

The Modelica Association Modelica 2006, September 4th – 5th

Quantised State System Simulation in Dymola/Modelica
using the DEVS Formalism

Tamara Beltrame
VTT, Industrial Systems

PO Box 1000, VM3
02150 Espoo, Finland

Tamara.Beltrame@vtt.fi

François E. Cellier
Institute of Computational Science

ETH Zurich
8092 Zurich, Switzerland
FCellier@Inf.ETHZ.CH

Abstract

Continuous-time systems can be converted to discrete-
event descriptions using the Quantised State Systems
(QSS) formalism. Hence it is possible to simulate
continuous-time systems using a discrete-event simu-
lation tool, such as a simulation engine based on the
DEVS formalism.
A new Dymola library, ModelicaDEVS, was devel-
oped that implements the DEVS formalism.
DEVS has been shown to be efficient for the simu-
lation of systems exhibiting frequent switching opera-
tions, such as flyback converters. ModelicaDEVS con-
tains a number of basic components that can be used
to carry out DEVS simulations of physical systems.
Furthermore, it is also possible - with some restric-
tions - to combine the two simulation types of Mod-
elicaDEVS and Dymola (discrete-event and discrete-
time simulation) and create hybrid models that contain
ModelicaDEVS as well as standard Dymola compo-
nents.
Keywords: DEVS formalism; Quantised State Sys-
tems; Event-Based Simulation; Numerical Integration

1 Introduction

Since Dymola/Modelica was primarily designed to
deal with continuous physical problems, numerical
integration is central to its operation, and therefore,
the search for new algorithms that may improve the
efficiency of simulation runs is justified.
Toward the end of the nineties, a new approach for
numerical integration by a discrete-event formalism
has been developed by Zeigler et al. [13]: given
the fact that all computer-based continuous system
simulations have to undergo a discretisation of one
form or another –as digital machines are not able
to process raw continuous signals– the basic idea

of the new integration approach was to replace the
discretisation of time by a quantisation of state.
The DEVS formalism turned out to be particularly
well suited for implementing such a state quantisation
approach, given that it is not limited to a finite number
of system states, which is in contrast to many other
discrete-event simulation techniques.
The Quantised State Systems (QSS) introduced by
Kofman [6] in 2001 improved the original quantised
state approach of Zeigler by avoiding the problem of
ever creating illegitimate models, and hence gave rise
to efficient DEVS simulation of large and complex
systems.

The simulation of a continuous system by a (dis-
crete) DEVS model comes with several benefits:
When using discretisation of time, variables have to
be updated synchronously1. Thus, the time steps have
to be chosen according to the variable that changes the
fastest, otherwise a change in that variable could be
missed. In a large system where probably very slow
but also very fast variables are present, this is critical
to computation time, since the slow variables have
to be updated way too often. The DEVS formalism
however allows for asynchronous variable updates,
whereby the computational costs can be reduced
significantly: every variable updates at its own speed;
there is no need anymore for an adaptation to the
fastest one in order not to miss important develop-
ments between time steps. This property could be
extremely useful in stiff systems that exhibit widely
spread eigenvalues, i.e., that feature mixed slow and
fast variables.
The DEVS formalism is very well suited for problems
with frequent switching operations such as electrical

1Note that this is not true for methods with dense output. How-
ever, the above statement holds for the majority of today’s integra-
tion methods, since they rarely make use of dense output.

73

Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism

The Modelica Association Modelica 2006, September 4th – 5th

power systems. Given that the problem of iteration at
discontinuities does not apply anymore, it even allows
for real-time simulation.
For hybrid systems with continuous-time, discrete-
time, and discrete-event parts, a discrete-event method
provides a “unified simulation framework”: discrete-
time methods can be seen as a particular case of
discrete-event methods [6], and continuous-time parts
can be transformed in a straightforward manner to
discrete-time/discrete-event systems.
When using the QSS approach of Kofman in order to
transform a continuous system into a corresponding
discrete system, there exists a closed formula for the
global error bound [2], which allows a mathematical
analysis of the simulation.

