

2006

Proceedings of the
5th International Modelica Conference

September 4th–5th, 2006
arsenal research
Vienna, Austria

Dr. Christian Kral (Conference Chair)
Anton Haumer (Program Chair)

Volume 1

organized by
The Modelica Association

and arsenal research

All papers of this conference can be downloaded from
http://www.modelica.org/events/modelica2006

The Modelica Association Modelica 2006, September 4th – 5th ii

Proceedings of Modelica2006
arsenal research
Vienna, Austria, September 4th-5th, 2006
Conference Chair: Dr. Christian Kral
Program Chair: Anton Haumer
Published by:
The Modelica Association (http://www.modelica.org/) and
arsenal research (http://www.arsenal.ac.at/)

 Preface

The Modelica Association Modelica 2006, September 4th – 5th iii

Preface

The first International Modelica Conference took place October 2000, in Lund, Sweden. Since then,
Modelica has increasingly become the preferred modeling language for complex multi-domain systems.
During this time, the community of Modelica users has grown continuously. This is also reflected in the
great response to the Call for Papers of the 5th International Modelica Conference. This year’s conference
will be held on September 4th-5th, 2006 in Vienna. From the excellent papers submitted to the program
committee, it was finally decided to include 66 oral and 15 poster presentations in the technical program. The
technical papers cover thermodynamic and automotive applications, mechanical and electrical systems and
the latest developments in modelling and simulation products. Before the conference, there will be five
parallel tutorials. These tutorials include an introduction to Modelica, mathematical aspects of modeling, as
well as the modeling of electric drives, vehicle and thermodynamic systems.

Due to the special features of the Modelica language, such as object-oriented modeling and the ability to
reuse and exchange models, Modelica strongly supports an integrated engineering design process. This fact
is emphasized by the keynote of Dominique Florack, Executive Vice President R&D of Dassault Systemes,
“About the strategic decision of Dassault Systemes to select Modelica to be at the core of Dassault Systemes'
open strategy for CATIA Systems”. In various fields Modelica is being used as a standard platform for
model exchange between suppliers and OEMs.

A key issue for the success of Modelica is the continuous development of the Modelica language as well as
the Modelica Standard Library by the Modelica Association under strict observance of backward
compatibility with previous versions. The broad base of private and institutional members of the Modelica
Association as a non-profit organization ensures language stability and security in software investments.

The 5th International Modelica Conference was organized by the Modelica Association and arsenal research,
Vienna, Austria. We would like to thank the local organizing committee, the technical program committee
and the reviewers for offering their time and expertise throughout the organization of the conference. We
would also like to wish all participants an excellent and interesting conference and hope you will have a
memorable experience in Vienna.

Vienna, September 1st, 2006

Dr. Christian Kral Anton Haumer
Conference Chair Program Chair

The Modelica Association Modelica 2006, September 4th – 5th iv

Program Committee

• Conference Chair: Dr. Christian Kral, arsenal research, Vienna, Austria

• Program Chair: Anton Haumer, arsenal research, Vienna, Austria

• Program Board: Prof. Martin Otter, DLR, Oberpfaffenhofen, Germany

• Program Board: Prof. Peter Fritzson, Linköping University, Sweden

• Program Board: Dr. Hilding Elmqvist, Dynasim AB, Lund, Sweden

• Program Board: Dr. Michael Tiller, Emmeskay Inc., Michigan, USA

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany

• Dr. Ingrid Bausch-Gall, Bausch-Gall GmbH, Munich, Germany

• Daniel Bouskela, Electricite de France, Chatou Cedex, France

• Prof. Felix Breitenecker, Technical University Vienna, Austria

• Dr. Francesco Casella, Politecnico di Milano, Cremona, Italy

• Thomas Christ / Marco Bross, BMW, Munich, Germany

• Dr. Ruediger Franke, ABB, Heidelberg, Germany

• Dirk Limperich, DaimlerChrysler AG, Sindelfingen, Germany

• Prof. Karin Lunde, University of Applied Sciences Ulm, Germany

• Ludwig Marvan, DRIVEScom, Vienna, Austria

• Dr. Jakob Mauss, DaimlerChrysler AG, Berlin, Germany

• Gert Pascoli, arsenal research, Vienna, Austria

• Franz Pirker, arsenal research, Vienna, Austria

• Markus Plainer, arsenal research, Vienna, Austria

• Prof. Gerhard Schmitz, Technical University Hamburg-Harburg, Germany

• Dr. Hubertus Tummescheit, Modelon AB, Lund, Sweden

Local Organizing Committee

• Anton Haumer

• Dr. Christian Kral

• Franz Pirker

• Veronika Roscher

• Silke Schrödl

• WEBSTRACTS on-line Conference Management

• procon Conference, Incentive & Event Management GmbH

 Table of Contents

The Modelica Association Modelica 2006, September 4th – 5th v

Table of Contents

Volume 1

Session 1a: Thermodynamic Systems for Power Plant Applications 1 ...1

Fast Start-up of a Combined-Cycle Power Plant: A Simulation Study with Modelica3
F. Casella[1], F. Pretolani[2]
[1]Politecnico di Milano, Italy, [2]CESI S.p.A., Italy

Modelling of a Water/Steam Cycle of the Combined Cycle Power Plant “Rio Bravo 2”
with Modelica ...11
B. El Hefni, D. Bouskela
EDF R&D, France

Modeling and Dynamic Analysis of CO2-Emission Free Power Processes in Modelica
using the CombiPlant Library ...17
J. Eborn[1], F. Selimovic[2], B. Sundén[2]
[1]Modelon AB, Sweden, [2]Lund Institute of Technology, Sweden

Session 1b: Automotive Applications 1...23

Simulation of Hybrid Electric Vehicles..25
D. Simic, H. Giuliani, C. Kral, J.V. Gragger
arsenal research, Austria

Coordinated Automotive Libraries for Vehicle System Modelling..33
M. Dempsey[1], M. Gäfvert[2], P. Harman[3], C. Kral[4], M. Otter[5], P. Treffinger[6]
[1]Claytex Services Ltd., UK, [2]Modelon AB, Sweden, [3]Ricardo UK Ltd., UK,
[4]arsenal research, Austria, [5]DLR Oberpfaffenhofen, Germany, [6]DLR Stuttgart, Germany

The VehicleDynamics Library - Overview and Applications ..43
J. Andreasson, M. Gäfvert
Modelon AB, Sweden

Session 1c: Language, Tools and Algorithms 1...53

Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries.......................................55
M. Loeffler[1], M. Huhn[1], C.C. Richter[1], R. Kossel[2]
[1]TU Braunschweig, Germany, [2]TLK-Thermo GmbH, Germany

Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63
C. Nytsch-Geusen[1], T. Ernst[1], A. Nordwig[1], P. Schwarz[2], P. Schneider[2], M. Vetter[3],
C. Wittwer[3], A. Holm[4], T. Nouidui[4], J. Leopold[5], G. Schmidt[5], A. Mattes[6]
[1]Fraunhofer FIRST, Germany, [2]Fraunhofer IIS/EAS, Germany, [3]Fraunhofer ISE, Germany,
[4]Fraunhofer IBP, Germany, [5]Fraunhofer IWU, Germany, [6]Fraunhofer IPK, Germany

Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism........................73
T. Beltrame[1], F.E. Cellier[2]
[1]VTT, Finland, [2]ETH Zurich, Switzerland

Table of Contents

The Modelica Association Modelica 2006, September 4th – 5th vi

Session 1d: Mechanical Systems and Applications 1 ..83

The DLR FlexibleBodies Library to Model Large Motions of Beams and of
Flexible Bodies Exported from Finite Element Programs ..85
A. Heckmann[1], M. Otter[1], S. Dietz[2], J.D. Lopez[3]
[1]German Aerospace Center (DLR), Germany, [2]INTEC GmbH, Germany,
[3]Dynasim AB, Sweden

3D Flexible Multibody Thin Beams Simulation in Modelica with the Finite Element Method.............97
X. Murua, F. Martinez, A. Pujana, J. Basurko, J.M. Pagalday
IKERLAN Research Centre, Spain

A Modelica Library for Space Flight Dynamics ..107
T. Pulecchi, F. Casella, M. Lovera
Politecnico di Milano, Italy

Session 2a: Thermodynamic Systems for Power Plant Applications 2 ...117

Simulation of Components of a Thermal Power Plant ...119
R. Schimon, D. Simic, A. Haumer, C. Kral, M. Plainer
arsenal research, Austria

Pressurized Water Reactor Modelling with Modelica ..127
A. Souyri[1], D. Bouskela[1], B. Pentori[2], N. Kerkar[2]
[1]Electricité de France EDF/R&D, France, [2]Electricité de France EDF/SEPTEN, France

Simulation of the Start-Up Procedure of a Parabolic Trough Collector Field
with Direct Solar Steam Generation ...135
T. Hirsch, M. Eck
German Aerospace Center, Institute of Technical Thermodynamics, Germany

Session 2b: Automotive Applications 2...145

Modeling the Dynamics of Vehicle Fuel Systems..147
J.J. Batteh, P.J. Kenny
Ford Motor Company, USA

Motorcycle Dynamics Library in Modelica..157
F. Donida , G. Ferretti, S.M. Savaresi, F. Schiavo, M. Tanelli
Politecnico di Milano, Italy

Development and Verification of a Series Car Modelica/Dymola Multi-body Model
to Investigate Vehicle Dynamics Systems ..167
C. Knobel[1], G. Janin[2], A. Woodruff[3]
[1]BMW Group Research and Technology, Germany,
[2]École Nationale Supérieure de Techniques Avancées, France, [3]Modelon AB, Sweden

Session 2c: Language, Tools and Algorithms 2...175

Modeling and Simulation of Differential Equations in Scicos ...177
M. Najafi, R. Nikoukhah
INRIA-Rocquencourt, France

How to Dissolve Complex Dynamic Systems for Wanted Unknowns with Dymola / Modelica.........187
J. Koehler
ZF Friedrichshafen AG, Germany

 Table of Contents

The Modelica Association Modelica 2006, September 4th – 5th vii

Using Modelica Models for Complex Virtual Experimentation with the Tornado Kernel193
F.H.A. Claeys[1], P. Fritzson[2], P.A. Vanrolleghem[3]
[1]BIOMATH, Ghent University, Belgium, [2]PELAB, Linköping University, Sweden,
[3]modelEAU, Université Laval, Canada

Session 2d: Mechanical Systems and Applications 2 ..203

Leaf Spring Modeling...205
N. Philipson
Modelon AB, Sweden

Multibody Systems Dynamics: Modelica Implementation and Bond Graph Representation213
I.I. Kosenko[1], M.S. Loginova[2], YA.P. Obraztsov[2], M.S. Stavrovskaya[1]
[1]Moscow State University of Service, Russian Federation,
[2]Moscow State Academy of Instrument Making and Computer Science, Russian Federation

NowaitTransit Concept Assessment. Modeling of Trains on Complex Track Geometry225
J. Tuszynski[1], N. Philipson[2], J. Andreasson[2], M. Gäfvert[2]
[1]Nowaittransit AB, Sweden, [2]Modelon AB, Sweden

Session 3a: Thermodynamic Systems for Energy Storage and Conversion ..233

Analysis of Steam Storage Systems using Modelica..235
J. Buschle, W.D. Steinmann, R. Tamme
German Aerospace Center (DLR), Germany

An Enhanced Discretisation Method for Storage Tank Models within Energy Systems243
S. Wischhusen
XRG Simulation GmbH, Germany

HydroPlant – a Modelica Library for Dynamic Simulation of Hydro Power Plants251
K. Tuszynski[1], J. Tuszynski[2], K. Slättorp[3]
[1]Modelon AB, Sweden, [2]Datavoice HB, Sweden, [3]Tactel AB, Sweden

Session 3b: Hardware in the Loop...259

Interacting Modelica using a Named Pipe for Hardware-in-the-loop Simulation261
A. Ebner, A. Haumer, D. Simic, F. Pirker
arsenal research, Austria

Parameterisation of Modelica Models on PC and Real Time Platforms ..267
M. Kellner[1], M. Neumann[1], A. Banerjee[1], P. Doshi[2]
[1]ZF Friedrichshafen AG, Germany, [2]Universität Duisburg-Essen, Germany

Synchronising a Modelica Real-Time Simulation Model with a Highly Dynamic
Engine Test-Bench System ...275
D. Winkler, C. Gühmann
Technische Universität Berlin, Germany

Session 3c: Language, Tools and Algorithms 3...283

A Numeric Library for Use in Modelica Simulations with Lapack, SuperLU, Interpolation,
and MatrixIO...285
A. Sandholm[1,2], P. Bunus[1], P. Fritzson[1]
[1]Linköping University, Sweden, [2]Kalmar University, Sweden

Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA...293
R. Franke[1], J. Doppelhamer[2]
[1]ABB AG, Power Technology Systems, Germany, [2]ABB Corporate Research, Germany

Table of Contents

The Modelica Association Modelica 2006, September 4th – 5th viii

Types in the Modelica Language..303
D. Broman[1], P. Fritzson[1], S. Furic[2]
[1]Linköping University, Sweden, [2]Imagine, France

Session 3d: Electric Systems and Applications 1 ..317

Modeling and Simulation of Generator Circuit Breaker Performance ...319
O. Fritz[1], M. Lakner[2]
[1]ABB Switzerland Ltd., Corporate Research, Switzerland,
[2]ABB Switzerland Ltd., High-Current Systems, Switzerland

Parallel Simulation with Transmission Lines in Modelica ...325
K. Nyström, P. Fritzson
Linköping University, Sweden

Volume 2

Session 4: Poster Session ...333

GAPILib - A Modelica Library for Model Parameter Identification Using Genetic Algorithms335
M.A. Rubio[1], A. Urquia[2], L. González[1], D. Guinéa[1], S. Dormido[2]
[1]Instituto de Automática Industrial (IAI), CSIC, Spain,
[2]ETS de Ingeniería Informática, UNED, Spain

