

The Modelica Association Modelica 2006, September 4th – 5th

Modelica CDV
A Tool for Visualizing the Structure of Modelica Libraries

Martin Loeffler1, Michaela Huhn1, Christoph Richter2, Roland Kossel3

1Technical University of Braunschweig, Institute for Programming and Reactive Systems, Germany
2Technical University of Braunschweig, Institute for Thermodynamics, Germany

3TLK-Thermo GmbH, Germany
m.loeffler@tu-bs.de, m.huhn@tu-bs.de, ch.richter@tu-bs.de, r.kossel@tlk-thermo.de

Abstract

The simulation language Modelica is an object
oriented language with all the advantages and
potential drawbacks that are characteristic for object
oriented programming languages. The reusability of
source code and the possibility to develop nicely
structured libraries using inheritance, aggregation
and polymorphism are two of the main advantages
object oriented languages have to offer. Although
there are good mechanisms given to structure
libraries, one of the drawbacks is that it can become
very hard to understand large libraries especially for
users who just want to use them to carry out
simulations without getting into all the details. The
presented work has the goal to provide an easy to use
tool that is capable of graphically visualizing the
structure of Modelica libraries and that therefore
enables the developer as well as the end user of
Modelica libraries to better control and understand
the structure of libraries.
Keywords: Object oriented modeling; visualization;
class diagram

1 Introduction

The object oriented character of Modelica is one of
its very important features. It enables the developer
to reuse code in a very efficient way, improves team
work in the design process of a library and helps the
user to easily exchange components in a simulation.
There are other advantages that could be added to
this list. But there also are drawbacks that almost
every Modelica developer and user knows from his
own experiences. A growing aggregation depth and
multiple inheritance can make a library almost
illegible. Tracking bugs, implementing new models
or changing existing models might become very
difficult for developers that are not completely
familiar with the library and its structure. The

sustainability of the library might be in danger while
it should be improved by using object oriented
techniques. Having been in this situation gave us the
idea to develop a tool that helps to analyze the
structure of Modelica libraries. The developed tool,
Modelica CDV, enables the Modelica developer to
improve the structure of the developed library and
offers the user of the library a simple way to
understand its structure. The tool will be available as
freeware.

2 Modelica Libraries

To build and maintain models on the basis of
Modelica libraries the developer needs a clear and
detailed understanding not only of the library
elements but also of the object oriented structure of
the library and in particular of the relations among
the elements. The Modelica Association coordinates
the development of free libraries. There are for
example libraries available to simulate multi-body
systems, to model fuel cells and to model magnetic
actuators and drives. For more information about
available libraries see [1]. The structuring concepts
of Modelica like multiple inheritance,
polymorphism, aggregation, and composition are a
prerequisite for the compatibility and reuse of
submodels (for details see [2]). Consequently, they
considerably contribute to the efficiency and
conciseness of modeling in Modelica. However, if
the structuring concepts are used in combination in a
large library, the overall structure may become far
from trivial.
Modelica is based on a Cardelli type system [3] and
supports multiple inheritance. In difference to
nominal type systems like in Java [4], subclasses
cannot only be declared explicitely by a keyword
like extends, e.g. “model A extends model B”, but
also implicitly by the fact that a class extends the set
of public attributes of another class. For building a

55

Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries

The Modelica Association Modelica 2006, September 4th – 5th

subtype this way, all public attributes of the desired
base class have to be implemented (using the same
names and types) manually. Hence, to reconstruct
the inheritance hierarchy within a library the
information about the explicitly stated extensions has
to be joined with the analysis on extensions
implicitly given by inclusion of public attributes.
Modelica provides powerful mechanisms for
polymorphism which are an essential device for
compositionality and exchangeability of submodels.
The first mechanism for polymorphism concerns
exchangeable objects, i.e. using the keyword
replaceable an exchangeable object is built as an
attribute of a class. When the class gets instantiated
the type of the object can be changed in the class
modifier. This way an element of a circuit (for
example a resistor) can easily be replaced by another
element (for example a capacitor).
The second mechanism for polymorphism is local
classes. A local class is used if one wants to replace
a number of objects within a complex model but all
replacements have to coincide on the type, e.g. in an
electric circuit several resistors may be replaced
under the condition that all of them belong to the
same resistor type. Technically, exchangeability is
achieved by declaring a local class as a parameter of
the model. The parameter is set to a concrete type
when instantiating the model and all submodels
(objects) that are derived from the local class within
the model are set to that concrete type.
The third and most complex mechanism for
polymorphism is variable inheritance. It is used for
modeling generic objects that can assume the shape
of all objects of a category.