Since the mid seventies, when Zeigler introduced the
DEVS formalism [11], there have emerged several
DEVS implementations, most of them designed to
simulate discrete systems. However, one simula-
tion/modelling software system aimed at simulating
continuous systems is PowerDEVS [8]: it provides
a library consisting of block diagram component
models that can be used for modelling any system
described by ODE’s (DAE’s), thereby allowing for the
simulation of continuous systems.
The implementation of ModelicaDEVS has been
kept close to the PowerDEVS simulation soft-
ware. Hence ModelicaDEVS can be considered a
re-implementation of PowerDEVS in Modelica.

2 Continuous System Simulation
with DEVS

2.1 The DEVS Formalism

The DEVS formalism has been introduced by Zeigler
in 1976 [11]. It was the first methodology designed
for discrete-event system simulation that is based on
system theory.

A DEVS model has the following structure:

M = 〈X ,Y,S,δint(s),δext(s,e,x),λ(s), ta(s)〉

where the variables have the following meaning (see
also [2], Chapter 11):
X represents all possible inputs, Y represents the
outputs, and S is the set of states.
The variable e indicates the amount of time the system
has already spent in the current state. δext(s,e,x)
is the external transition that is executed after an

external event has been received. δint(s) is the internal
transition that is executed as soon as the system has
spent in its current state the time indicated by the
time-advance function.
ta(s) is the so-called time advance function that
indicates how much time has to pass until the system
undergoes the next internal transition. The time-
advance function is often represented by variable σ

which holds the value for the amount of time that the
system has to remain in its current state in the absence
of external events.
The λ-function is the output function. It is executed
prior to performing an internal transition. External
transitions do not produce output.
Figure 1 illustrates the functioning of a DEVS model:
the system receives input (top graph) at certain time
instants, changes its states according to the internal
and external transitions (center graph), and produces
output (bottom graph).

Figure 1: Trajectories in a DEVS model.

In theory, DEVS models can describe arbitrarily
complex systems. The only drawback is that the more
complex the system is, the more difficult it will be
to set up the correct transition functions describing
the system. Fortunately, complex systems can be
broken down into simpler submodels that are easier to
handle. The fact that DEVS is closed under coupling
[2] makes such an approach viable.
Figure 2 illustrates this concept: the model N consists
of two coupled atomic models Ma and Mb. N can be
said to wrap Ma and Mb and is indistinguishable from
the outside from an atomic model.

74

T. Beltrame, F.E. Cellier

The Modelica Association Modelica 2006, September 4th – 5th

Figure 2: Coupled DEVS models [2].

2.2 Quantised State Systems

For a system to be representable by a DEVS model,
it must exhibit an input/output behaviour that is de-
scribable by a sequence of events. In other words,
the DEVS formalism is able to model any system
with piecewise constant input/output trajectories, since
piecewise constant trajectories can be described by
events [2].
Continuous state variables are being quantised. Con-
sider the following system represented by the state-
space description:

ẋ(t) = f(x(t),u(t), t)
where x(t) is the state vector and u(t) is the input
vector, i.e. a piecewise constant function. The cor-
responding quantised state system has the following
form:

ẋ(t)≈ f(q(t),u(t), t)
where q(t) is the (componentwise) quantised version
of the original state vector x(t). A simple quantisation
function could be:

q(t) = floor(x(t)).
Unfortunately, the transformation of a continuous
system into its discrete counterpart by applying an
arbitrarily chosen quantisation function can yield an
illegitimate model2. Thus, the quantisation function
has to be chosen carefully, such that it prevents
the system from switching states with an infinite
fequency. This property can be achieved by adding
hysteresis to the quantisation function [6], which
leads to the notion of a Quantised State System (QSS)
as introduced by Kofman [6] providing legitimate
models that can be simulated by the DEVS formalism.
A hysteretic quantisation function is defined as
follows [2]: Let Q = {Q0,Q1, ...,Qr} be a set of real
numbers where Qk−1 < Qk with 1 ≤ k ≤ r. Let Ω