Ascola: A Tool for Importing Dymola Code into Ascet...343
C. Schlegel[1], R. Finsterwalder[2]
[1]Schlegel Simulation GmbH, Germany,
[2]University of the FederalArmed Forces Munich, Germany

An Analyzer for Declarative Equation Based Models..349
J.-W. Ding[1], L.-P. Chen[1], F.-L. Zhou[1], Y.-Z. Wu[1], G.B. Wang[2]
[1]Huazhong University of Science and Technology, China,
[2]National Natural Science Foundation of China, China

Engineering Design Tool Standards and Interfacing Possibilities to Modelica Simulation Tools359
O. Johansson, A. Pop, P. Fritzson
Linköping University, Sweden

On the Noise Modelling and Simulation ..369
D. Aiordachioaie, V. Nicolau, M. Munteanu, G. Sirbu
Dunarea de Jos Galati University, Romaina

Acausal Modelling of Helicopter Dynamics for Automatic Flight Control Applications377
L. Viganò, G. Magnani
Politecnico di Milano, Italy

Dynamic Modeling and Control of a 6 DOF Parallel Kinematics..385
M. Krabbes, Ch. Meissner
Leipzig University of Applied Sciences, Germany

Modelling of Alternative Propulsion Concepts of Railway Vehicles...391
H. Dittus, J. Ungethüm
German Aerospace Center, Institute of Vehicle Concepts, Germany

Modelling Automotive Hydraulic Systems using the Modelica ActuationHydraulics Library............399
P.A. Harman
Ricardo UK Ltd., UK

 Table of Contents

The Modelica Association Modelica 2006, September 4th – 5th ix

Vehicle Model for Transient Simulation of a Waste-Heat-Utilisation-Unit
Containing Extended PowerTrain and Fluid Library Components...405
M. Eschenbach, J. Ungethüm, P. Treffinger
German Aerospace Center, Germany

Modeling, Calibration and Control of a Paper Machine Dryer Section..411
J. Åkesson[1], O. Slättke[2]
[1]Lund University, Sweden, [2]ABB Ltd., Ireland

System and Component Design of Directly Driven Reciprocating Compressors with Modelica421
T. Bödrich
Dresden University of Technology, Germany

Multizone Airflow Model in Modelica...431
M. Wetter
United Technologies Research Center, USA

Modelling of a Solar Thermal Reactor for Hydrogen Generation ..441
J. Dersch, A. Mathijssen, M. Roeb, C. Sattler
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Germany

Object Oriented Modelling of DISS Solar Thermal Power Plant...449
L.J. Yebra[1], M. Berenguel[2], E. Zarza[1], S. Dormido[3]
[1]C.I.E.M.A.T., Spain, [2]Universidad de Almería, Spain, [3]U.N.E.D., Spain

Session 5a: Language, Tools and Algorithms 4...457

OpenModelica Development Environment with Eclipse Integration for Browsing, Modeling,
and Debugging..459
A. Pop, P. Fritzson, A. Remar, E. Jagudin, D. Akhvlediani
Linköping University, Sweden

A Modelica Based Format for Flexible Modelica Code Generation and
Causal Model Transformations...467
J. Larsson, P. Fritzson
Linköping University, Sweden

Dymola interface to Java - A Case Study: Distributed Simulations ...477
J.D. Lopez, H. Olsson
Dynasim AB, Sweden

Simulation of Complex Systems using Modelica and Tool Coupling..485
R. Kossel, W. Tegethoff, M. Bodmann, N. Lemke
TLK-Thermo GmbH, Germany

Session 5b: Thermodynamic Systems for Cooling Applications...491

Optimization of a Cooling Circuit with a Parameterized Water Pump Model493
D. Simic, C. Kral, H. Lacher
arsenal research, Austria

Using Modelica as a Design Tool for an Ejector Test Bench...501
C.C. Richter, C. Tischendorf, R. Fiorenzano, P. Cavalcante, W. Tegethoff, J. Köhler
TU Braunschweig, Germany

Modeling of Frost Growth on Heat Exchanger Surfaces..509
K. Proelss, G. Schmitz
Hamburg University of Technology, Germany

Table of Contents

The Modelica Association Modelica 2006, September 4th – 5th x

Multizone Building Model for Thermal Building Simulation in Modelica..517
M. Wetter
United Technologies Research Center, USA

Session 5c: Free and Commercial Libraries 1..527

The LinearSystems Library for Continuous and Discrete Control Systems...529
M. Otter
German Aerospace Center (DLR), Germany

ARENALib: A Modelica Library for Discrete-Event System Simulation ...539
V.S. Prat, A. Urquia, S. Dormido
ETS de Ingeniería Informática, UNED, Spain

Neural Network Library in Modelica ...549
F. Codecà, F. Casella
Politecnico di Milano, Italy

The Modelica Multi-bond Graph Library...559
D. Zimmer, F.E. Cellier
ETH Zürich, Switzerland

Session 5d: Electric Systems and Applications 2 ..569

The SmartElectricDrives Library - Powerful Models for Fast Simulations of Electric Drives571
J.V. Gragger, H. Giuliani, C. Kral, T. Bäuml, H. Kapeller, F. Pirker
arsenal research, Austria

Quasi-stationary AC Analysis Using Phasor Description With Modelica ...579
O. Enge[1], C. Clauß[1], P. Schneider[1], P. Schwarz[1], M. Vetter[2], S. Schwunk[2]
[1]Fraunhofer Institute Integrated Circuits, Germany,
[2]Fraunhofer Institute Solar Energy Systems, Germany

Identification and Controls of Electrically Excited Synchronous Machines ..589
H. Kapeller, A. Haumer, C. Kral, F. Pirker, G. Pascoli
arsenal research, Austria

Session 6a Language, Tools and Algorithms 5..597

Dynamic Optimization of Energy Supply Systems with Modelica Models ...599
C. Hoffmann, H. Puta
Technische Universitaet Ilmenau, Germany

Robust Initialization of Differential Algebraic Equations ..607
B. Bachmann[1], P. Aronsson[2], P. Fritzson[2]
[1]University of Applied Sciences, Germany, [2]Linköping University, Sweden

Calibration of Static Models using Dymola ...615
H. Olsson[1], J. Eborn[2], S.E. Mattsson[1], H. Elmqvist[1]
[1]Dynasim AB, Sweden, [2]Modelon AB, Sweden

Automatic Fixed-point Code Generation for Modelica using Dymola ..621
U. Nordström[1,2], J. D. Lopez [1], H. Elmqvist[1]
[1]Dynasim AB, Sweden, [2]Lund Institute of Technology, Sweden

 Table of Contents

The Modelica Association Modelica 2006, September 4th – 5th xi

Session 6b: Thermodynamic Systems and Applications ...629

The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible
Thermo-Fluid Pipe Networks ...631
F. Casella[1], M. Otter[2], K. Proelss[3], C. Richter[4], H. Tummescheit[5]
[1]Politecnico di Milano, Italy, [2]German Aerospace Center (DLR), Germany,
[3]Technical University Hamburg-Harburg, Germany,
[4]Technical University Braunschweig, Germany, [5]Modelon AB, Sweden

Shock Wave Modeling for Modelica.Fluid Library using Oscillation-free
Logarithmic Reconstruction..641
J. D. Lopez
Dynasim AB, Sweden

Modelling of an Experimental Batch Plant with Modelica ..651
K. Poschlad[1], M.A.P. Remelhe[1], M. Otter[2]
[1]University of Dortmund, Germany, [2]German Aerospace Center (DLR), Germany

Integral Analysis for Thermo-Fluid Applications with Modelica ..661
J.J. Batteh
Ford Motor Company, Research and Advanced Engineering, USA

Session 6c: Free and Commercial Libraries 2..669

Integration of CATIA with Modelica ...671
P. Bhattacharya[1], N. Suyam Welakwe[2], R. Makanaboyina[1], A. Chimalakonda[1]
[1]DaimlerChrysler Research and Technology, India,
[2]DaimlerChrysler Research and Technology, Germany

A Modelica Library for Simulation of Household Refrigeration Appliances -
Features and Experiences..677
C. Heinrich, K. Berthold
Institute for Air Conditioning and Refrigeration, Germany

A New Energy Building Simulation Library..685
J.I. Videla, B. Lie
Telemark University College, Norway

UnitTesting: A Library for Modelica Unit Testing ..695
M.M. Tiller, B. Kittirungsi
Emmeskay, Inc., USA

Session 6d: Multidomain Systems ...705

If We Only had Used XML ..707
U. Reisenbichler, H. Kapeller, A. Haumer, C. Kral, F. Pirker, G. Pascoli
arsenal research, Austria

Coupled Simulation of Building Structure and Building Services Installations with Modelica...........717
P. Matthes, T. Haase, A. Hoh, T. Tschirner, D. Müller
TU Berlin, Germany

MWorks: a Modern IDE for Modeling and Simulation of Multi-domain Physical Systems
Based on Modelica..725
F.-L. Zhou, L.-P. Chen, Y.-Z. Wu, J.-W. Ding, J.-J. Zhao, Y.-Q. Zhang
Huazhong University of Science and Technology, China

Table of Contents

The Modelica Association Modelica 2006, September 4th – 5th xii

Domain Library Preprocessing in MWorks - A Platform for Modeling and Simulation of
Multi-domain Physical Systems Based on Modelica..733
Y.-Z. Wu, F.-L. Zhou, L.-P. Chen, J.-W. Ding, J.-J. Zhao
Huazhong University of Science and Technology, China

 Index of Authors

The Modelica Association Modelica 2006, September 4th – 5th xiii

Index of Authors

Aiordachioaie, D.
On the Noise Modelling and Simulation ..369

Åkesson, J.
Modeling, Calibration and Control of a Paper Machine Dryer Section..411

Akhvlediani, D.
OpenModelica Development Environment with Eclipse Integration for Browsing, Modeling,
and Debugging..459

Andreasson, J.
NowaitTransit Concept Assessment. Modeling of Trains on Complex Track Geometry225
The VehicleDynamics Library - Overview and Applications ..43

Aronsson, P.
Robust Initialization of Differential Algebraic Equations ..607

Bachmann, B.
Robust Initialization of Differential Algebraic Equations ..607

Banerjee, A.
Parameterisation of Modelica Models on PC and Real Time Platforms ..267

Basurko, J.
3D Flexible Multibody Thin Beams Simulation in Modelica with the Finite Element Method.............97

Batteh, J.J.
Integral Analysis for Thermo-Fluid Applications with Modelica ..661
Modeling the Dynamics of Vehicle Fuel Systems..147

Bäuml, T.
The SmartElectricDrives Library - Powerful Models for Fast Simulations of Electric Drives571

Beltrame, T.
Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism........................73

Berenguel, M
Object Oriented Modelling of DISS Solar Thermal Power Plant...449

Berthold, K
A Modelica Library for Simulation of Household Refrigeration Appliances -
Features and Experiences ...677

Bhattacharya, P.
Integration of CATIA with Modelica ...671

Bodmann, M
Simulation of Complex Systems using Modelica and Tool Coupling..485

Bödrich, T.
System and Component Design of Directly Driven Reciprocating Compressors with Modelica421

Bouskela, D.
Modelling of a Water/Steam Cycle of the Combined Cycle Power Plant “Rio Bravo 2”
with Modelica ...11
Pressurized Water Reactor Modelling with Modelica ..127

Broman, D.
Types in the Modelica Language..303

Index of Authors

The Modelica Association Modelica 2006, September 4th – 5th xiv

Bunus, P.
A Numeric Library for Use in Modelica Simulations with Lapack, SuperLU, Interpolation,
and MatrixIO ..285

Buschle, J.
Analysis of Steam Storage Systems using Modelica..235

Casella, F.
A Modelica Library for Space Flight Dynamics...107
Fast Start-up of a Combined-Cycle Power Plant: A Simulation Study with Modelica3
Neural Network Library in Modelica ...549
The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible
Thermo-Fluid Pipe Networks ...631

Cavalcante, P.
Using Modelica as a Design Tool for an Ejector Test Bench...501

Cellier, F.E.
Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism........................73
The Modelica Multi-bond Graph Library...559

Chen, L.-P.
An Analyzer for Declarative Equation Based Models..349
Domain Library Preprocessing in MWorks - A Platform for Modeling and Simulation of
Multi-domain Physical Systems Based on Modelica..733
MWorks: a Modern IDE for Modeling and Simulation of Multi-domain Physical Systems
Based on Modelica ...725

Chimalakonda, A.
Integration of CATIA with Modelica ...671

Claeys, F.H.A.
Using Modelica Models for Complex Virtual Experimentation with the Tornado Kernel193

Clauß, C.
Quasi-stationary AC Analysis Using Phasor Description With Modelica ...579

Codecà, F.
Neural Network Library in Modelica ...549

Dempsey, M.
Coordinated Automotive Libraries for Vehicle System Modelling..33

Dersch, J.
Modelling of a Solar Thermal Reactor for Hydrogen Generation ..441

Dietz, S.
The DLR FlexibleBodies Library to Model Large Motions of Beams
and of Flexible Bodies Exported from Finite Element Programs...85

Ding, J.-W.
An Analyzer for Declarative Equation Based Models..349
Domain Library Preprocessing in MWorks - A Platform for Modeling and Simulation of
Multi-domain Physical Systems Based on Modelica..733
MWorks: a Modern IDE for Modeling and Simulation of Multi-domain Physical Systems
Based on Modelica ...725

Dittus, H.
Modelling of Alternative Propulsion Concepts of Railway Vehicles...391

Donida , F
Motorcycle Dynamics Library in Modelica..157

 Index of Authors

The Modelica Association Modelica 2006, September 4th – 5th xv

Doppelhamer, J.
Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA...293

Dormido, S.
ARENALib: A Modelica Library for Discrete-Event System Simulation ...539
GAPILib - A Modelica Library for Model Parameter Identification
Using Genetic Algorithms ..335
Object Oriented Modelling of DISS Solar Thermal Power Plant...449