model GenericResistor
 replaceable model ResistorModel =
 CeramicResistor extends Resistor;
protected
 extends ResistorModel
end GenericResistor;

model Circuit
 GenericResistor resistor(redeclare model
 ResistorModel = SyntheticResistor);
end Circuit;

Figure 1: Modelica code example for variable
inheritance

Figure shows the implementation of a generic
resistor using variable inheritance. The generic
resistor is derived from the exchangeable local class
“ResistorModel”. Changing the type of the local

class when instantiating an object of the generic
resistor results in changing the base class of the
generic resistor. The advantage compared to the
other mechanisms is that the exchange of an object is
not only possible inside its container class.
The keyword redeclare cannot only be used for
exchanging objects. The expression “redeclare
record extends GeometryData” for example allows
the extension of the already existing record
“GeometryData”. Additional attributes can be
created easily that way.
Member variables (also called attributes) are typed.
They are either simple or complex. Complex
attributes representing associations between objects
further enhance the structuring concepts of Modelica
libraries. An association represents a dependency
relation between objects. Of particular interest are
aggregation and composition as two specific
associations that express whole/part relations. For
instance, a car can be modeled as composition of a
motor, wheels, etc. In Modelica, composition is
mainly used to assemble complex objects.
Composition, the stronger form, is most appropriate
in the context of physical objects where the
components are assigned to a unique compositum,
e.g. a motor object is part of a particular car.
Whether a complex attribute represents an
aggregation or composition is hardly to analyse
statically because it results from the context in which
the attributes will be used.
The structuring concepts of Modelica significantly
ease the work of a library developer but they
complicate the analysis of a library for the user.
Modelica libraries are stored in hierarchically
structured directories. The position of a file reflects
the affiliation of the classes stored in this file with
respect to a package, because directories represent
packages. Thus the structure of the repository
partially reflects the structure of the library.
Alternatively, all classes of a library can be stored
within one file. Then the affiliation to packages only
depends on the arrangement of the classes inside the
file.
For analyzing the object oriented structure of
Modelica libraries it is important to understand the
structure of the classes, objects and dependencies
among each other. Because the “algorithms” and
“equations” inside a class are less relevant for the
structure of the library, they are neglected in this
paper.
To summarize, Modelica provides a great variety of
structuring concepts that may be used in combination
and lead to complex library structures that are hardly
understandable on the basis of pure code review.

56

M. Loeffler, M. Huhn, C.C. Richter, R. Kossel

The Modelica Association Modelica 2006, September 4th – 5th

3 Parsing

Parsing is the transformation of text files into an
internal data representation. Most of the Modelica
parsers are used in commercial applications and are
not available for developers. However, there are
some free parsers available. An example is
ModelicaXML that parses Modelica code to an XML
representation [5]. We still did not use one of the
free parsers to be as independent as possible. The
parser that was developed within the scope of this
work only parses information that is required for an
object-oriented analysis of the library but could
easily be extended to parse more information.
In our application the goal of parsing is the creation
of an internal data structure that contains all
information of a Modelica library that is required for
drawing a class diagram. Therefore every class of a
library will be represented by an object containing
the following information

• name and type (i.e. package, model,…)
• path of the text file that contains the class
• code
• local classes
• all attributes (member variables)
• all associations (inheritance, aggregation)
• version of the class (if specified)
• package(s) the class belongs to

The process of parsing a Modelica library can be
decomposed into the following steps

• read in the code
• format the code
• detect classes
• detect attributes of classes
• detect associations
• analyze redeclarations
• perform name lookup
• analyze dependencies caused by Cardelli type

system
The steps have to be performed in the given order
due to their interdependence. Detecting associations
for example cannot be performed before all classes
have been detected.
The following passage explains the parser in more
detail.
Reading in a Modelica library starts with reading in
the required text files. There are in general two ways
to store Modelica libraries: all classes and packages
of a library can be stored in one file or they can be
split up into different files that are nested in folders

to represent the affiliation to packages. If the classes
are stored in several files, there needs to be a file
“package.mo” in each folder declaring the package.
All other classes declared in files within this folder
or in sub-folders belong to this package. The parser
takes the path of the folder that contains the library
as an input and checks, whether a file “package.mo”
exists in the specified path. The parser will then read
in the “package.mo” and all dependent files in the
same folder and will register the package affiliation
for each file read in. This process is repeated for
each subfolder containing a “package.mo”. If there is
only one file containing the whole library, the
content of this file can be read in without analyzing
the package affiliation.