2Definition [2]: “A DEVS model is said to be legitimate if it
cannot perform an infinite number of transitions in a finite interval
of time.” Illustrative examples of illegitimate models can be found
in [2] and [6].

be the set of piecewise continuous trajectories, and
let x ∈ Ω be a continuous trajectory. The mapping
b : Ω → Ω is a hysteretic quantisation function if the
trajectory q = b(x) satisfies:

q(t)=

Qm if t = t0
Qk+1 if x(t) = Qk+1∧q(t−) = Qk∧ k < r
Qk−1 if x(t) = Qk− ε∧q(t−) = Qk∧ k < 0
q(t−) otherwise

and:

m =

0 if x(t0) < Q0
r if x(t0)≥ Qr

j if Q j ≤ x(t0) < Q j+1

The discrete values Qi and the distance Qk+1 −Qk
(usually constant) are called the quantisation levels
and the quantum, respectively. The boundary val-
ues Q0 and Qr are the upper and the lower saturation
values, and ε is the width of the hysteresis window.
Figure 3 shows a quantisation function with uniform
quantisation intervals.

Figure 3: Quantisation function with hysteresis [2].

The QSS described above is a first-order approxima-
tion of the real system trajectory. Kofman however
has also introduced second- and third-order approx-
imations that may reduce the error made by the
approximation. These systems are referred to as QSS2
[7] and QSS3 [9], respectively.

3 ModelicaDEVS

The average block of the ModelicaDEVS library ex-
hibits the following basic structure:

75

Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism

The Modelica Association Modelica 2006, September 4th – 5th

1 block SampleBlock
2 extends ModelicaDEVS.Interfaces. ... ;
3 parameter Real ... ;
4
5 protected
6 discrete Real lastTime(start=0);
7 discrete Real sigma(start=...);
8 Real e;
9 Boolean dext;
10 Boolean dint;
11 [...other variable declarations...]
12
13 equation
14 dext = uEvent;
15 dint = time>=pre(lastTime)+pre(sigma);
16
17 when {dint} then
18 yVal[1]= ...;
19 yVal[2]= ...;
20 yVal[3]= ...;
21 end when;
22 yEvent = edge(dint);
23
24 when {dint, dext} then
25 e=time-pre(lastTime);
26 if dint then
27 [..internal transition behaviour..]
28 else
29 [..external transition behaviour..]
30 end if;
31 lastTime=time;
32 end when;
33
34 end SampleBlock;

The following sections will offer more insight into the
reasons for this specific block structure.

In accordance with the PowerDEVS implemen-
tation, ModelicaDEVS event ports (connectors)
consist of four variables representing the coefficients
to the first three terms (constant, linear, and quadratic)
of the function’s Taylor series expansion, and a
Boolean value that indicates whether a block is
currently sending an event.
Dense output can then be approximated as:

yout = y0 + y1 · (t− tlast)+ y2 · (t− tlast)2

whereby the coefficient of the quadratic term of
the Taylor series, y2 = yVal[3], is only used by
the third-order accurate method, QSS3, whereas the
linear term, y1 = yVal[2], is used by QSS2 and QSS3.

Let us now consider a small example in order to gain
increased insight into the role of the Boolean variable
of the port. Let us assume a two-block system consist-
ing of block A and block B, where the only input port
of block B is connected to the only output port of block
A. Every block features a variable dext accompanied

by an equation
dext = uEvent;

where uEvent is the Boolean component of the con-
nector that represents an input event. Suppose now
that block A produces an output event at time t = 3.
At this precise instant, it updates its output vector with
the appropriate values (the coefficients of the Taylor
series) and sets A.yEvent to true:

when dint then
yVal[1]= ...; //new output value 1
yVal[2]= ...; //new output value 2
yVal[3]= ...; //new output value 3

end when;
yEvent = edge(dint);

Still at time t = 3, block B notices that now B.uEvent

has become true (note that B.uEvent = A.yEvent

because the two blocks are connected), and therefore
dext has become true, also. Consequently, Block B is
executing its external transition [4].