Doshi, P.
Parameterisation of Modelica Models on PC and Real Time Platforms ..267

Ebner, A.
Interacting Modelica using a Named Pipe for Hardware-in-the-loop Simulation261

Eborn, J.
Calibration of Static Models using Dymola ...615
Modeling and Dynamic Analysis of CO2-Emission Free Power Processes in Modelica
using the CombiPlant Library...17

Eck, M.
Simulation of the Start-Up Procedure of a Parabolic Trough Collector Field with Direct Solar
Steam Generation..135

El Hefni, B.
Modelling of a Water/Steam Cycle of the Combined Cycle Power Plant
“Rio Bravo 2” with Modelica ...11

Elmqvist, H.
Automatic Fixed-point Code Generation for Modelica using Dymola...621
Calibration of Static Models using Dymola ...615

Enge, O.
Quasi-stationary AC Analysis Using Phasor Description With Modelica ...579

Ernst, T.
Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63

Eschenbach, M.
Vehicle Model for Transient Simulation of a Waste-Heat-Utilisation-Unit Containing Extended
PowerTrain and Fluid Library Components ...405

Ferretti, G.
Motorcycle Dynamics Library in Modelica..157

Finsterwalder, R.
Ascola: A Tool for Importing Dymola Code into Ascet...343

Fiorenzano, R.
Using Modelica as a Design Tool for an Ejector Test Bench...501

Franke, R.
Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA...293

Fritz, O.
Modeling and Simulation of Generator Circuit Breaker Performance ...319

Index of Authors

The Modelica Association Modelica 2006, September 4th – 5th xvi

Fritzson, P.
A Modelica Based Format for Flexible Modelica Code Generation and Causal Model
Transformations..467
A Numeric Library for Use in Modelica Simulations with Lapack, SuperLU, Interpolation,
and MatrixIO ..285
Engineering Design Tool Standards and Interfacing Possibilities to Modelica Simulation Tools359
OpenModelica Development Environment with Eclipse Integration for Browsing, Modeling,
and Debugging..459
Parallel Simulation with Transmission Lines in Modelica ...325
Robust Initialization of Differential Algebraic Equations ..607
Types in the Modelica Language..303
Using Modelica Models for Complex Virtual Experimentation with the Tornado Kernel193

Furic, S.
Types in the Modelica Language..303

Gäfvert, M.
Coordinated Automotive Libraries for Vehicle System Modelling..33
NowaitTransit Concept Assessment. Modeling of Trains on Complex Track Geometry225
The VehicleDynamics Library - Overview and Applications ..43

Giuliani, H.
Simulation of Hybrid Electric Vehicles..25
The SmartElectricDrives Library - Powerful Models for Fast Simulations of Electric Drives571

González, L.
GAPILib - A Modelica Library for Model Parameter Identification Using Genetic Algorithms335

Gragger, J.V.
Simulation of Hybrid Electric Vehicles..25
The SmartElectricDrives Library - Powerful Models for Fast Simulations of Electric Drives571

Gühmann, C.
Synchronising a Modelica Real-Time Simulation Model with a Highly Dynamic
Engine Test-Bench System...275

Guinéa, D.
GAPILib - A Modelica Library for Model Parameter Identification Using Genetic Algorithms335

Haase, T.
Coupled Simulation of Building Structure and Building Services Installations with Modelica...........717

Harman, P.
Coordinated Automotive Libraries for Vehicle System Modelling..33
Modelling Automotive Hydraulic Systems using the Modelica ActuationHydraulics Library............399

Haumer, A.
Identification and Controls of Electrically Excited Synchronous Machines ..589
If We Only had Used XML... ...707
Interacting Modelica using a Named Pipe for Hardware-in-the-loop Simulation261
Simulation of Components of a Thermal Power Plant ...119

Heckmann, A.
The DLR FlexibleBodies Library to Model Large Motions of Beams and of Flexible Bodies
Exported from Finite Element Programs ..85

Heinrich, C.
A Modelica Library for Simulation of Household Refrigeration Appliances -
Features and Experiences ...677

 Index of Authors

The Modelica Association Modelica 2006, September 4th – 5th xvii

Hirsch, T.
Simulation of the Start-Up Procedure of a Parabolic Trough Collector Field with Direct Solar
Steam Generation..135

Hoffmann, C.
Dynamic Optimization of Energy Supply Systems with Modelica Models ...599

Hoh, A.
Coupled Simulation of Building Structure and Building Services Installations with Modelica...........717

Holm, A.
Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63

Huhn, M.
Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries.......................................55

Jagudin, E.
OpenModelica Development Environment with Eclipse Integration for Browsing, Modeling,
and Debugging..459

Janin, G.
Development and Verification of a Series Car Modelica/Dymola Multi-body Model to Investigate
Vehicle Dynamics Systems ..167

Johansson, O.
Engineering Design Tool Standards and Interfacing Possibilities to Modelica Simulation Tools359

Kapeller, H.
Identification and Controls of Electrically Excited Synchronous Machines ..589
If We Only had Used XML... ...707
The SmartElectricDrives Library - Powerful Models for Fast Simulations of Electric Drives571

Kellner , M.
Parameterisation of Modelica Models on PC and Real Time Platforms ..267

Kenny, P.J.
Modeling the Dynamics of Vehicle Fuel Systems..147

Kerkar, N.
Pressurized Water Reactor Modelling with Modelica ..127

Kittirungsi, B.
UnitTesting: A Library for Modelica Unit Testing ..695

Knobel, C.
Development and Verification of a Series Car Modelica/Dymola Multi-body Model to Investigate
Vehicle Dynamics Systems ..167

Koehler, J.
How to Dissolve Complex Dynamic Systems for Wanted Unknowns with Dymola / Modelica.........187

Köhler, J.
Using Modelica as a Design Tool for an Ejector Test Bench...501

Kosenko, I.I.
Multibody Systems Dynamics: Modelica Implementation and Bond Graph Representation213

Kossel, R.
Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries.......................................55
Simulation of Complex Systems using Modelica and Tool Coupling..485

Krabbes, M.
Dynamic Modeling and Control of a 6 DOF Parallel Kinematics..385

Index of Authors

The Modelica Association Modelica 2006, September 4th – 5th xviii

Kral, C.
Coordinated Automotive Libraries for Vehicle System Modelling..33
Identification and Controls of Electrically Excited Synchronous Machines ..589
If We Only had Used XML... ...707
Optimization of a Cooling Circuit with a Parameterized Water Pump Model493
Simulation of Components of a Thermal Power Plant ...119
Simulation of Hybrid Electric Vehicles..25
The SmartElectricDrives Library - Powerful Models for Fast Simulations of Electric Drives571

Lacher, H.
Optimization of a Cooling Circuit with a Parameterized Water Pump Model493

Lakner, M.
Modeling and Simulation of Generator Circuit Breaker Performance ...319

Larsson, J.
A Modelica Based Format for Flexible Modelica Code Generation and Causal
Model Transformations ..467

Lemke, N.
Simulation of Complex Systems using Modelica and Tool Coupling..485

Leopold, J.
Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63

Lie, B.
A New Energy Building Simulation Library ..685

Loeffler, M.
Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries.......................................55

Loginova, M.S.
Multibody Systems Dynamics: Modelica Implementation and Bond Graph Representation213

Lopez, J.D.
Automatic Fixed-point Code Generation for Modelica using Dymola...621
 Dymola interface to Java - A Case Study: Distributed Simulations ..477
Shock Wave Modeling for Modelica.Fluid Library using Oscillation-free
Logarithmic Reconstruction ...641
The DLR FlexibleBodies Library to Model Large Motions of Beams and of Flexible Bodies
Exported from Finite Element Programs ..85

Lovera, M.
A Modelica Library for Space Flight Dynamics...107

Magnani, G.
Acausal Modelling of Helicopter Dynamics for Automatic Flight Control Applications377

Makanaboyina, R.
Integration of CATIA with Modelica ...671

Martinez, F.
3D Flexible Multibody Thin Beams Simulation in Modelica with
the Finite Element Method ...97

Mathijssen, A.
Modelling of a Solar Thermal Reactor for Hydrogen Generation ..441

Mattes, A.
Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63

 Index of Authors

The Modelica Association Modelica 2006, September 4th – 5th xix

Matthes, P.
Coupled Simulation of Building Structure and Building Services Installations with Modelica...........717

Mattsson, S.E.
Calibration of Static Models using Dymola ...615

Meissner, Ch.
Dynamic Modeling and Control of a 6 DOF Parallel Kinematics..385

Müller, D.
Coupled Simulation of Building Structure and Building Services Installations with Modelica...........717

Munteanu, M.
On the Noise Modelling and Simulation ..369

Murua, X.
3D Flexible Multibody Thin Beams Simulation in Modelica with the Finite Element Method.............97

Najafi, M.
Modeling and Simulation of Differential Equations in Scicos ...177

Neumann, M.
Parameterisation of Modelica Models on PC and Real Time Platforms ..267

Nicolau, V.
On the Noise Modelling and Simulation ..369

Nikoukhah, R.
Modeling and Simulation of Differential Equations in Scicos ...177

Nordström, U.
Automatic Fixed-point Code Generation for Modelica using Dymola...621

Nordwig, A.
Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63

Nouidui, T.
Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63

Nyström, K.
Parallel Simulation with Transmission Lines in Modelica ...325

Nytsch-Geusen, C.
Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63

Obraztsov, YA.P.
Multibody Systems Dynamics: Modelica Implementation and Bond Graph Representation213

Olsson, H.
Calibration of Static Models using Dymola ...615
Dymola interface to Java - A Case Study: Distributed Simulations ...477

Otter, M.
Coordinated Automotive Libraries for Vehicle System Modelling..33
Modelling of an Experimental Batch Plant with Modelica ..651
The DLR FlexibleBodies Library to Model Large Motions of Beams and of Flexible Bodies
Exported from Finite Element Programs ..85
The LinearSystems Library for Continuous and Discrete Control Systems...529
The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible
Thermo-Fluid Pipe Networks ...631

Index of Authors

The Modelica Association Modelica 2006, September 4th – 5th xx

Pagalday, J.M.
3D Flexible Multibody Thin Beams Simulation in Modelica with the Finite Element Method.............97

Pascoli, G.
Identification and Controls of Electrically Excited Synchronous Machines ..589
If We Only had Used XML... ...707

Pentori, B.
Pressurized Water Reactor Modelling with Modelica ..127

Philipson, N.
Leaf Spring Modeling...205
NowaitTransit Concept Assessment. Modeling of Trains on Complex Track Geometry225

Pirker, F.
Identification and Controls of Electrically Excited Synchronous Machines ..589
If We Only had Used XML... ...707
Interacting Modelica using a Named Pipe for Hardware-in-the-loop Simulation261
The SmartElectricDrives Library - Powerful Models for Fast Simulations of Electric Drives571

Plainer, M.
Simulation of Components of a Thermal Power Plant ...119

Pop, A.
Engineering Design Tool Standards and Interfacing Possibilities to Modelica Simulation Tools359
OpenModelica Development Environment with Eclipse Integration for Browsing, Modeling,
and Debugging..459

Poschlad, K.
Modelling of an Experimental Batch Plant with Modelica ..651

Prat, V.S.
ARENALib: A Modelica Library for Discrete-Event System Simulation ...539

Pretolani, F.
Fast Start-up of a Combined-Cycle Power Plant: A Simulation Study with Modelica3

Proelss, K.
Modeling of Frost Growth on Heat Exchanger Surfaces..509
The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible
Thermo-Fluid Pipe Networks ...631

Pujana, A.
3D Flexible Multibody Thin Beams Simulation in Modelica with the Finite Element Method.............97

Pulecchi, T.
A Modelica Library for Space Flight Dynamics...107

Puta, H.
Dynamic Optimization of Energy Supply Systems with Modelica Models ...599

Reisenbichler, U.
If We Only had Used XML... ...707

Remar, A.
OpenModelica Development Environment with Eclipse Integration for Browsing, Modeling,
and Debugging..459

Remelhe, M.A.P.
Modelling of an Experimental Batch Plant with Modelica ..651

 Index of Authors

The Modelica Association Modelica 2006, September 4th – 5th xxi

Richter, C.C.
Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries.......................................55
The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible
Thermo-Fluid Pipe Networks ...631
Using Modelica as a Design Tool for an Ejector Test Bench...501

Roeb, M.
Modelling of a Solar Thermal Reactor for Hydrogen Generation ..441

Rubio, M.A.
GAPILib - A Modelica Library for Model Parameter Identification Using Genetic Algorithms335

Sandholm, A.
A Numeric Library for Use in Modelica Simulations with Lapack, SuperLU, Interpolation,
and MatrixIO ..285

Sattler, C.
Modelling of a Solar Thermal Reactor for Hydrogen Generation ..441

Savaresi, S.M.
Motorcycle Dynamics Library in Modelica..157

Schiavo, F.
Motorcycle Dynamics Library in Modelica..157

Schimon, R.
Simulation of Components of a Thermal Power Plant ...119

Schlegel, C.
Ascola: A Tool for Importing Dymola Code into Ascet...343

Schmidt, G.
Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63

Schmitz, G.
Modeling of Frost Growth on Heat Exchanger Surfaces..509

Schneider, P.
Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63
Quasi-stationary AC Analysis Using Phasor Description With Modelica ...579

Schwarz, P.
Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63
Quasi-stationary AC Analysis Using Phasor Description With Modelica ...579

Schwunk, S.
Quasi-stationary AC Analysis Using Phasor Description With Modelica ...579

Selimovic, F.
Modeling and Dynamic Analysis of CO2-Emission Free Power Processes in Modelica
using the CombiPlant Library...17

Simic, D.
Interacting Modelica using a Named Pipe for Hardware-in-the-loop Simulation261
Optimization of a Cooling Circuit with a Parameterized Water Pump Model493
Simulation of Hybrid Electric Vehicles..25
Simulation of Components of a Thermal Power Plant ...119