Figure 2: Example for formatting process during
parsing

The entire library is internally available as a
character string after this first step. The parser
formats the code in a second step carrying out the
following operations:

• word-wraps get removed
• superfluous space characters get removed
• annotations other than “version information”

get removed (i.e. annotations for
documentation, icon information)

This second step simplifies the following process by
transforming the unformatted string into a well
formatted character string containing only the
information necessary to perform an object-oriented
analysis. Figure 2 shows an example for the
formatting process.
The next step is to detect all classes and to create
objects representing them. This step requires
considering the nested structure of classes in
Modelica. Classes are detected recursively starting at
the top level. The beginning and the end of a class is
detected on the base of keywords. If a class has been

57

Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries

The Modelica Association Modelica 2006, September 4th – 5th

found, an object with all necessary attributes for its
representation is generated. Not all attributes of the
represented object can be generated at this time
because some information (associations, member
variables) is not yet available. The name of the class,
its source code, comments and information about its
package affiliation are stored. The code of a nested
Modelica class is not stored within the containing
class if it is not a local class. Local classes are for
example used for polymorphism. The model
“ResistorModel” from Figure 1 is a local class.
Detecting attributes of each class includes detecting
the type and the name of each attribute as well as its
default value and the comment if specified. Start
values and further attributes such as min and max
values are omitted but could be included in a future
version.
The keyword extends defines inheritance in
Modelica. A derived class inherits all attributes from
its super class, implying that all attributes of the
super class have to be copied into the derived class
However, this is not possible at that point because all
classes are represented by an object but thery are not
linked to each other. This means that copying the
attributes from super to derived classes has to be
perfomed after the name lookup. If an attribute is not
primitive it is handled as aggregation.

Figure 3: Modelica code example for redeclaration

The keyword redeclare indicates in Modelica that
the type of the object can be changed. Figure 3
shows the extension of a record “GeometryData”
within the package “Cylinder” “GeometryData” is
extended by the attribute “diameter”. If the class
“GeometryData” from “Cylinder” is used
somewhere, it contains the attribute “diameter”. The
parser handles this just like inheritance. A new class
is internally generated that contains all attributes
from “GeometryData” plus the attribute “diameter”.
This class belongs to the package “Cylinder” and

will later be displayed as derived from
“GeometryData”.
All information collected until now is represented as
character strings. As mentioned earlier, it is very
often necessary to have a link to an object
representing a certain class. The already described
situation of inheritance is a very good example in
which all attributes of the super class have to be
copied to the derived class. If there is a definition
like “model GasCar extends Car” the parser has to
resolve the class “Car”. The problem arising here is
that there might be several classes with the name
“Car” within the analyzed library because Modelica
allows different classes having the same name. Name
lookup ensures that the correct class is used within
the given context. In general all classes within the
package containing the class whose name has to be
resolved are possible choices. It is also possible to
give a bit more specific information when extending
a class. One could for example write “model GasCar
extends Basics.Car” “Basics” is in this case the
package that the class “Car” belongs to. Another
important case to be considered is the “import”
statement. With this keyword, namespaces can be
defined or used. If there is a definition like “import
myCar = Basics.Car” the name lookup has to be
performed with “Basics.Car” instead of “myCar”.
It is also possible to use short notations such as
“package C = B;” in Modelica. In this case all
classes of package “B” get duplicated and copied
into package “C”. The declaration can be interpreted
as equivalent to its long form “package C extends
B”. The associations of a class are stored inside the
representing object. Thereby associations from and
to another class are available.
Modelica uses the Cardelli type system which is a
structural type system. Many other object oriented
languages such as Java use a nominal type system
(see [3] for more information). There has been a
discussion within the Modelica language group to
change the Modelica type system in a future version
but no decision has been made so far. To analyze
type equivalence of classes or to find subtypes of a
class it is necessary to compare all public attributes
of each class. If two classes have the same public
attributes they are type equivalent within the scope
of a Cardelli type system. If they have at minimum
the same public attributes the class with more public
attributes is a subtype of the other class. When there
is a large number of classes with many attributes,
comparing all of them with each other can take quite
some time.

58

M. Loeffler, M. Huhn, C.C. Richter, R. Kossel

The Modelica Association Modelica 2006, September 4th – 5th

After all parsing steps have been performed the
internal data representation is available and can be
used for displaying the object oriented structure of
the library in the style of a UML class diagram (see
[6]).