A DEVS model must contain code to perform
internal and external transitions, as well as execute the
time advance and output functions at the appropriate
instants. All of these functions have to be explicitly or
implicitly present in the ModelicaDEVS blocks.
The time advance function is normally represented
by a variable sigma. It is a popular trick in DEVS
to represent the current value of the time advance
function by sigma [2].
The internal transition is executed when dint is true.
An internal transition depends only on sigma. Hence
the value of dint can be calculated as:
dint = time >= pre(lastTime) + pre(sigma);

where lastTime holds the time of the last execution of
a transition (internal or external).
The external transition is executed when dext is true.
The variable dext is defined as follows:

dext = uEvent;

The internal and external transitions are represented
by a when-statement. The reason for packing
the internal and external transitions into a single
when-statement instead of having two separate when-
statements, one representing the internal transition
and the lambda function, the other one representing
the external transition, is due to a rule of the Modelica
language specification that states that equations in
different when-statements may be evaluated simul-
taneously. Hence, if there are two when-statements
each containing an expression for a variable X, X
is considered overdetermined. This circumstance
would cause a syntactical problem with variables that
have to be updated both during the internal and the

76

T. Beltrame, F.E. Cellier

The Modelica Association Modelica 2006, September 4th – 5th

external transition and thus would have to appear in
both when-statements. For this reason, we need to
have a when-statement that is active if either dint

or dext becomes true. Subsequently, an additional
discrimination is done within the when-statement,
determining whether it was an internal (dint is true)
or an external transition (dext is true) that made the
when-statement become active, and as the case may
be, updating the variables with the appropriate value.
The lambda function is executed right before an
internal transition. Lines 17-22 of the “block basic
structure” code (beginning of Section 3) constitute
the typical lambda function part, containing a when-
statement and a separate instruction for the yEvent

variable. The right hand side of the equations in the
lambda function normally depends on pre() values
of the used variables. This is due to the fact that
the lambda function has to be executed prior to the
internal transition. The variable yEvent has to be
true in the exact instant when an internal transition
is executed and false otherwise. This behaviour is
obtained by using the Modelica edge() operator.

There is one particular situation that can occur
in a model that requires special attention: let us
assume two connected blocks, where both block A
and block B have to execute an internal transition
simultaneously (Figure 4). Whereas block A simply

Figure 4: Concurrent events at block B.

executes its internal transition, block B is confronted
with the problem of concurrent events: from block
A it receives an external event, but at the same time,
it was about to undergo its own internal transition.
Which event should be processed first? This question
is to be answered by the priority settings between the
two blocks.
In our simple two-block example there are only
two possible priority orderings with the following
consequences: either block A is prior to block B, and
block A will produce the output event before block
B executes the internal transition (block B will first
execute an external transition triggered by the external
event it received from block A), or block B is prior

to block A, such that block B will first undergo its
internal transition and receive the external event right
afterwards, when A will be allowed to execute its
internal transition.
The problem of block priorities can be solved in
two ways: by an explicit, absolute ordering of all
components in a model (e.g., a list), or by letting
every block determine itself whether it processes the
external or the internal event first, in case both of them
occur simultaneously. ModelicaDEVS implements
the latter approach. As can be seen in the “block
basic structure” code, internal transitions take always
priority over external transitions (line 26: the code
checks first whether dint is true).
The reason for this choice is quite simple. As internal
events are processed before external events, and since
internal events are accompanied by output events,
the variable yEvent can be computed as a function
of dint alone. If we were to force external events
to be processed before internal events, we would
need to make sure that yEvent is only set true in the
case that the internal event is not accompanied by
a simultaneous external event. Thus yEvent would
now be a function of both dint and dext. Yet, dext
is a function of uEvent. Thus, if ModelicaDEVS
blocks were connected in a circular fashion, as this is
often the case, an algebraic loop in discrete (Boolean)
variables would be created, which would get the
Dymola compiler into trouble.
By forcing the internal events to always take pref-
erence over external events, ModelicaDEVS blocks
can be interconnected in an arbitrary fashion without
ever creating algebraic loops in the Boolean event-
indication variables.
Note that since Dymola/Modelica is already aimed at
object-oriented modelling, which includes the reuse
of multi-component models as parts of larger models,
the issue of hierarchically coupled models did not
require any special treatment in ModelicaDEVS.