Sirbu, G.
On the Noise Modelling and Simulation ..369

Index of Authors

The Modelica Association Modelica 2006, September 4th – 5th xxii

Slättke, O.
Modeling, Calibration and Control of a Paper Machine Dryer Section..411

Slättorp, K.
HydroPlant – a Modelica Library for Dynamic Simulation of Hydro Power Plants251

Souyri, A.
Pressurized Water Reactor Modelling with Modelica ..127

Stavrovskaya, M.S.
Multibody Systems Dynamics: Modelica Implementation and Bond Graph Representation213

Steinmann, W.D.
Analysis of Steam Storage Systems using Modelica..235

Sundén, B.
Modeling and Dynamic Analysis of CO2-Emission Free Power Processes in Modelica
using the CombiPlant Library...17

Suyam Welakwe, N.
Integration of CATIA with Modelica ...671

Tamme, R.
Analysis of Steam Storage Systems using Modelica..235

Tanelli, M.
Motorcycle Dynamics Library in Modelica..157

Tegethoff, W.
Simulation of Complex Systems using Modelica and Tool Coupling..485
Using Modelica as a Design Tool for an Ejector Test Bench...501

Tiller, M.M.
UnitTesting: A Library for Modelica Unit Testing ..695

Tischendorf, C.
Using Modelica as a Design Tool for an Ejector Test Bench...501

Treffinger, P.
Coordinated Automotive Libraries for Vehicle System Modelling..33
Vehicle Model for Transient Simulation of a Waste-Heat-Utilisation-Unit Containing Extended
PowerTrain and Fluid Library Components ...405

Tschirner, T.
Coupled Simulation of Building Structure and Building Services Installations with Modelica...........717

Tummescheit, H.
The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible
Thermo-Fluid Pipe Networks ...631

Tuszynski, J.
HydroPlant – a Modelica Library for Dynamic Simulation of Hydro Power Plants251
NowaitTransit Concept Assessment. Modeling of Trains on Complex Track Geometry225

Tuszynski, K.
HydroPlant – a Modelica Library for Dynamic Simulation of Hydro Power Plants251

Ungethüm, J.
Modelling of Alternative Propulsion Concepts of Railway Vehicles...391
Vehicle Model for Transient Simulation of a Waste-Heat-Utilisation-Unit Containing Extended
PowerTrain and Fluid Library Components ...405

 Index of Authors

The Modelica Association Modelica 2006, September 4th – 5th xxiii

Urquia, A.
ARENALib: A Modelica Library for Discrete-Event System Simulation ...539
GAPILib - A Modelica Library for Model Parameter Identification Using Genetic Algorithms335

Vanrolleghem, P.A.
Using Modelica Models for Complex Virtual Experimentation with the Tornado Kernel193

Vetter, M.
Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63
Quasi-stationary AC Analysis Using Phasor Description With Modelica ...579

Videla, J.I.
A New Energy Building Simulation Library ..685

Viganò, L.
Acausal Modelling of Helicopter Dynamics for Automatic Flight Control Applications377

Wang, G.B.
An Analyzer for Declarative Equation Based Models..349

Wetter, M.
Multizone Airflow Model in Modelica...431
Multizone Building Model for Thermal Building Simulation in Modelica..517

Winkler, D.
Synchronising a Modelica Real-Time Simulation Model with a Highly Dynamic
Engine Test-Bench System...275

Wischhusen, S.
An Enhanced Discretisation Method for Storage Tank Models within Energy Systems243

Wittwer, C.
Advanced Modeling and Simulation Techniques in MOSILAB:
A System Development Case Study ...63

Woodruff, A.
Development and Verification of a Series Car Modelica/Dymola Multi-body Model to Investigate
Vehicle Dynamics Systems ..167

Wu, Y.-Z.
An Analyzer for Declarative Equation Based Models..349
Domain Library Preprocessing in MWorks - A Platform for Modeling and Simulation of
Multi-domain Physical Systems Based on Modelica..733
MWorks: a Modern IDE for Modeling and Simulation of Multi-domain Physical Systems
Based on Modelica ...725

Yebra, L.J.
Object Oriented Modelling of DISS Solar Thermal Power Plant...449

Zarza, E.
Object Oriented Modelling of DISS Solar Thermal Power Plant...449

Zhang, Y.-Q.
MWorks: a Modern IDE for Modeling and Simulation of Multi-domain
Physical Systems Based on Modelica...725

Zhao, J.-J.
Domain Library Preprocessing in MWorks - A Platform for Modeling and Simulation of
Multi-domain Physical Systems Based on Modelica..733
MWorks: a Modern IDE for Modeling and Simulation of Multi-domain Physical Systems
Based on Modelica ...725

Index of Authors

The Modelica Association Modelica 2006, September 4th – 5th xxiv

Zhou, F.-L.
An Analyzer for Declarative Equation Based Models..349
Domain Library Preprocessing in MWorks - A Platform for Modeling and Simulation of
Multi-domain Physical Systems Based on Modelica..733
MWorks: a Modern IDE for Modeling and Simulation of Multi-domain Physical Systems
Based on Modelica ...725

Zimmer, D.
The Modelica Multi-bond Graph Library...559

 Session 1a

The Modelica Association Modelica 2006, September 4th – 5th 1

Session 1a

Thermodynamic Systems for Power Plant Applications 1

Session 1a

The Modelica Association Modelica 2006, September 4th – 5th 2

The Modelica Association Modelica 2006, September 4th – 5th

Fast Start-up of a Combined-Cycle Power Plant:
a Simulation Study with Modelica

Francesco Casella1, Francesco Pretolani2

1Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza Leonardo da Vinci, 32 - 20133 Milano ITALY

2CESI S.p.A., Via Rubattino, 54 – 20134 Milano ITALY

e-mail: casella@elet.polimi.it, pretolani@cesi.it

Abstract

The paper deals with the modelling and simulation
of fast start-up transients of a combined-cycle power
plant. The study is aimed at reducing the start-up
time while keeping the life-time consumption of the
more critically stressed components under control.
The structure of the model, based on the Thermo-
Power library, and the main modelling assumptions
are illustrated. Selected simulation results are in-
cluded and discussed.1

1 Introduction

The on-going process of deregulation on the electric-
al power grids throughout Europe demands for more
aggressive operation policies for existing and future
power plants. Faster start-up and load change transi-
ents can be beneficial to remain competitive on an
increasingly open power market. In this context, the
present work is aimed at understanding how to im-
prove the current start-up procedures for the typical
combined-cycle power plant installed on the Italian
grid.
For the purposes of the present study, the plant mod-
el must have the following features:

● be able to represent the whole start-up pro-
cedure, including boiler start-up, turbine
start-up, and load pick-up;

● include a model of thermal stresses in critic-
al components, which pose a lower bound to
the start-up time;

1 This work was supported by MAP (Italian Ministry for
Productive Activities) in the framework of the Public
Interest Energy Research Project “Ricerca di Sistema”
(MAP decree February 28, 2003).

● include a simplified model of the plant con-
trol system;

● neglect phenomena and components which
are not critical for the start-up phase, in or-
der to keep the model complexity at a reas-
onable level.

The plant model, based on the ThermoPower library
[1]-[3], has been parametrised with design and oper-
ating data from a typical unit, and validated by rep-
licating a real start-up transient, as recorded by the
plant DCS. The model has then been used to test
faster start-up manoeuvres, with the objective of
either reducing the plant life-time consumption at
equal start-up times, or reducing the start-up time at
the same level of plant life-time consumption. This
study has been carried out by trial-and-error, but the
long term goal is to couple the model (or a suitably
simplified version of it) to state-of-the-art optimisa-
tion software, to compute the optimal transients.

2 The plant model

The plant under investigation is composed by a 250
MWe gas turbine unit (GT), coupled to a heat recov-
ery steam generator (HRSG) with 3 levels of pres-
sure, driving a 130 MWe steam turbine (ST) group.
The limiting factors to a reduction of the start-up
time are:

● the maximum load change rate of the gas
turbine;

● the thermal stress in thick components (in
particular, the steam turbine shafts);

● the ability of the control system to keep their
controlled variables within the allowable
limits.

3

Fast Start-up of a Combined-Cycle Power Plant: A Simulation Study with Modelica

The Modelica Association Modelica 2006, September 4th – 5th

Fig. 1: The plant model at the system level.

At the system level, a detailed representation of all
the parts of the plant working with low-temperature
fluids is not required, since they are not critical, as
far as their control and their thermal stresses are
concerned. Therefore, the low-pressure part of the
HRSG, the condenser and the feed-water system will
be represented in an extremely simplified way. The
plant model is then obtained (Fig. 1) by connecting
the models of the GT unit, HRSG unit (divided into
three parts for convenience), and ST unit via thermo-
hydraulic connectors. Sensor and actuator signals are
collected from/to each unit by means of expandable
connectors.

Fig. 2: The steam turbine unit model.

It is well-known that the HRSG start-up (several
hours) is much slower than the GT start-up time
(around 20 minutes). It is then possible to describe
the GT unit in a highly idealised fashion, i.e. as an
ideal source of hot flue gases, whose temperature
and flow rate is prescribed as a function of the load
level; the maximum load change rate is given by the
unit specification, and is not a subject of the present
study.
The steam turbine unit model (Fig. 2) is instead
rather detailed, in order to correctly describe the
various phases of the start-up transient. The high
pressure turbine (HP) and intermediate-plus-low
pressure turbine (IP) are modelled, as well as the tur-
bine bypass circuits; the contribution of the low-
pressure steam generator is instead neglected.
The most critical part of the plant, as far as the
thermal stresses are concerned, is the turbine shaft in
contact with the highest temperature steam, i.e.
downstream of the first (impulse) stage of both tur-
bines, which is then represented separately, and con-
nected to a thermal stress model of the shaft section.
The stress model contains a thermal model, based on
Fourier's equation discretised by finite differences,
to represent the radial distribution of the temperat-
ure; the thermal stress on the outer surface (which is
the most heavily stressed part) is then computed as a
function of the difference between the surface tem-
perature and the mean temperature. The generator
inertia and a simplified model of the connection to
the grid complete the unit; a small torque is added in
order to avoid the stopping of the steam turbine,
which would lead to various model singularities.

Fig. 3a: Heat exchanger units in the HRSG.

4

F. Casella, F. Pretolani

The Modelica Association Modelica 2006, September 4th – 5th

Fig. 3b: Heat exchanger units in the HRSG.

Fig. 4: A single, generic heat exchanger model.

Fig. 5: The drum unit.

The heat exchangers along the flue gas path, i.e. the
economisers, evaporators and superheaters, as well
as the IP mixer and attemperators, are contained in
two units for convenience (Fig. 3a-b). The structure
of the each heat exchanger (Fig. 4) includes finite-
volume models of the flue gas and water/steam side,
as well as of the fluid-wall heat transfer, and of the
wall thermal inertia. Since there is no draft control in
the flue gas path, the associated dynamics is negli-
gible; therefore, to reduce the number of states of the
model, the flue gas side model is quasi-static. Note
that the fluid side model is replaceable: a Flow1D
model is used for the economisers and superheaters,
while a Flow1D2ph model is used to describe the
2-phase flow in the evaporators.
The plant model is completed by the models of the
boiler drums (Fig. 5). Since we are not interested in
the high-frequency pressure dynamics, the high-pres-
sure (HP) and intermediate pressure (IP) drums are
based on mass and energy balances assuming
thermal equilibrium between the two phases. The
low-pressure part of the HRSG is neglected, so that
an idealised model of the low-pressure drum is only
needed as a boundary condition for the IP and HP
circuits, i.e. to connect the inlets of the correspond-
ing feed-water pumps (Fig. 5, on the far right). The
LP drum pressure (and thus temperature) is determ-
ined as a function of the IP drum pressure, tuned
from operational data.

3 Control system model

Given the type of plant, and the modelling assump-
tions, the control system can be hierarchically split
into two levels.

3.1 Low level controllers

The lower level is quite straightforward, and is not
the subject of the optimization. It contains five inde-
pendent PI/PID loops, controlling:

● the HP and IP drum levels, using the corres-
ponding feed-water flows;

● the HP steam pressure, using the HP turbine
bypass valve;

● the IP steam pressure, using an intermediate
valve at the outlet of the IP superheaters, be-
fore the mixing with the HP turbine exhaust;

● the reheater steam pressure, using the IP tur-
bine bypass valve.

Note that the HP pressure controller is only active
during the initial phase of the plant start-up, when

5

Fast Start-up of a Combined-Cycle Power Plant: A Simulation Study with Modelica

The Modelica Association Modelica 2006, September 4th – 5th

the turbine admission valve (TAV) is closed, and the
steam is dumped to the condenser. Once the steam
turbine generator has been synchronised with the
grid, the TAV is opened, the pressure diminishes,
and the pressure controller reacts, eventually closing
the bypass valve completely. The (continuous-time)
PID controller model must then be able to operate
correctly under saturation, providing suitable anti-
windup action.

3.2 Supervisory control

The supervisory control level determines the actual
start-up transient by acting on the following vari-
ables:

● GT load request;
● TAV opening (both HP and IP) or turbine

speed set point;
● pressure controllers set points (HP and IP);
● generator-grid breaker;
● drum blow-down flow rates.

During the start-up transient, all of these variables
are operated in an open-loop fashion, according to a
pre-determined schedule which is the subject of the
optimisation. The only exception is the TAV open-
ing, which is determined in closed loop by a speed
controller during the turbine start-up transient phase:
in that case, a PI controller drives the TAV, and the
scheduling variable is the speed set-point. It is there-
fore necessary that the PI controller provides a track-
ing mode as well, to manage the transitions between
the off-duty, start-up and connected modes of opera-
tion of the turbo-generator in a correct fashion.