4 Layout

For the automated graphical representation of the
structure of Modelica libraries, the selection and
tuning of the layout algorithm is crucial. Thus, we
consider three types of layout algorithms for drawing
the object oriented structure of Modelica libraries.
Layout algorithms rely on graph theory. The object
oriented structure of libraries is interpreted as a
directed graph where a node represents a class and
an edge represents an inheritance relationship or
aggregation. The selected layout algorithms optimize
the graphical representation according to the
following goals:

• Minimization of the area used for the resulting
chart because libraries can be large.

• Minimization of the number of crossing edges
supports the understanding and conceives the
diagram. If there is no crossing edge the graph
is called planar. The direction of edges is also
an important fact: A class that inherits from
another should be placed below the class it
inherits from.

• Computational efficiency is important so that
even for large libraries the class diagrams are
generated in an acceptable time.

The first group of layout algorithms relevant for the
representation of structural information is the group
of the so-called “tree algorithms” [7] which are
available in many variations. They are especially
suited to illustrate the inheritance relationships of
classes while their runtime is linear. A class is
represented by a node and all derived subclasses
become children of this node. However, tree
algorithms are less appropriate for the layout of
aggregation relationships since the generated trees
can become wide and might need a large area.
Another way to layout graphs is the “Spring
Embedder” [8].The graph represents a physical
model where nodes repulse each other. The closer
two independent nodes get, the larger the mutual
force of repulsion becomes. Nodes also gravitate
towards each other in case of a common edge. This
algorithm works iteratively. All forces are calculated
and the nodes are relocated according to the affecting
forces. After a certain number of iterations all forces
will be balanced. The size of the resulting chart is

small but it might contain a lot of crossing edges.
Moreover, runtime of the Spring Embedder may
become a critical issue.
The third group of algorithms minimizes the set of
crossing edges.
The Spring Embedder and the algorithm for
minimizing crossing edges do not care about the
direction of edges and the right adjustment of classes
that inherit from another. Each algorithm has its
advantages and drawbacks. In order to get a good
layout, it is necessary to use two algorithms in
combination.
Modelica CDV generates a class diagram closely
related to the UML notation (see [6]). The most
important elements, the classes, are represented by
rectangular boxes containing the name, the attributes
and the operations. Here we will omit the operations,
i.e. equations and algorithms of a model.
The layout module in Modelica CDV is still subject
of discussions and experiments as the advantages
and disadvantages of different variants have to be
balanced carefully.
A class diagram is considered as a directed graph
where a node represents a class and an edge
represents an association, i.e. inheritance or
aggregation.
For a good layout of a Modelica library several
partially contradicting criteria have to be taken into
account.
Usually, derived classes are placed below their super
class. Consequently, the algorithm tries to do this the
same way. Another optimization criterion is a short
distance between classes having a relation since one
often needs to look at the associated classes as a
whole to understand the aggregation or inheritance
structure. Hence, minimizing the distance improves
readability. But when minimizing the distance
between nodes one also decreases the area on which
classes are placed. Unfortunately, in larger diagrams
with a lot of complex associations you often will not
see the end of an association without changing the
point of view. Additionally, crossing edges are
complicating readability. To simplify the detection
of crossing edges, associations are restricted to
horizontal and vertical straight lines.

59

Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries

The Modelica Association Modelica 2006, September 4th – 5th

distinct hyper edge

A

CB

A

CB

Figure 4: Edge notation for inheritance

After several experiments we decided that the user
should direct the layout to his point of interest: Thus,
the user may select the elements of a class he wants
to see. This way, the user may choose the level of
detail he is interested in. If detailed information is
faded out, the user will see more classes and
associations on the screen.
The size of a class is calculated dynamically before
the layout algorithm starts. The size of classes
depends on the settings given by the user. Specifying
that additional attributes should be shown in the
diagram will change the dimension of classes. Every
time settings are modified all calculations have to be
repeated because the algorithm calculates the
absolute position of every class on the panel. If a
class becomes larger it probably would overlap with

another one otherwise. The width of the class
representation results from the longest word that has
to be displayed inside a class. For inheritance
associations a “hyper edge” notation is used (see
Figure 4). Aggregation associations are characterized
by their multiplicity. Therefore an inscription would
be needed which might be misleading at the hyper
edge. For this reason aggregation is displayed as
distinct edges.