Dymola can trigger two types of events: state
events that require iteration to locate the event time,
and time events that make Dymola “jump” directly to
the point in time when the time event takes place.
The only expressions responsible for activating the
when-statements in the models, namely:

dext = uEvent;

and:
dint = time >= pre(lastTime) + pre(sigma);

both trigger time events and hence avoid the computa-
tionally more expensive state events.

77

Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism

The Modelica Association Modelica 2006, September 4th – 5th

An earlier version of ModelicaDEVS used an ap-
proach that triggered mostly state events. Inspired by
the book of Fritzson [4], a number of small modifica-
tions have been applied that converted all state events
to time events. Performance comparisons carried out
between the two versions showed that the time-event
approach is roughly four times faster than an equiva-
lent approach triggering state events.

4 Results

4.1 Efficiency

In order to compare the run-time efficiency of Mod-
elicaDEVS to other simulation software systems
(PowerDEVS and standard Dymola), a system with
frequent switching operations was modelled using
each of the three tools (PowerDEVS, ModelicaDEVS
and Dymola), and the execution times of the three
codes were compared against each other.
The chosen system is the flyback converter example
presented in [5].
The flyback converter can be used to transform a
given input voltage to a different output voltage. It
belongs to the group of DC-DC converters.
A very simple electrical circuit with a voltage source
connected to the primary winding of the converter
and a load to its secondary winding looks as shown in
Figure 5.

Figure 5: The flyback converter in Dymola.

Figure 6 shows the first two milliseconds of a simula-
tion run of the flyback converter circuit given in Figure
5. The rapid switching is a result of the high switching
rate of the ideal switch.
The flyback converter is described by a set of acausal
equations in Dymola. However, in order to be able to
model the flyback converter in either ModelicaDEVS

Figure 6: The flyback converter output.

or PowerDEVS, the behaviour of the converter needs
to be converted to a causalised block diagram3, which
then can be modelled using component models of the
PowerDEVS/ModelicaDEVS libraries.
Figure 7 shows the flyback converter model built in
ModelicaDEVS. The structure of this block diagram
is also valid for the PowerDEVS model.

Figure 7: The ModelicaDEVS flyback converter.

Table 1 provides the average simulation CPU time
for a simulation of 0.002 seconds of the flyback con-
verter model in standard Dymola, ModelicaDEVS,
and PowerDEVS, respectively. The Dymola and Mod-
elicaDEVS model were simulated setting the numeri-
cal integration method to LSODAR4. Testing has been
carried out on an IntelCeleron 2.6 GHz Laptop with
256MB RAM. The resulting CPU time may vary from

3For more details on the causalising process in the flyback con-
verter example, see [1].

4Although ModelicaDEVS does not make use of LSODAR di-
rectly, the event handling behaviour of Dymola is somewhat influ-
enced by the selection of the numerical integration algorithm.

78

T. Beltrame, F.E. Cellier

The Modelica Association Modelica 2006, September 4th – 5th

one computer system to another, but the relative order-
ing is expected to remain the same.

