K i
ff

3

2

33

2

3

2

2

22

2

2

11

2

2

3

2

2

2

3

2

2

3

3

3

2

3

3

3

3

2

33

2

3

2

2

22

2

2

11

2

2

3

2

2

2

3

2

2

3

3

3

2

3

3

3

4
000

6
0

2
000

6
0

0
4

0
6

000
2

0
6

00

0000000000

0
6

0
12

000
6

0
12

00

6
000

12
0

6
000

12
0

0000000000

2
000

6
0

4
000

6
0

0
2

0
6

000
4

0
6

00

0000000000

0
6

0
12

000
6

0
12

00

6
000

12
0

6
000

12
0

0000000000

 

 

B Mass Matrix Components 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ij

n

ij

V

T

lIlIlIlIlQlIlIlIlIlQ

lIlIlIlQlIlIlIlIlQ

lIlIlQlIlIlIlIlQ

lIlQlIlIlIlIlQ

mlQlQlQlQm

lIlIlIlIlQ

lIlIlIlQ

symmetric

lIlIlQ

lIlQ

m

dVSS









































































−−−−−−

−−−−

−−−−−

−−−−−

−

−−

−−

=

=











∫

15

2

15

2
0

1010123030
0

101012

15

2
0

1010123030
0

101012

0000000000
5

6

5

6

21010
0

5

6

5

6

2

5

6

21010
0

5

6

5

6

2

31212
0

226

15

2

15

2
0

101012

15

2
0

101012

0000
5

6

5

6

2

5

6

2

3

3322233222

322233222

22

22

22

33222

3222

11

ζηζζηζηζηζζηζη

ηηηζζηζηηηζζ

ηηζζηζηηηζζ

ζηζηζηζζη

ηηζ

ζηζζηζη

ηηηζζ

ηηζζ

ζη

ρ

 

 

( ) ( )

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ij

ij

V

T

lm
Q

lmllm
Q

lml

I
l

Q
l

Q
l

I
l

Q
l

mml
Q

lm

lm
Q

lml

symmetricI
l

Q
l

m

dVSS























































−−−

−−−

−

−

−

=

=











∫

105
0

20
0

210

11
0

140
0

30
0

420

13
0

00000000000
3

0
20

7
0

30
0

6
0

20

3
0

000000000
35

13
0

420

13
0

20

3
0

70

9
0

0000000
105

0
20

0
210

11
0

00000
3

0
20

7
0

000
35

13
0

0

2323

32332

2

23

32

22

ζζ

ηζζηζ

ζ

ζ

ηζ

ρ

 

 

( ) ( )

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ij

ij

V

T

lm
Q

lmllm
Q

lm

I
l

Q
l

Q
l

I
l

Q
l

mml
Q

lm

lm
Q

lml

I
l

Q
l

symmetric
m

dVSS

























































−

−

−

−−

=

=











∫

000000000000
10520210

11
000

14030420

13
00

320

7
000

30620

3
00

35

13
000

420

13

20

3

70

9
00

00000000

0000000

000000
10520210

11
00

320

7
00

55

13
00

00

0

2323

32332

2

23

32

33

ηη

ζηηηη

η

η

ζη

ρ

 

 

104

X. Murua, F. Martinez, A. Pujana, J. Basurko, J.M. Pagalday



 

The Modelica Association  Modelica 2006, September 4th – 5th 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ij

ij

V

T

I
l

Q
l

Q
l

I
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

ml
Q

lmml
Q

lm

Q
l

I
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

ml
Q

lmml
Q

lm

dVSS





































































−−

−−−

−−−

−−−

−−−

−−−

−−

−−−

−−−

−−−

=

=











∫

00
12

0
10

0
60

0
12

0
10

0

00
12

0
10

0
60

0
12

0
10

0

000000000000
10

0
2

0
2

0
10

0
2

0
2

0

10
0

2
0

2
0

10
0

2
0

2
0

20
0

3
0

20

7
0

30
0

6
0

20

3
0

60
0

12
0

10
000

12
0

10
0

60
0

12
0

10
000

12
0

10
0

000000000000
10

0
2

0
2

0
10

0
2

0
2

0

10
0

2
0

2
0

10
0

2
0

2
0

30
0

6
0

20

3
0

20
0

3
0

20

7
0

32332

32332

2222

2222

22

33232

33232

2222

2222

22

21

ηζηηηζη

ηζζηζ

ζηζζηζ

ηηζηηηζη

ζζ

ηηζηηζη

ζηζηζ

ζηζζηζ

ηηζηηηζη

ζζ

ρ

 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ij

ij

V

T

I
l

Q
l

Q
l

I
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

ml
Q

lmml
Q

lm

Q
l

I
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

ml
Q

lmml
Q

lm

dVSS





































































−−

−−

−−−−−

−−−−−

−

−−

−−−

−

−

−−

=

=











∫

00
1210

000
601210

00

00
1210

000
601210

00

000000000000

0
1022

000
1022

00

0
1022

000
1022

00

0
20320

7
000

30620

3
00

0
601210

0000
1210

00

0
601210

0000
1210

00

000000000000

0
1022

000
1022

00

0
1022

000
1022

00

0
30620

3
000

20320

7
00

32332

32332

2222

2222

22

33232

23232

2222

2222

22

31

ζηηζη

ηζζζηζζ

ζηζζζηζζ

ηζηηζη

ηη

ηζηζη

ζηζζζηζ

ζηζζζηζζ

ηζηηζη

ηη

ρ

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ij

ij

V

T

lm
Q

lmllm
Q

lml

Q
l

I
l

Q
l

Q
l

I
l

Q
l

ml
Q

lmml
Q

lm

lm
Q

lmllm
Q

lml

Q
l

I
l

Q
l

Q
l

I
l

Q
l

ml
Q

lmml
Q

lm

dVSS





















































−−−−−

−−−−

−

−

−−−−−

−

=

=











∫

0
10520210

11
000

14030420

13
00

000000000000

0
20320

7
000

30620

3
00

000000000000

0
210

11

20

7

35

13
000

420

13

20

3

70

9
00

000000000000

0
14030420

13
000

10520210

11
00

000000000000

0
30620

3
000

20320

7
00

000000000000

0
420

13

20

3

70

9
000

210

11

20

7

35

13
00

000000000000

2223

332332

22

2323

332332

22

32

ηη

ζηζζζηζζ

ηη

ηη

ζηζζζηζζ

ηη

ρ

 

 

 

 

References 

[1] Dymola. Dynamic Modelling Labo-

ratory. Dynasim AB, Lund, Sweden. 

[2] A. A. Shabana. Dynamics of Multi-

body Systems. Cambridge University 

Press, 1998. 

[3] F. Schiavo, G.Ferreti, L. Viganò. 

Object-Oriented Modelling and 

Simulation of Flexible Multibody 

Thin Beams in Modelica with the Fi-

nite Element Method. In 4
th
 Interna-

tional Modelica Conference, Ham-

burg, March 7-8, 2005. 

[4] M. Otter, H. Elmqvist, and S. E. 

Mattsson. The new Modelica multi-

body library. In 3rd Modelica Con-

ference, Link¨oping, Sweden, No-

vember 3-4, 2003. 

105

3D Flexible Multibody Thin Beams Simulation in Modelica with the Finite Element Method