4 Model parametrisation and valida-
tion of the reference transient

The physical parameters of the model (dimensional
data and operating points) have been set to match
those of a real unit. Some data are known directly
(e.g. number and dimensions of the tubes in the heat
exchangers), other (e.g. the heat transfer coefficients
or the valve and turbine flow coefficients) are com-
puted from operating point design data.
The low-level controllers have been tuned in order
to provide satisfactory performance (fast enough re-
sponse with no significant oscillations and control
overshoot).
The direct initialisation of the plant model in the
shut-off state is numerically hard, due to the pres-
ence of low or zero flow rates and to the lack of
knowledge of good guesses for the initial values.

Therefore, the model has been initialised near the
full-load steady state by setting the start attributes
of the state variables (pressures, temperatures, flow
rates, turbine speed, controller states), then brought
to the full load steady state by running a stabilisation
transient. The use of variable step-size integration
algorithms allow to perform this task in a reasonable
time (less than 10 seconds, CPU time). The steady-
state values of the variables of interest (pressures,
temperatures, flow rates, powers) are correct by con-
struction, as the model has been parametrised using
those same values. Incidentally, an attempt was per-
formed to get the steady state directly by using ini-
tial equations, but the non-linear solver failed to con-
verge, probably due to bad selection of the start val-
ues for some iteration variables.
A plant shut-down transient was then performed,
bringing the model to a state corresponding to the
warm start-up of the plant:

● steam turbines with no steam flow and (al-
most) at standstill.

● pressures around 1 bar in both the HP and IP
circuit.

● GT “almost” shut down (a small flow rate of
warm flue gas is kept to avoid singularities
in the flue gas side model).

The temperature distribution of the turbine shafts
was then reinitialized to the desired initial value
(corresponding to 180 °C). This constitutes the ini-
tial state for the start-up transient simulation.
A reference simulation was then performed to replic-
ate the recording of an actual start-up transient,
which was replicated with acceptable fidelity, as far
as the measured variables are concerned. Note that
the study is not targeted to a specific plant, but
rather to a whole class of similar plants, so that a
high accuracy is actually not needed. Some results
are reported here to give an idea of the degree of
complexity of the transient.
Fig. 6 reports the net electrical power outputs of the
GT, steam turbine (ST) and total. During the first
5000 s, the GT is running idle, so that there is no net
electrical power output, but a certain flow of hot ex-
haust gases is already available to start up the steam
generator. The steam turbine is then started and syn-
chronised, and at time t = 13500 s the steam turbine
starts picking up steam, while the GT load is in-
creased up to the maximum.
Fig. 7 shows the pressure in the HP and IP drums.
The steam generator start-up is split into two phases,
where both pressures are controlled; during the load
pick-up phase, instead, the HP circuit operates in
sliding pressure mode, to avoid reducing the turbine
efficiency due to throttling.

6

F. Casella, F. Pretolani

The Modelica Association Modelica 2006, September 4th – 5th

Fig. 8 shows the steam production rates (HP in blue,
IP in green), as well as the flow rate through the HP
turbine (in red). Until t = 9600 s all the steam is
dumped to the condenser; subsequently, a small
amount is used to accelerate the turbine (see the tur-
bine speed, Fig. 9), and only after the load pick-up
has started the TAV are fully opened, sending all the
steam into the turbine. Fig. 10 shows the interplay
between the TAV and the bypass valves; the former
are gradually opened during the transient, while the
latter are closed by the pressure controllers.
All the transients shown so far (except the last) cor-
respond to actual measurements taken on the plant.

Fig. 6: Net electrical power outputs.

Fig. 7: HP and IP drum pressures

Fig. 8: Steam flow rates.

Fig. 9: Turbine speed.

Fig. 10: Valve openings.

Fig. 11: HP turbine steam and rotor temperatures

Fig. 12: HP and IP turbine rotor thermal stress.

7

Fast Start-up of a Combined-Cycle Power Plant: A Simulation Study with Modelica

The Modelica Association Modelica 2006, September 4th – 5th

The most interesting part of the simulation concerns
the temperature distribution in the first section of the
steam turbine shafts, and the corresponding thermal
stress, which results in component fatigue and thus
limits its useful lifetime. Fig. 11 shows the temperat-
ures for the HP turbine: the three lower curves rep-
resent the internal, mean and external rotor temper-
atures, while the two upper curves represent the tem-
perature of the superheated steam at the turbine in-
let, and the (slightly lower) temperature of the steam
downstream the nozzles of the first stage, which is
where the steam comes into contact with the rotor.
During the turbine start-up, the steam flow is very
low, and so is the heat transfer coefficient; therefore,
the rotor temperatures increase slowly; when the
TAV are opened more aggressively, the external
temperature gets much closer to the steam temperat-
ure. Note that, at time t = 19200 s, the steam temper-
ature tops at 830 K; this is due to the GT exhaust
temperature control, which keeps the hot flue gases
at constant temperature for loads higher than 60%,
by acting on the inlet guide vanes. At the end of the
transient (steady state), all temperatures are equal,
since there is no steady-state heat flow.
The corresponding thermal stresses at the rotor sur-
face (for both HP and IP turbines) are shown in fig.
12. The peak values, which actually determine the
lifetime consumption over the start-up cycle, are
around 450 MPa, which is consistent with typical
values estimated on the real plant during warm start-
up transients. Note that this peak is reached at the
beginning of the load pick-up phase.

5 Improving the start-up transient

The analysis of the reference transient shows that the
current start-up procedure is quite conservative.
There are a number of intermediate stops, which are
not needed from a physical point of view, and have
probably been provided to allow for ample margin
against unexpected problems when starting up the
plant. The current practice was in fact conceived
when the plant was run in a vertically integrated
context, which placed more emphasis on safety and
availability rather than on efficiency and economy of
operation. If those stops are completely eliminated,
the corresponding transient can be run without any
problems for the control system, resulting in a reduc-
tion of the start-up time from 25300 to 19200 s, and
in fuel savings corresponding to the production of
208 MWh at full load (i.e. maximum efficiency).
The same peak levels of stress are obtained. The de-
tails are omitted for the sake of brevity.

The “theoretical” minimum start-up time was then
sought in two complementary ways:

a) minimising the start-up time subject to the
constraint of getting the same stress peak
(and thus lifetime consumption) of the refer-
ence transient;

b) reducing the stress peak (and thus increasing
the lifetime consumption), without increas-
ing the start-up time with respect to the ref-
erence transient.

To reach the first goal, it is essential to note that the
stress peak is basically due to the thermal shock at
the beginning of the start-up phase. Once this peak
has been hit, the lifetime consumption is the same
regardless how fast the stress goes back to zero.
Therefore, the GT load pick-up rate has been in-
creased from 1 MW/min to 1.5 MW/min, in order to
keep the stress transient flat (see fig. 15). Further-
more, once the GT load has reached 60%, the flue
gas temperature does not increase further, so that
also the superheated steam temperature will not in-
crease substantially (it will actually decrease a little
bit, as the steam flow rate increases), and the stress
will decrease no matter how fast the load goes up.

Fig. 13: Net electrical power outputs, fast start-up

Fig. 14: HP turbine rotor and steam temperatures,
fast start-up

8

F. Casella, F. Pretolani

The Modelica Association Modelica 2006, September 4th – 5th

Fig. 15: HP and IP turbine rotor stress, fast start-up

Fig. 13 represents the net power outputs, while Fig.
14 and 15 represent the corresponding temperature
profiles on the HP turbine rotor, and the correspond-
ing thermal stresses on both turbines, respectively. It
is possible to compare these figures with Fig. 6, 11,
and 12. The peak stress is still around 450 MPa. The
transients of all the other variables are similar to
those already shown for the reference case, showing
no particular problem as to the plant control.
Compared with the reference transient, the start-up
time is reduced from 25300 s to 12500 s, and the
fuel savings correspond now to 242 MWh at full
plant load.
To reach the second goal (i.e. reduce the stress
peak), it is necessary to reduce the thermal shock at
the beginning of the steam turbine load pick-up. This
can be obtained by allowing for a longer soak time
for the turbine, i.e. once the turbine has reached full
speed, it is kept running at no load so that the steam
flow can heat up the rotor a little bit more. The tur-
bine start-up is therefore initiated earlier than in the
reference transient, and the turbine is kept idling for
3900 s. The load pick-up phase is then started, and
the rate of change is adjusted to obtain a flat stress
curve. Once the 60% level has been reached, the rate
of change is increased to 7 MW/min, as in the previ-
ous case.
The resulting temperature and stress plots are shown
in Fig. 16 and 17. In this case, two stress peaks are
obtained (each one causing fatigue and thus lifetime
consumption); however, the first peak value, around
200MPa, is only slightly higher than the limit of
elastic behaviour (170 MPa), and thus correspond to
a very low additional lifetime consumption, while
the second, around 320 MPa, is well below the pre-
vious value of 450 MPa. The start-up time is reduced
from 25300 s to 17500 s, while the fuel savings cor-
respond to 114 MW/h at full plant load.

Fig. 16: HP steam and rotor temperatures, soaking.

Fig. 17: HP and IP turbine rotor stress, soaking.

6 Conclusions and future work

The optimisation of the start-up procedure for a
combined-cycle power plant has been studied, by
means of a system simulator. The plant model was
developed in Modelica using components from the
ThermoPower library; the low-level control system
model is based on continuous time PID controllers
with anti-windup and tracking features. Compared to
traditional simulation environments, it was relatively
easy to customise the degree of detail of the model,
both by writing extremely simplified component
models where possible, and by developing ad-hoc
models for the estimation of the thermal stresses in
the steam turbines shafts. The final model has
around 140 states and several thousands algebraic
variables.
The simulation study was conducted using the Dy-
mola [4] simulation tool, which allowed to compute
the whole simulation transient in times around 400 s
on a Pentium 3 GHz CPU.
The study is a first step towards the realisation of
more simplified models, to be validated against the
reference one, which will be employed together with
optimisation software to automatically compute the

9

Fast Start-up of a Combined-Cycle Power Plant: A Simulation Study with Modelica

The Modelica Association Modelica 2006, September 4th – 5th

optimal transients. A further step could then be the
design of a closed-loop model-based control system,
capable of attaining similar performance in real time
and in the presence of uncertainty.

7 References

[1] F. Casella, A. Leva, “Modelling of Thermo-
Hydraulic Power Generation Processes using
Modelica”, Mathematical and Computer Mod-
elling of Dynamical Systems, v. 12, n. 1, pp.
19-33, 2006.

[2] F. Casella, A. Leva, “Modelica Open Library
for Power Plant Simulation: Design and Ex-
perimental Validation”, Proc. 3rd International
Modelica Conference, Linköping, Sweden,
Nov 2003, pp. 41-50. URL:
http://www.modelica.org/events/Conference2003/papers/
h08_Leva.pdf

[3] ThermoPower library home page, URL:
http://www.elet.polimi.it/upload/casella/thermopower/

[4] Dynasim AB, Dymola v. 5.3.

10

F. Casella, F. Pretolani

The Modelica Association Modelica 2006, September 4th – 5th

Modelling of a water/steam cycle of the combined cycle power

plant “Rio Bravo 2” with Modelica

Baligh El Hefni Daniel Bouskela

EDF R&D
6 quai Watier

F-78401 Chatou Cedex
France

 baligh.el-hefni@edf.fr daniel.bouskela@edf.fr

Abstract

In order to improve the performance of its simulation
tools while reducing their cost, EDF is studying the
interest and feasibility to replace LEDA, a tool
developed and maintained by EDF for the modelling
and simulation of the normal or incidental operation
of nuclear and conventional thermal plants, by off-the-
shelf available tools.
The combined cycle power plant “Rio Bravo 2”
covers the important case of static studies. To test the
capabilities of Modelica based tools to meet EDF
needs for the modelling and simulation of such
complex energy processes, the LEDA model of Rio
Bravo 2 was translated from Fortran into Modelica
and simulated using the commercial tool Dymola.
A library of fully static 0D thermalhydraulics
component models was built. Each component is the
complete translation of a LEDA model.
The full model was built by connecting the component
models in a technological way, so that its topology
reflects the functional schema of the plant.
A preliminary calibration of the model was made
against measurement data obtained from on-site
sensors using inverse calculations. The model was
then able to compute precisely the distribution of the
steam/water mass flow rates, pressure and temperature
across the network, the exchangers thermal power,
and the performance parameters of all the equipments.
It converges very quickly, provided that the iteration
variables are properly fed in by the user. The results
are remarkably close to the LEDA reference.

Keywords : Combined Cycle Power Plant, Steady
State Modelling, Inverse Problems

1. Introduction

Modelling and simulation play a key role in the
design phase and performance optimization of
complex energy processes.
Rio Bravo is a combined cycle plant designed,
built, commissioned and operated by EDF. A
model of the plant was built at the system level in
order to verify and validate by simulation the
energy and fuel consumption overall performance
of the plant.
The modelling and simulation of the plant was
originally carried out with LEDA. LEDA is a tool
developed and maintained by EDF since 1982 for
the modelling and simulation of the normal or
incidental operation of nuclear and conventional
thermal plants. LEDA models are used by
researchers and engineers to improve their
knowledge of existing or future types of power
plants, verify the design accuracy and understand
important transients.
In order to improve the performance of its
simulation tools while reducing their cost, EDF
(SEPTEN and EDF R&D) is studying the interest
and feasibility to replace LEDA by off-the-shelf
available tools.
Modelica based tools are considered as good
candidates, because :
• Modelica is a multi-domain language which

seems well designed for physical system
modelling and simulation.

• Modelica is a declarative language, that
captures the model equations in a way that is
very close to their original mathematical form.

• Modelica allows to express inverse problems,
which is a very important feature for
computing operation points, which are defined
by their observable outputs, and for system

11

Modelling of a Water/Steam Cycle of the Combined Cycle Power Plant “Rio Bravo 2” with Modelica

mailto:baligh.el-hefni@edf.fr
mailto:daniel.bouskela@edf.fr

The Modelica Association Modelica 2006, September 4th – 5th

sizing, to compute parameterised characteristics.