Table 1: Execution efficiency comparison.
CPU time result

time [s] events points
Dymola 0.062 239 738

QSS1 3.55 6363 11829
M-DEVS QSS2 0.688 958 2299

QSS3 0.656 833 2164
QSS1 0.064 N/A N/A

P-DEVS QSS2 0.019 N/A N/A
QSS3 0.018 N/A N/A

Table 1 shows a clear ordering of the three different
systems in terms of performance: PowerDEVS is
faster than Dymola, which in turn is faster than
ModelicaDEVS.
First, it needs to be remarked that standard Dymola
simulates this model very efficiently. The switching
(BooleanPulse) block leads to time events only,
whereas the diode should lead to state events. Yet, this
is not the case.
Switching at the input leads immediately to a switch-
ing of the diode as well. Since Dymola iterates after
each event to determine a consistent set of initial
conditions, the switching of the diode is accomplished
at once without need of first triggering a state event.
Second, the model is quite trivial. The execution
time is almost entirely dictated by the number of time
events handled. What happens in between events is
harmless in comparison.
Standard Dymola performs exactly one time event
per switching. In contrast, ModelicaDEVS performs
considerably more time events. Time events take here
the role of integration steps.
Figure 8 shows the constant term of the Taylor series
expansion of the load voltage as a function of time
for QSS1 and QSS3. QSS1 requires a new time event
as soon as the constant output no longer represents
the true output, whereas QSS3 requires an event
only, when the second-order accurate Taylor series
expansion no longer approximates the true output.
QSS1 requires roughly eight times as many events
as QSS3, and is therefore between five and six times
slower. Yet, even QSS3 requires roughly three times
as many events as standard Dymola. In addition, the
ModelicaDEVS model contains roughly three times
as many variables as the standard Dymola model.
All of these variables are being stored at every event.
Consequently, QSS3 is roughly nine times slower than
standard Dymola.

Figure 8: QSS3 simulation vs. QSS1 simulation.

Yet, QSS3 in PowerDEVS is roughly three times
faster than standard Dymola for comparable ac-
curacy. A comparison between PowerDEVS and
ModelicaDEVS is not straightforward. PowerDEVS
implements Zeigler’s hierarchical simulator [12],
whereas ModelicaDEVS operates on simultaneous
equations and synchronous information flow [10].
Consequently, PowerDEVS suffers from requiring
message passing to implement the communication
between blocks, but enjoys the advantage of only
having to process those equations that are directly
involved with the event being handled. In contrast,
ModelicaDEVS needs to visit all equations of all
blocks whenever an event takes place. Which vari-
ables are to be updated in each case is decided by
Boolean expressions associated with the various
when-statements.
Yet the true difference in speed has probably more
to do with the event handling itself. Dymola has
been designed for optimal speed in the simulation
of continuous models and for optimal robustness in
handling hybrid models.
The algorithms implemented in Dymola for robust
event handling are important in the context of hybrid
modelling. In the context of a pure discrete-event
simulation, these algorithms are an overkill. For
example, in a pure discrete-event simulation there is
no need for iteration after each event to determine a
new consistent set of initial conditions. In Dymola,
many variables are being stored internally in order
to allow LSODAR to integrate continuous state
equations correctly across discontinuities. In a pure
discrete-event simulation, variables need to be stored
for output only.

79

Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism

The Modelica Association Modelica 2006, September 4th – 5th

4.2 Mixed Systems

Mixed systems contain both Dymola and Modelica
blocks. Figure 9 shows an example of a simple elec-
trical circuit modelled in Dymola, and in a mixed ver-
sion with a ModelicaDEVS capacitor. Figure 10 illus-

Figure 9: Two versions (Dymola and Dy-
mola/ModelicaDEVS) of a simple electrical circuit.

trates the implementation of the ModelicaDEVS ca-
pacitor. On its outside, this block looks like a normal
electrical Dymola component, but internally it consists
of ModelicaDEVS blocks that model the behaviour
of a capacitor: The Gain block multiplies the incom-
ing signal by the value of 1

C , where C is specified
by a parameter, and passes it on to the Interpolator.
Taken as a whole, the ModelicaDEVS blocks consti-
tute nothing more than the well known capacitor for-
mula v = 1

C

R
i dt.

Figure 10: The internal structure of the Modeli-
caDEVS capacitor.

Unfortunately, it is not as straightforward as it may
seem at first glance to replace a component from
the Dymola standard electrical library by its Modeli-
caDEVS equivalent: since the electrical components
do not assume a certain data flow direction (they are
described by acausal equations), whereas the Model-
icaDEVS components do (DEVS components feature
input and output ports), the ModelicaDEVS capacitor
must turn acausal equations into causal ones. It as-
sumes the capacitive current i to be given, and hence
computes the capacitive voltage v. Note that such a ca-
pacitor would not work anymore correctly if we were
to connect it to a voltage source instead of a current
source.
An even more severe problem is caused by the Sam-
plerTime block applying the der() operator to the sig-
nal that it receives through its input port:

du=der(u);

when sample(start,period) then
yVal[1]=u;
yVal[2]=if method>1 then du else 0;
yVal[3]=if method>2 then der(du) else 0;

end when;