Figure 6: Swapping leaves for minimizing crossing
edges

The algorithm for lay outing the classes first
calculates the size of every class. Thereafter
inheritance associations are analysed and layouted by
a tree algorithm from bottom to top and the
dimension of the resulting tree is calculated.
The algorithm for adding aggregation associations is
still under investigation. After all aggregation
associations have been added a swap procedure will

Figure 5: Screenshot of the Modelica Class Diagram Visualizer

60

M. Loeffler, M. Huhn, C.C. Richter, R. Kossel

The Modelica Association Modelica 2006, September 4th – 5th

remove crossing edges by swapping some leaves
(inherited classes) of a tree or the trees itself (see
Figure 6). Now nails for the associations will be
calculated and all elements will be displayed. The
algorithm for swapping and rearranging the leaves
(classes) is still in a prototype state at the moment.

5 Using Modelica CDV

The purpose of Modelica CDV is to help the
Modelica user as well as the Modelica developer
with getting an overview over the structure of
libraries.
The graphical user interface that was completely
developed in Java using Swing [9] can be configured
to best suite the users’ preferences. The user may
select color and font for each type of class and also
choose to display or hide additional information that
is usually not displayed in a class diagram but might
be handy when analyzing libraries. Figure 7 shows a
screenshot of the current configuration dialog. The
user can decide to display parameters, constants and
variables for both, the public and the protected
section, in the class diagram.
Figure 5 shows a screenshot of a class diagram
generated by Modelica CDV. The package “Blocks”
from the Modelica Standard Library 2.2 was parsed
and displayed for this example. Note that only the
inheritance associations are displayed in the example
screenshot. The different class types such as blocks
(i.e. “LogicalSwitch”) or models (i.e. “And”) are
discriminated by their graphical appearance both in
shape and color and according to the user’s settings.
Information about the variables contained in each
class is also displayed. The final version of Modelica
CDV will also display connectors as small icons.
The package tree containing all classes of the parsed
library is displayed on the left hand side of the class
diagram as shown in Figure 5. When selecting a
class with the mouse the respective block in the class
diagram on the right hand side is highlighted and
centered.
An important aspect when using Modelica CDV is
the time it takes to parse, layout and display a
library. The Modelica Standard Library in the
version 2.2 containing about 2500 classes was parsed
as a representative example which took about two
minutes on a standard laptop computer. While the
Modelica Standard Library is very likely much larger
than most libraries that will be displayed with
Modelica CDV, two minutes still is too long. The
user can therefore choose to save the parsed library
which cuts down the time requirements to a few

seconds. The user just has to be aware that he is
using a pre-computed version of the library when
using the saved version. A warning is displayed to
remind the user of the current operation status.

Figure 7: Screenshot of the option dialog in
Modelica CDV

6 Conclusions

Modelica CDV is a tool to help Modelica developers
and users to better understand the structure of
libraries by generating class diagrams closely related
to the UML notation. It uses a combination of
different layout algorithms to automatically generate
a class diagram that is as readable as possible. In the
class diagram additional information (i.e. about
variables) may be displayed and it can be configured
according to the users’ preferences.
Visualizing the structure of libraries is the first step
towards improving the readability which ensures its
sustainability. The developed tool is available as
freeware to the Modelica community. The current
version only parses and displays information that is
required for an object-oriented analysis. Additional

61

Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries

The Modelica Association Modelica 2006, September 4th – 5th

information about equations and algorithms and
enhanced analysis that might be of interest is
currently neglected but might be included in a future
version.

References

[1] Modelica – Modeling of Complex Physical
Systems, Modelica Libraries,
http://www.modelica.org/library/

[2] ModelicaAssociation, 2005, Modelica – A
Unified Object-Oriented Language for
Physical Systems Modeling, Language
Specifications, Version 2.2

[3] A.B. Tucker (Ed.), The Computer Science
and Engineering Handbook, CRC Press,
1997

[4] B. Eckel, Thinking in Java, 4th Edition,
Prentice Hall, 2002

[5] A Pop and P. Fritzon, 2004, ModelicaXML:
A Modelca XML Representation with
Application, Proc. of 4th International
Modelica Conference, Hamburg, Germany

[6] M. Jeckle, C. Rupp, J. Hahn, Barbara
Zengler, S. Queins, UML 2 glasklar, Hanser
Verlag München, Wien, 2004

[7] M.Kaufmann, D. Wagner, „Drawing Graphs
– Methods and Models“, Springer Verlag,
2001

[8] Guiseppe Di Battista, Peter Eades, Roberto
Tamassia und Ioannis G. Tollis, “Graph
Drawing – Algorithms for the Visualization
of Graphs”, Prentice Hall, 1999

[9] Sun Microsystems, Java Foundation Classes,
http://java.sun.com/products/jfc/

62

M. Loeffler, M. Huhn, C.C. Richter, R. Kossel