Besides these technical benefits, it is likely that using
a common free non proprietary language will foster
partnerships around joint R&D or engineering
projects, thus giving the opportunities to share
development costs between the participants.
Several important benchmark cases have been chosen,
which cover the variety of modelling and simulation
studies made at EDF [1].
The objective of this work is to evaluate the feasibility
and efficiency of using Modelica based tools to
perform steady state studies of power plants.
The Rio Bravo combined cycle plant has been chosen
as a representative test case of the complexity of this
type of study, aimed at verifying the design of the
plant for a fixed set of operation points (nominal
power output, 50 % of nominal power output, …).
The modelling and simulation were carried out with
the commercial tool Dymola, as it is the most
advanced Modelica based tool to this date.

2. The LEDA Solver

LEDA is a tool that was originally designed for the
modelling and simulation of power plants. To that
end, it allows the user to develop numerical
components of the different parts of the plant, and
assemble them to build the full model of the plant.
Thus LEDA is a model library based tool. The
component models are written in Fortran. They
represent the various equipments of the plant (pumps,
heat exchangers, …), and may be re-used across
different projects.
Since LEDA has already been used by EDF over two
decades, it offers the best available physical
descriptions, for each improvement - correlations
obtained from experimental results or 3D
computations - is capitalized into the library.
As the initial state of the simulation is in general
defined by the observable outputs of the system (e.g.
the nominal power output, the pressure inside the
boiler, etc.), it is necessary to solve an inverse
problem to compute the initial state. Moreover, it is
necessary to start the simulation from a stationary (or
steady) state in order to avoid the numerical
difficulties which arise when the system is started out
of equilibrium (oscillations, stiffness, …).
That is why LEDA has the ability to start the
simulation from a stationary state, and compute this
initial state by solving an inverse problem (it is in fact
a requirement from to the tool to start from a steady

state). It is also possible to feed in the analytical
Jacobian of the system to improve the speed and
the accuracy of the simulation. LEDA uses a
trapezoidal implicit fixed step integrator.
The inverse problem is entered into the tool by
setting the output variables to their known
measured values, and freeing (i.e. setting as
unknowns) the parameters, inputs and internal
states to be computed.
Figure 1 below shows the structure of a LEDA
component model.

Geometrical variables

MODULE

 I
N
P
U
T

O
U
T
P
U
T

Figure 1 – Structure of a LEDA component
model

The component model (also called module) is a
series of Fortran files that contain the physical
equations and the correlations of the modelled
component. It is oriented, i.e. has computationally
causal links. Geometrical variables are constant
parameters (they would be referred with the
Constant Modelica keyword in Modelica models).
Parameters are considered as inputs, in order to be
able to compute them by inverse calculation. More
generally, all variables are either inputs or outputs,
which means that the connections between the
component models have to be carefully set in order
to solve the simulation problem : outputs are
always computed from inputs, so the user has to
figure out the computational causalities of the
problem at hand while building the model.
LEDA assembles the components in a way to
produce a global matrix of the system. So the
system is solved in a implicit way, not in a
sequential way, in particular to solve algebraic
loops and perform inverse calculations.
Application fields

• Nuclear power plants.
• Thermal fossil fuel fired power plants

(pulverized coal, fluidized bed, ...).
• Combined heat and power plants.

12

B. El Hefni, D. Bouskela

The Modelica Association Modelica 2006, September 4th – 5th

• Waste to energy.

Utilization fields
• Operation and maintenance.
• Design and analysis.
• Innovate technology survey.

3. General presentation of a combined
cycle power plant

The combined cycle includes a turbine cycle (gas
turbine, which uses natural gas as fuel) and a steam
cycle.

C
P

steam-generator

TAC(GT)

AERO Pumps

ST

generates
electrical

generates
electrical

Figure 2 - Diagram of a Combined Cycle Power
Plant

In the turbine cycle, air is compressed to the operating
pressure of the gas turbine and heated in a combustion
chamber (natural gas is burned in), followed by an
expansion of the exit flue gas in a gas turbine, which
in turn generates electrical energy in a turbo-
generator.
The hot effluent of the gas turbine generates steam in
the steam-generator of the steam cycle, which expands
in the steam turbine and generates additional electrical
energy. The steam cycle includes : the steam turbine, a
boiler (with several tubular exchangers that transmits
the heat of the exhaust gas to the water), 3 evaporating
loops (low, medium and high pressure), an aero-
condenser and several pumps.

4. The Rio Bravo component model
library

As it has already been mentioned, Rio Bravo is a fully
static model. Thus, a library of fully static 0D

thermalhydraulics component models was built.
Each component is the complete translation of a
LEDA module. The library now contains models
of a multifunctional heater (economizer, super-
heater, evaporator), a turbine, pumps, a separating
balloon, valves, an aero-condenser and pipes.
The model equations take into account the non-
linear and the state-of-the-art physical behaviour of
each phenomenon of interest. In particular :
• The multifunctional heater component model

contains precise and up-to-date correlations for
the heat exchange coefficients and pressure
losses. Convection and pressure loss
correlations are valid for any flue gas
composition, and for water in any phase
(liquid, vapour or two-phase flow). The
conduction equation is adapted with a fouling
coefficient. To feed these equations, each
model contains a very accurate set of
geometrical data (technology, number of tubes,
lengths, diameters, characteristic of the wings,
etc).

• The steam turbine component model is based
on an ellipse law and an isentropic efficiency.

• The aero-condenser component model is based
on correlations of the manufacturer.

• The pump models are based on the
characteristic curves of the pumps.

• The collector is based on the mass and energy
balances for the fluid.

• The pressure drop in pipes is proportional to
the dynamic pressure ± the static pressure.

The Modelica translation required some reverse
engineering of the component models, because :
• the LEDA components are Fortran codes,

containing many procedural if … then … else
constructs that cannot be written as such in
Modelica,

• the LEDA documentation is sometimes
incomplete.

Each new Modelica component had to be tested
separately in order to remove as many modelling
errors as possible before building the full Rio
Bravo model. This task was not easy, as a model
written in a declarative language has a totally
different structure from a model written in a
procedural language, so the LEDA experience was
no great help.
In spite of these difficulties, it was possible to
rewrite the complete LEDA modules in Modelica.
The new Modelica component models behave
exactly as their LEDA originals.

13

Modelling of a Water/Steam Cycle of the Combined Cycle Power Plant “Rio Bravo 2” with Modelica

The Modelica Association Modelica 2006, September 4th – 5th

5. The Rio Bravo model

The full model is built by connecting the component
models in a technological way, so that its topology
reflects the functional schema of the plant (see Figure
3 in the appendix). It is composed of 91 component
models, generating 5200 variables and 1100 non-
trivial equations.
The model consists of 16 exchangers (3 evaporators, 6
economizers, 5 super-heaters and 2 re-heaters), 3
balloons, 3 steam turbine stages (HP, IP and LP),
6 pumps, 3 valves, 1 kettle boiler, 9 pressure drops,
several mixers, several collectors, 1 power imposed
and 1 aero-condenser.
The order of the exchangers downstream the exhaust
gas flow is :
• the third HP super-heater,
• the second IP re-heater,
• the second HP super-heater,
• the first IP re-heater,
• the first HP super-heater,
• the HP evaporator,
• the fourth HP economizer,
• the IP super-heater,
• the third HP economizer,
• the LP super-heater,
• the second HP economizer,
• the IP evaporator,
• the first HP economizer and IP economizer,
• the LP evaporator,
• the LP economizer.

The low pressure loop

At the exit of the aero-condenser, water is pumped
and heated in the LP economizer, then is sent to the
LP balloon. The water leaving the LP balloon goes to
the LP evaporator, the IP loop and to the HP loop. The
produced steam is transmitted to the LP super-heater,
then to a mixer with a pressure loss, then to the LP
turbine. The steam at exit of the mixer is a mixture of
the steam at the exit of the LP balloon, the steam at
the exit of the IP turbine and the steam of racking at
the HP turbine exit.

The intermediate pressure loop

At the exit of the LP economizer, water is pumped and
heated in the IP economizer, then is sent to the IP
balloon. The water leaving the IP balloon goes to the
IP evaporator and the produced steam is transmitted to
the IP super-heater, then to a mixer (to mix the steam
at the exit of the IP super heater and the steam at exit
of the HP turbine), then is sent to the first IP re-heater,

then to the IP de-superheating, then to the second
IP re-heater, then to the IP turbine.

 The high pressure loop

At the exit of the LP economizer, water is pumped
and heated in the first, the second, the third and the
fourth HP economizer, then is sent to the HP
balloon. The water leaving the HP balloon goes to
the HP evaporator. The produced steam is
transmitted to the first HP super-heater, then to the
second HP super-heater, then to the HP de-
superheating, then to the third HP super-heater,
then to the HP turbine.

The aero-condenser

At the exit of the turbine LP, the steam is
condensed in the aero-condenser, then the water is
pumped and sent into the LP economizer.

The steam bleeding

Steam bleeding at the entry and the exit of the HP
turbine is necessary to ensure the tightness of the
bearing of the IP and LP turbines.
The model was easy to build from the graphical
library : as opposed to LEDA, no causality analysis
is required from the user, this task being handled
automatically by the code generator.
But it was initially difficult to converge, because of
the lack of information about the iteration variables
chosen by the code generator (iteration variables
are variables that need to be properly initialised by
the user in order to compute the system equations
for the first time step). Once this information was
correctly provided by the tool, it was fairly easy to
make the model converge. This task, which is
equivalent to computing the initial state, would
even be easier if the set of iteration variables were
stable across moderate model changes, and, of
course, from one version of the tool to another.
So it is very important to provide an efficient way
to handle these iteration variables, as the task of
setting them properly is time consuming. It is also
by no way automatic, since it requires a good
expertise of the problem to be solved (the number
of iteration accounts roughly 5% of the total
number of variables, so can be rather large for a
human).
More generally, as the numerical structure of the
system equations is automatically generated, it is
necessary that the tool provides an efficient way to
trace the numerical system back to the original
mathematical equations.

14

B. El Hefni, D. Bouskela

The Modelica Association Modelica 2006, September 4th – 5th

6. Model calibration

The calibration phase consists in setting (blocking) the
maximum number of thermodynamic variables to
known measurement values (enthalpy, pressure),
taken from on-site sensors during performance tests.
This method ensures that all needed performance
parameters, size characteristics and output data can be
computed.
The main computed performance parameters are :
• the fouling coefficients of the exchangers,
• the ellipse law coefficients of the turbines,
• the isentropic efficiencies of the turbines,
• the pressure drop corrective coefficients of the

exchangers and of the pipeline between the
equipments.

Example : the pressure of the vacuum in the aero-
condenser or the flow rate of the circulating cooling
are computed from the available measurements.

7. The thermodynamic properties

Properties of fumes

The thermo-physical properties of the fumes (for the
exchangers, the aero-condenser and the collectors)
were computed using Fortran tables called
MONOMELD, which are normally used with LEDA.
Using the same tables for both tools facilitated the
comparison of the simulation results.
Properties of water and steam

The properties for water and steam were computed
from polynomials defined by the international
standard IAPWS-IF97. The efficient original
Modelica implementation of H. Tummescheit was
used. LEDA utilizes a variant of this standard
implemented as a look-up table.

8. The simulation results

A preliminary calibration of the model was made
against measurement data obtained from on-site
sensors. The model was then able to compute
precisely the distribution of water and steam mass
flow rates, pressure and temperature across the
network, the exchangers thermal power, and the
performance parameters of all the equipments. It
converges very quickly, provided that the iteration
variables (approx. 5 % of the total number of
variables) are properly fed in by the user.

The table below shows the differences between the
LEDA and the Dymola numerical computation
results, for the reference conditions (i.e. 100%
nominal power – natural gas – yearly average
conditions).

Table 1 - Differences between the results of
LEDA and DYMOLA

 LEDA DYMOLA ∆
Electric power output
(MWe)

177,33 177,42 -0,09

Pressure in HP
balloon (bar)

135,0 134,0 1

Output steam flow at
HP balloon (kg/s)

52,67 52,31 0,36

Output steam
temperature at HP
balloon (°C)

561,1 566,6 -5,5

Pressure in IP balloon
(bar)

31,8 31,8 0,0

Output steam flow at
IP balloon (kg/s)

8,84 9,08 -0,24

Output steam
temperature at IP
balloon (°C)

310,6 310,9 -0,24

Pressure in LP balloon
(bar)

5,11 5,17 -0,06

Output steam flow at
LP balloon (kg/s)

77.27 77.37 0.1

Output steam
temperature at LP
balloon (°C)

180.75 180.13 -0.3

Power exchanged in
the aero-condenser
(Mw)

357.80 357.91 0.03

Temperature of the
exhaust fumes of the
boiler (°C)

113 .9
5

113.8 -0.13

The slight differences between the results of the
two codes are due to the fact that the
thermodynamic properties of water and steam are
computed in different ways (as noted before,
LEDA uses a variant of the IF97 standard).
The robustness of the model for different operating
points was tested by varying the flow of the fumes
in the range from 250 to 700 kg/s (250, 300, 350,
400, 464.48, 500, 550, 600, 650, 700).

9. Conclusion

A static and rather large model of the Rio Bravo
power plant has been translated from LEDA to
Modelica with Dymola to evaluate the capacity of

15

Modelling of a Water/Steam Cycle of the Combined Cycle Power Plant “Rio Bravo 2” with Modelica

The Modelica Association Modelica 2006, September 4th – 5th

Modelica based tools to perform steady state direct
and inverse computations for the sizing of power
plants.
The translation has been done without any loss of
information from the original model, and at an
acceptable, though still high cost.
To even further reduce the effort required to do
Modelica modelling and simulation for such systems,
it is necessary to provide more advanced tool
functionalities to handle efficiently the iterations
variables, and trace the automatically generated
numerical system back to its original mathematical
equations, as declared by the user with the Modelica
language.
Nevertheless, this work shows that the Modelica
technology is mature enough to replace proprietary
solutions such as LEDA for the steady state modelling
and simulation of power plants.