Given that the input of the SamplerTime block de-
pends algebraically on the output of the Interpolator
in the DEVS capacitor, Dymola would have to differ-
entiate discrete variables, which it is unable to do.
An attempt to solve this problem was made using Dy-
mola’s “User specified Derivatives” feature described
in the Dymola User’s Manual [3]: functions for the
first and second derivatives have been inserted into the
Interpolator, but due to unknown reasons, this did not
resolve the issue either.
In order to be able to perform mixed simulations
nonetheless, another trick has been applied: supple-
mentary to the standard ModelicaDEVS SamplerTime
block that uses the Modelica der() operator, an ad-
ditional block has been programmed: the Sampler-
TimeNumerical block avoids the problem caused by
the der() operator by means of the delay() function
that is used to differentiate the input variable numer-
ically. Instead of the first and second derivatives of
the input signal, the SamplerTimeNumerical returns a
numerical approximation:

Du = delay(pre(u),D);
D2u= delay(pre(u),2*D);

yVal[1]= pre(u);
yVal[2]= if method>1 then

(pre(u)-Du)/D else 0;
yVal[3]= if method>2 then

(pre(u)-2*Du+D2u)/(D*D) else 0;

Using the new sampler block, the mixed simulation
could be carried out without any problems, and the re-
sults differ only slightly from the simulation with con-
ventional Dymola components (see Figure 11).

4.3 Hybrid Systems

Hybrid systems contain mixed integration methods:
standard Modelica integrators and ModelicaDEVS In-
tegrator blocks. An example of a hybrid system is
for instance an electrical circuit with at least one
ModelicaDEVS capacitor/inductor (using the Model-
icaDEVS Integrator block) and at least one Dymola
capacitor/inductor (using the Modelica der() opera-
tor). The flyback converter of Section 4.1, where the
capacitor in the secondary winding is replaced by an
equivalent ModelicaDEVS capacitor, may serve as an

80

T. Beltrame, F.E. Cellier

The Modelica Association Modelica 2006, September 4th – 5th

Figure 11: Standard Dymola (blue) and mixed (red)
simulation of the simple electrical circuit (Figure 9).

example of a hybrid system.
Note that the ModelicaDEVS capacitor applies numer-
ical differentiation in order not to obtain “DAE index
reduction” error messages (see previous section).

Figure 12: Standard Dymola (blue) and mixed (red)
simulation of the flyback converter.

Figure 12 shows the output of the mixed simulation
compared to the result of the standard Dymola simula-
tion. Just as it was the case with the simpler example
of Section 4.2, the output of the hybrid simulation dif-
fers only slightly from the Dymola simulation.
Thus, it is also possible to perform not only accurate5

mixed simulations, but also hybrid simulations.

5Note that due to the numerical differentiation used in the Sam-
plerTimeNumerical block, the result is not as accurate as if analyt-
ical differentiation had been used. However, the accuracy is suf-
ficient for most purposes, and also adjustable through selection of
the width parameter, D.

5 Conclusions

A new Dymola/Modelica library implementing a
number of Quantised State System (QSS) simulation
algorithms has been presented. ModelicaDEVS dupli-
cates the capabilities of PowerDEVS. The graphical
user interfaces of both tools are practically identical.
However, the underlying simulators are very different.
Whereas PowerDEVS implements Zeigler’s hierar-
chical DEVS simulator, ModelicaDEVS operates on
simultaneous equations and synchronous information
flows.
The embedding of ModelicaDEVS within the Dy-
mola/Modelica environment enables users to mix
DEVS models with other modelling methodologies
that are supported by Dymola and for which Dymola
offers software libraries.
Unfortunately, ModelicaDEVS is much less efficient
in run-time performance than PowerDEVS. The loss
of run-time efficiency is probably caused by Dymola’s
event handling algorithms that have been designed for
optimal robustness in the context of hybrid system
simulation rather than run-time efficiency in the
context of pure discrete-event system simulation.
Although ModelicaDEVS offers a full implementation
of a DEVS kernel and can therefore be used for the
simulation of arbitrary discrete-event systems, the
modelling blocks that have been made available so far
in ModelicaDEVS are geared towards the simulation
of continuous systems using QSS algorithms.