References

[1] Avenas C. et al. Quasi-2D steam generator

modelling with Modelica. ISC’2004,
Malaga, Spain.

Appendix

Figure 3 - The Rio Bravo Modelica model

16

B. El Hefni, D. Bouskela

The Modelica Association Modelica 2006, September 4th – 5th

Modeling and Dynamic Analysis of CO2-Emission Free Power
Processes in Modelica using the CombiPlant Library

Jonas Eborn Faruk Selimovic† Bengt Sundén†

Modelon AB
IDEON Science Park, SE-223 70 Lund

†Department of Energy Sciences
Division of Heat Transfer

Lund Institute of Technology, Box 118 SE-221 00 Lund

Abstract

The need to reduce CO2 emissions from fossil-fuel
based power production creates the need for new
power plant solutions where the CO2 is captured and
stored or reused. Different concepts to capture CO2

fall into the three main categories:

1. Precombustion decarbonization
2. Oxy-fuel combustion
3. Post-combustion removal of carbon.

In the first two types of processes Oxygen Trans-
port Membrane (OTM) is the key component, as pure
oxygen is usually required to process reactions (e.g.
Integrated Gasification Combined Cycle IGCC, Ad-
vanced Zero Emission Plant AZEP). Post-combustion
removal processes can for example utilize adsorp-
tion/desorption in certain salt solutions. This pa-
per will describe two different applications of CO2-
emission-free processes, one using an OTM, the other
a high pressure post combustion removal process, the
Sargas process, which has been modeled in a project
with Siemens Industrial Turbomachinery AB and Al-
stom Power Sweden AB. All modeling work was car-
ried out in the modeling language Modelica, which is
an open standard for equation-based, object-oriented
modeling of physical systems. System models have
been built using the CombiPlant library, a modeling li-
brary for combined cycle power plants from Modelon
AB.

Keywords: power plant modeling; OTM; CO2-
removal; oxy-fuel combustion;

1 Introduction

Future profitability of power generation will involve,
besides fuel and investment costs, even a trading of
plant CO2-emissions. Today, the use of coal and other
low-grade fossil fuels are dominant for power gener-
ation, about 80%. Gas fired power plants produces
about 20% of the total power output and an increased
number of natural gas fired combined cycle power
plants would result in lowering of CO2 emissions.

1.1 Sargas process description

Sargas AS, a Norwegian company, has developed tech-
nology for separating CO2 and NOx from power plant
flue gas. The Sargas process is a combined cycle sys-
tem consisting of a gas turbine with an external pres-
surized combustion chamber in combination with a
conventional steam cycle. This part of the process is a
modified version of existing pressurized fluidized bed
combined cycle (PFBC) power plants. The removal of
the CO2 takes place at high pressure after the combus-
tion chamber. This minimises the volume of flue gas to
be purified relative to the amount of power produced,
providing near full CO2 capture (more than 95%) and
substantial reduction of NOx (5ppm).
The Sargas process flow sheet can be seen in Figure 1,
along with the corresponding model diagram in Fig-
ure 2. The air from the gas turbine compressor and
natural gas are combusted in the pressurized boiler.
The combustion process can take place at a low level
of excess air (2% O2 in exhaust gas). This will re-
sult in a higher concentration of CO2 in exhaust gas
than in conventional gas-fired Combined Cycle Power
Plants (CCPP). The combination of elevated pressure

17

Modeling and Dynamic Analysis of CO2-Emission Free Power Processes in Modelica using the CombiPlant Library

The Modelica Association Modelica 2006, September 4th – 5th

Figure 1: Sargas process flow sheet.

and high CO2 concentration results in high CO2 par-
tial pressure, thus increasing the efficiency of the CO2

separation process compared to conventional CCPP.
Steam produced in the boiler is used to generate elec-
tricity from a conventional steam turbine. The tem-
perature of boiler exhaust gas is approximately 850◦C,
somewhat lower than in CCPP. The exhaust gas is
cooled in heat exchangers down to the optimal temper-
ature (≈70◦C) for the CO2 separation process, which
is an absorption/desorption process employing a salt
solution as the working fluid.
After the CO2 separation process takes place (with an
efficiency of approximately 90% in this application),
the exhaust gas with less CO2 is reheated to about
840◦C and expanded through the gas turbine to pro-
duce further electricity, before passing to the stack.

1.2 Oxy-fuel emission free power cycles

Compared to the capture processes which use com-
plicated separation processes, the oxy-fuel power cy-
cles uses pure oxygen in the combustion of fuel. Ex-
haust gases resulting from the combustion will there-
fore consist of mainly water and carbon dioxide. The
exhausts can easily be cooled to condense the water
leaving the carbon dioxide for further storage. OTM is
an important part of novel oxy-fuel power cycles such
as AZEP and Chemical Looping Combustion (CLC)
where OTM is integrated in the system to enable stoi-
chiometric combustion with oxygen.
The key of AZEP concepts is subtitution of the con-
ventional combustion chamber in a gas turbine by a
mixed conducting membrane (MCM) reactor, which
combines oxygen production, fuel combustion and
heat transfer [1, 2]. The MCM reactor contains oxy-
gen transfer membrane being surrounded by two High
Temperature Heat Exchangers (HTHX), which sup-
ply energy needed for oxygen transfer process. The

Figure 2: Sargas process model diagram as shown in
Dymola window.

membrane is constructed of mixed ion electron con-
ducting material and when heated it transfers the oxy-
gen ions which are exchanged at surfaces with oxy-
gen molecules [3, 4]. As can be seen from Figure 3,
compressed low temperature air (500◦C) from com-
pressor enters the reactor at the first of two HTHX
(Q arrows) which in turn increases the air temperature
up to the needed level for oxygen permeation reaction.
The oxygen migrates to the exhaust gas (called sweep
gas). From the membrane section the air enters the
second HTHX (upper Q arrows) where the tempera-
ture is raised to a value close to the hot exhaust gas
temperature from combustor (1200◦C). The hot oxy-
gen depleted air is then led to the power generating
turbine. As the oxygen is transferred to the sweep flow,
excess of mass on the sweep side and deficit on the air
side, respectively, will occur after the membrane sec-
tion. The bleed gas heat exchanger compensates for
this and increases the sweep temperature which at the
final stage is used for generation of steam, in a HRSG,
which is then expanded in the steam turbine.

The advantage in the power systems using oxy-fuel
combustion is that it enables 100% CO2 capture. How-
ever, the need of expensive oxygen separation methods
(e.g. cryogenic separation of pressure swing absorp-
tion, PSA) would bring oxy-fuel method to its death
because of a decreased thermal efficiency, down to
only 10-20%. OTM is the key of oxy-fuel processes
as it separates oxygen from air at low costs.

18

J. Eborn, F. Selimovic, B. Sundén

The Modelica Association Modelica 2006, September 4th – 5th

2 CombiPlant Library

The CombiPlant library is a commercial Modelica li-
brary for the unsteady (transient) simulation of Com-
bined Cycle Power Plants and its components. The
CombiPlant library uses well-known, published corre-
lations for heat transfer and pressure drop for fluegas,
steam and liquid water. Besides this more advanced
user-defined correlations can be easily integrated, and
also completely new models such as the oxygen mem-
brane model built and used together with the library
components.
Both gas and fluid side models in heat exchangers uses
a discretized finite volume model with mass and en-
ergy balances for each volume. Two-phase behavior is
captured using the integrated mean-density model [5]
and by continuously tracking the phase boundary an
accurate description of two-phase heat transfer is ob-
tained. The pipe and heat exchanger models can be
parametrized with different heat transfer and pressure
drop models, which even can be added by the user, e.g.
using proprietary correlations.
The library uses steam and fluegas medium models
from the new Modelica.Media library [6, 7], which al-
lows easy replacement of the medium models used in
component and system models. The library structure
contains the following packages:

ControllersAndSensors This package contains con-
trollers and sensors for gas/water stream proper-
ties, needed for control of dynamic systems.

Examples is a package with test models and also
some ready-to-use combined cycle plant section
examples.

FlueGas package contains components, sources and
sinks relevant for use with gas media, such as
pipe, volume and combustor models.

HeatExchangers This package contains general
models of heat exchangers for gas-gas or gas-
water operations. Also models for steam/water
plate heat exchangers are represented here.

Interfaces package contains connectors for gas and
water streams. It is basically a mirror of the Mod-
elica.Fluid and Thermal connector definitions.

Internal consists of several subpackages, provid-
ing functions for characteristic numbers, such
as Reynolds, Nusselt, and Prandtl number, and
other useful numerical functions. Internal also
holds subpackages for user choices and compo-
nent icons.

Figure 3: AZEP process flow sheet, inside the dashed
square is the reactor system. (from [2])

Pumps package holds pump models described by the
characteristic curve.

Water This package contains components, sources
and sinks relevant for water/steam media, e.g.
two-phase pipes and volumes, boiler drum, spray
attemperator, and steam turbine models described
by the Stodola equation.

SubComponents includes the subpackages, Geom-
etry for heat exchanger geometry descriptions,
HeatTransfer for different heat transfer correla-
tions used in component models, and Visualizers
with component models used for dynamic visual-
ization of the plant and section model diagrams.

Valves package contains valves and pressure loss
models.

3 Developed Models

The CombiPlant library includes components for con-
ventional combined cycle power plant models. For the
two applications described in this paper several spe-
cialized components and extensions to the CombiPlant
library models were built. Some of the new compo-
nents and modeling assumptions used are described in
this section below.

3.1 Performance trade-offs for heat ex-
changer models

Cross flow gas-water heat exchangers used in the
boiler, superheater and economizer sections of a power
plant are modeled using a discretized model. To get

19

Modeling and Dynamic Analysis of CO2-Emission Free Power Processes in Modelica using the CombiPlant Library

The Modelica Association Modelica 2006, September 4th – 5th

Figure 4: Superheater section model, showing exam-
ple of how to combine heat exchangers with steady-
state balance equations and dynamic plenum volumes.

good steady-state performance it is desirable to have
high discretization, but a large number of dynamic
states would give very long simulation times. As a
trade-off that still retains all the relevant dynamics a
quasi-static discretized model is used on the gas side
of all HX’s. The relevant thermal dynamics of the HX
are included in the thermal inertia of the metal walls.

In the section models, several such HX’s connected in
series on the gas side. This would result in an unde-
sirable static coupling between gas side balance equa-
tions, giving large non-linear equation systems that
would also result in long simulation times. To avoid
this situation, dynamic plenum volumes are introduced
between HX’s as can be seen in Figure 4. Dynamic
states p, T, X are forced on the plenum volumes, using
the Modelica stateSelect attribute. The dynamic
states provide the boundary conditions for the static
flow and heat transfer relations on the gas side of the
HX and breaks up the large non-linear equation sys-
tems. This combination is a trade-off that provides
both good steady-state and dynamic performance for
discretized models of this type.

In the figure it can also be noted that the plenum vol-
umes are coupled directly to the inlet of each HX with-
out any separate pressure drop description. This is pos-
sible due to automatic index reduction, and has no ill
effects since there are no gas volume dynamics inside
the heat exchanger model.

3.2 Benfield process section model

The key feature of the Sargas process is to deliver
power from natural gas without the environmental im-
pact of fossil CO2 emissions. This is achieved in the
CO2 removal unit, in the upper right corner of Fig-
ure 1. The process used is a so-called Benfield pro-
cess, a standard commercial process using the adsorp-
tion/desorption properties of certain salt solutions to
remove CO2. It consists of several stages of condens-
ing and humidifying the flue gas using water, to keep
the gas at ideal conditions for the adsorption process.
The Benfield section model is a simplified description
of the CO2 removal process without the salt solution
circulation loop included. The main purpose of the in-
vestigation was to verify the dynamic behavior with
respect to the composition and thermal dynamics, and
thus no detailed description of the Benfield process
was needed. The important moisture and gas thermal
and volume dynamics are included via lumped mod-
els of the large volumes in the scrubber, condenser,
absorber/desorber and humidifer. Moisture condensa-
tion and evaporation is assumed to be instantaneous at
the current saturation temperature. The absorption it-
self is represented by a constant efficiency parameter.
The model includes the absorption heat taken from the
steam flow bled from the steam turbine, as this is im-
portant for the overall energy efficiency of the process.
Below are the additional mass balance equations for
the absorber volume, used to calculate the mass trans-
fer of water and CO2. The difference between the wa-
ter saturation pressure and the actual mole fraction of
steam in the gas volume is used as the driving force for
mass transfer.

dy_sat=(WaterMedium.saturationPressure(T)/p
- mole_y[H2O]);

feed.mXi_flow[H2O] + drain.mXi_flow[H2O]
+ absorb_flow[H2O] =
dy_sat*feed.mXi_flow[H2O];

feed.mXi_flow[CO2]*eta_absorb
+ absorb_flow[CO2] = 0;

The names feed and drain refer to the gas flow con-
nectors on the volume, the parameter eta_absorb is
the CO2 removal efficiency parameter.