References

[1] Beltrame, T. (2006), Design and Development of
a Dymola/Modelica Library for Discrete Event-
oriented Systems using DEVS Methodology, MS
Thesis, Institute of Computational Science, ETH
Zurich, Switzerland.

[2] Cellier, F.E. and E. Kofman (2006), Continuous
System Simulation, Springer-Verlag, New York.

[3] Dynasim AB (2006), Dymola Users’ Manual,
Version 6.0, Lund, Sweden.

[4] Fritzson, P. (2004), Principles of Object-
Oriented Modeling and Simulation with Model-
ica 2.1, Wiley-Interscience, New York.

[5] Glaser, J.S., F.E. Cellier, and A.F. Witulski
(1995), “Object-Oriented Switching Power Con-

81

Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism

The Modelica Association Modelica 2006, September 4th – 5th

verter Modeling Using Dymola With Event-
Handling,” Proc. OOS’95, SCS Object-Oriented
Simulation Conference, Las Vegas, NV, pp.141-
146.

[6] Kofman, E. and S. Junco (2001), “Quantised
State Systems: A DEVS Approach for Contin-
uous Systems Simulation,” Transactions of SCS,
18(3), pp.123-132.

[7] Kofman, E., “A Second Order Approximation for
DEVS Simulation of Continuous Systems,” Sim-
ulation, 78(2), pp.76-89.

[8] Kofman, E., M. Lapadula, and E. Pagliero
(2003), PowerDEVS: A DEVS-based Environ-
ment for Hybrid System Modeling and Simula-
tion, Technical Report LSD0306, LSD, Univer-
sidad Nacional de Rosario, Argentina.

[9] Kofman, E., “A Third Order Discrete Event
Method for Continuous System Simulation,”
Latin American Applied Research, 36(2),
pp.101-108.

[10] Otter, M., H. Emqvist, and S.E. Mattsson (1999),
“Hybrid Modeling in Modelica Based on the
Synchronous Data Flow Principle,” CACSD’99,
IEEE Symposium on Computer-Aided Control
System Design, Hawaii, pp.151-157.

[11] Zeigler, B.P. (1976), Theory of Modeling and
Simulation, John Wiley & Sons, New York.

[12] Zeigler, B.P. (1984), Multifacetted Modelling
and Discrete Event Simulation, Academic Press,
London.

[13] Zeigler, B.P. and J.S. Lee (1998), “The-
ory of Quantized Systems: Formal Basis for
DEVS/HLA Distributed Simulation Environ-
ment,” SPIE Proceedings, Vol. 3369, pp.49-58.

Biographies

Tamara Beltrame received her
MS degree in computer science
from the Swiss Federal Institute
of Technology (ETH) Zurich in
2006. She recently started working
at VTT (Finland), where she deals
with problems of simulation aided
automation testing.

François E. Cellier received his BS
degree in electrical engineering in
1972, his MS degree in automatic
control in 1973, and his PhD de-
gree in technical sciences in 1979,
all from the Swiss Federal Institute
of Technology (ETH) Zurich. Dr.
Cellier worked at the University of

Arizona as professor of Electrical and Computer Engi-
neering from 1984 until 2005. He recently returned to
his home country of Switzerland. Dr. Cellier’s main
scientific interests concern modeling and simulation
methodologies, and the design of advanced software
systems for simulation, computer aided modeling, and
computer-aided design. Dr. Cellier has authored or co-
authored more than 200 technical publications, and he
has edited several books. He published a textbook on
Continuous System Modeling in 1991 and a second
textbook on Continuous System Simulation in 2006,
both with Springer-Verlag, New York. He served as
general chair or program chair of many international
conferences, and serves currently as president of the
Society for Modeling and Simulation International.

82

T. Beltrame, F.E. Cellier