3.3 Oxygen transport membrane reactor
model

Oxygen Transport Membrane (OTM) consists of dense
ceramic membrane. It is generally accepted that such
dense membranes have significant future potential in
the gas and energy industries with a wide variety of

20

J. Eborn, F. Selimovic, B. Sundén

The Modelica Association Modelica 2006, September 4th – 5th

Figure 5: Model diagram view of the membrane reac-
tor model: OTM -Oxygen transfer membrane, Air -air
flow model, Sweep -exhaust gas flow model, wall -wall
model for heat transfer.

applications, such as, the separation of oxygen from
air and the conversion of natural gas to syngas. The
OTM is usually constructed of mixed ion electron
conducting material and when heated it transfers the
oxygen ions which are exchanged at surfaces with
oxygen molecules [3]. Energy for heating the mem-
brane can be exchanged from process exhaust gases.
The most attractive membrane materials today which
have been employed successfully in membrane re-
actors are: Ba0.5Sr0.5Co0.8Fe0.2O3−d (BSCFO) and
BaCo0.4Fe0.4Zr0.2O3−d (BCFZO), [8].
The membrane reactor model was conducted from ex-
isting flow models from CombiPlant library with the
exception of the model for oxygen transfer which in
its turn is developed and introduced into library. Since
the oxygen transfer model involves mass transfer oper-
ation of only oxygen as a single component, the Mod-
elica semiLinear function for calculation of the fluid
flow and fluid enthalpy in connectors is not suitable.
The semiLinear function can only be applied to well
mixed flows. Instead, the code below has been used.
Media model of air for this case has 5 different com-
ponents, (ex. Moist air with Ar, CO2, H20, N2, O2),
and the mass flow rates of the four non-permeable ones
were set to zero.

m_flowO2 =
J_O2*memPars.A_mem*Medium.data[5].MM;

Air.H_flow = h_O2*m_flowO2;
Gas.H_flow =-h_O2*m_flowO2;
Gas.mXi_flow[1:4] = 0,0,0,0;
Gas.mXi_flow[5] =-m_flowO2;
Gas.m_flow =-m_flowO2;
Air.mXi_flow[1:4] = 0,0,0,0;
Air.mXi_flow[5] = m_flowO2;
Air.m_flow = m_flowO2;

Gas and Air are the flow connectors on each side of
the membrane, connected to the corresponding pipe
model. The code above takes care of mass flow rate
of oxygen and assigns this value to connector. Oxygen
permeation rate J_O2 has been traditionally calculated
by the Wagner equation:

jO2 =
1

16F2d

∫ µ2s

µ1s

sise

si +se
dµ (1)

where j is the permeation flux density of molecular
oxygen, d is the membrane thickness, si and se are
the partial ionic and electronic conductivities, µ is the
oxygen chemical potential. Oxygen chemical poten-
tial is expressed here as:

µ = RT log(pO2) (2)

Combination of eq. 2 and eq. 1 and integration of 1
with the fact that oxygen ions are much slower then
electron gives following expression:

jO2 =
ciDa

4d
ln

p1
O2

p2
O2

(3)

where ci is the density of oxygen ions, Da represents
ambipolar diffusion coefficient of oxygen ion-electron
hole pairs, d is the thickness of membrane, p1

O2
and

p2
O2

is the oxygen partial pressure for low and high
oxygen partial pressure sides across membrane respec-
tively. The ambipolar conductivity was assumed to
have Arrhenius dependence on temperature:

Da = D0
ae

Ea
R (1

T − 1
1273.15) (4)

where D0
a is the preexponential factor and Ea is the

activation energy for the ambipolar conductivity. The
BSCFO membrane possesses high oxygen ion con-
ductivity. For the predominantly BSCFO mixed-
conductor the D0

a is expected to be close to the ionic
self-diffusion coefficient Di(Da ≈ Di), and then the
Nernst-Einstein equation is applicable to calculate the
oxygen ionic conductivity of BSCFO:

Di =
RT si

4ciF2 (5)

The experimental measured oxygen flux in [8], has
been used to express correlation of ionic conductivity
of BSCFO in this work, Figure 6.

4 Simulation Results

Examples of transient simulations carried out on the
two types of CO2 free power processes presented are
shown here.

21

Modeling and Dynamic Analysis of CO2-Emission Free Power Processes in Modelica using the CombiPlant Library

The Modelica Association Modelica 2006, September 4th – 5th

Figure 6: Oxygen ionic conductivity at different tem-
peratures, from [8].

4.1 Load reduction transient on the Sargas
plant model

To see the effects of the volume lag from the CO2 re-
moval plant on the power plant behavior, a load reduc-
tion transient has been conducted on the Sargas plant
model. The simulation was done on a plant model
without the gas turbine, with the load reduction per-
formed by ramping the compressed air flow rate into
the boiler from 100% to 80% of the design flow rate.
Natural gas flow to the burners was reduced propor-
tionally. A plot of the resulting mechanical power gen-
erated by the steam turbines is shown in Figure 7. Gen-
erators connected to the gas turbine would contribute
another 15 MW at 100% load conditions.
In Figure 8 the mole fraction of CO2 into and out of
the Benfield process section is shown. The process re-
moves 92% of the carbon dioxide in the gas flow. Dur-

Figure 7: Total mechanical power generated by steam
turbines during load turn-down on Sargas plant model.

Figure 8: Mole fraction of CO2 into and out of the
Benfield plant section.

ing the load reduction transient between 400 and 520
seconds the inlet composition changes, but the outlet
composition follows with little lag. The high volumet-
ric flow rate of about 10 m3/s gives a hold-up of only a
few seconds in the gas heat exchangers of the Benfield
process.
Figure 9 shows the mass flow of H2O in the flue gas
stream into and out of the Benfield process section. It
is important to maintain the water balance and avoid
adding or removing process water. In the simulation
a control valve hits the maximum limit. This is the
reason why the outlet steam flow is larger than the inlet
steam flow and thus the water balance can no longer be
kept.

4.2 OTM reactor startup transient

A transient simulation test was carried out for the
membrane reactor model shown in Figure 5 with the
OTM integrated into 3.5 mm OD tubes where one
side of the membrane was exposed to air (total air
flow 10kg/s), while the other side was exposed to ex-
haust/sweep gas (total gas flow 1kg/s). Design param-
eters for membrane tubes and size of reactor are easily
set in the standard geometry parameter dialog from the
CombiPlant library, Figure 10.

22

J. Eborn, F. Selimovic, B. Sundén

The Modelica Association Modelica 2006, September 4th – 5th

Figure 9: Mass flow of steam in the gas flow into
and out of the Benfield plant section during load turn-
down. Humidity control tries to match the flows to
keep the plant water mass balance and avoid using
make-up water.

Simulations show that a steady state condition is
reached after approximately 3 hours, see Figure 11.
BSCFO membrane material shows relatively short
start up time compared to the SCFO materials which
can take 500 hours until reaching steady state operat-
ing condition.

5 Final Remarks

The paper shows how the CombiPlant library, with
components for standard combined cycle power
plants, can be extended and used to build component
and plant models for power plant concepts providing
CO2 emission free power. The library was used in
a project with Siemens Industrial Turbomachinery to
build a dynamic model of the Sargas power plant con-
cept, which uses the commercial Benfield process to
separate up to 95% of the CO2 from the exhaust gases.
In another application example, mass transfer through
an oxygen transfer membrane has been described.
This is a critical component in oxy-fuel combustion
cycles such as AZEP.

References

[1] Sundkvist, S.G., T. Griffin, and N.P. Thorshaug,
AZEP - Development of an integrated air sepa-
ration membrane - gas turbine, In Proceedings of
Second Nordic Minisymposium on Carbon Diox-
ide Capture and Storage, Gothenburg, Sweden,
2001.

Figure 10: CombiPlant dialog for specifying heat ex-
changer geometry parameters. Friendly user interface
provides help to input all required design parameters
used in simulations.

[2] Griffin, T., S.G. Sundkvist, K. Åsen, and T.
Bruun, Advanced Zero Emissions Gas Turbine
Power Plant, In Proceedings of ASME Turbo
Expo 2003, Atlanta, USA, 2003.

[3] Selimovic F., B. Sundén, M. Assadi, and
A. Selimovic, Computational Analysis of an
O2 Separating Membrane for a CO2-Emission-
Free Power Process, In Proceedings of Asme,
IMECE2004-59382, 2004.

[4] Selimovic F., Modeling of Transport Phenom-
ena in Monolithic Structures Related to CO2-
Free Power Processes. Licentiate Thesis, ISSN
0282-199, Department of Energy Sciences, Lund
Institute of Technology, Sweden, 2005.

[5] Casella, F., Object-Oriented Modelling of Two-
phase Fluid Flows by the Finite Volume Method.
In Proceedings of 5th MATHMOD, Vienna, Aus-
tria. Argesim, Vienna, February 2006.

[6] Casella, F., M. Otter, K. Prölß, C. Richter and H.
Tummescheit, The Modelica Fluid and Media li-
brary for modeling of incompressible and com-
pressible thermo-fluid pipe networks. In Pro-
ceedings of the 5th International Modelica Con-
ference, Vienna, Austria. Modelica Association,
September 2006.

[7] Tummescheit H., Design and Implementation of
Object-Oriented Model Libraries using Model-
ica. PhD thesis ISRN LUTFD2/TFRT–1063–SE,

22.1

Modeling and Dynamic Analysis of CO2-Emission Free Power Processes in Modelica using the CombiPlant Library

The Modelica Association Modelica 2006, September 4th – 5th

Figure 11: Oxygen permeation flux of the of the mem-
brane reactor as a function of time.

Department of Automatic Control, Lund Institute
of Technology, Sweden, August 2002.

[8] Lu H., Y. Cong, and W.S. Yang,
Oxygen permeability and stability of
Ba0.5Sr0.5Co0.8Fe0.2O2-d as an oxygen
permeable membrane at high pressures, Solid
State Ionics, Vol.177, pp.595-600, 2006

22.2

J. Eborn, F. Selimovic, B. Sundén

 Session 1b

The Modelica Association Modelica 2006, September 4th – 5th 23

Session 1b

Automotive Applications 1

Session 1b

The Modelica Association Modelica 2006, September 4th – 5th 24

The Modelica Association Modelica 2006, September 4th – 5th

Simulation of Hybrid Electric Vehicles

Dragan Simic Harald Giuliani Christian Kral Johannes Vinzenz Gragger
Arsenal Research

Giefinggasse 2, 1210 Vienna, Austria
phone +43-50550-6347, fax +43-50550-6595, e-mail: dragan.simic@arsenal.ac.at

Abstract

In this work the fuel consumption of two vehicles is
compared. For investigating the fuel consumption a
whole vehicle simulation is developed with the Smart-
PowerTrains library and the SmartElectricDrives li-
brary. Both librarys are written in Modelica language.
As a reference vehicle a conventional vehicle with
manual transmission is modeled. A parallel hybrid
electric vehicle with a starter/generator and two
transition machines at the front and rear drive train
wheels is compared with this reference vehicle. The
operating strategy of the hybrid electric vehicle is
explained. Furthermore, an analysis for finding
the optimal sizes of the electric machines for the
parallel hybrid electric vehicle using the developed
simulation tools and the developed operating strategy
is presented. The practical operation modes of the
parallel hybrid electric vehicle are considered with
regard to the implemented drive train configuration. A
dynamic operating method is developed to determine
the optimal power split between the internal com-
bustion engine and the electric energy sources. The
computer simulation results show the improved fuel
consumption of the hybrid electric vehicle.

Keywords: hybrid electric vehicle; operational strat-
egy; drive train configuration; optimization

1 Introduction

The focus of this paper is to compare the efficiency
and the fuel consumption of a conventional vehicle
and hybrid electric vehicles (HEVs) with scaled elec-
tric components. The SmartPowerTrains (SPT) library
focussing on hybrid electric vehicle concepts is used
for the presented investigations. The SPT library was
developed at Arsenal Research. It is written in Model-
ica language [1]. All mechanical components of a ve-

hicle are modeled with the SPT library. The electrical
components in the HEV concepts are implemented us-
ing the SmartElectricDrives (SED) library. The used
components of the SED library are electric machines,
power sources, measurement devices, modern electric
drive control algorithms and power electronics.
Compatibility with other Modelica libraries such as,
the new SED library, the new VehicleInterfaces library
[2], the Modelica standard library and the Model-
ica.Thermal.FluidHeatFlow, can be guaranteed to the
user due to proper interfaces harmonization thoughout
the development process. This compatibility gives rise
to the development of simulation models with the po-
tential to be expanded to hybrid- and fuel cell config-
urations of automotive vehicles and electric drives of
vehicle auxiliaries [3]. The SPT library is developed to
determine the energy flow in the entire vehicle includ-
ing the energy consumption of electrical- and mechan-
ical components. Furthermore, the fuel consumption
and the exhaust emissions of the vehicle and the in-
ternal combustion engine (ICE) can be calculated and
determined by using SPT library components.
An intelligent operation strategy for optimizing the
fuel consumption is essential in HEV concepts. A con-
trol signal exchange between the energy sources, en-
ergy consumers and all other components of the HEV
is facilitated by the implemented bus concept of the
SPT library. The energy flow in the HEV can be reg-
ulated and optimized independently of the drive mode
of each component.

2 The SmartPowerTrains library

The SPT library, shown in Figure 1, is developed un-
der the framework of Arsenal Research. This library
provides components for modeling and simulating
conventional vehicles and HEVs. The electrification
of conventional vehicles and vehicle components such
as the water pump, the cooling fan and air condition

25

Simulation of Hybrid Electric Vehicles

The Modelica Association Modelica 2006, September 4th – 5th

system give rise to higher efficiency compared to
conventional vehicle designs. Mild and full electric
vehicles are expected to have the highest efficiency.
The simulation of the entire vehicle is needed to find
the optimal drive strategy of an HEV. Particularly, the
coexistent simulation of the mechanical components
and electrical components of the vehicle is crucial.
Such simulations are possible with the developed SPT
library, the SED library and the Modelica standard
library respectively.

In the following the function and the structure of the
package components of the SPT library are explained:

1. AuxiliaryComponents: This package contains the
basic components and partial models. Rotational
and translational mechanical friction models are
included in this package. With the blocks and the
models of this package it is possible to implement
the vehicle parts such as the friction of the bear-
ing, the clutch and the rooling resistance of the
vehicle.

2. Chassis: The Chassis package includes differ-
ent chassis models with drive resistances such as
rolling-, aerodynamic-, climbing-, and accelerat-
ing resistance.

3. DriveTrains: Models of belt drives, mechanical
and automatical gear box concepts, differentials,
power split devices, cardan shafts, chain drives,
clutches, etc. are designed in this package.

4. Electricals: The electric components such as the
starter/generator (SG), the battery and the traction
machines can be found in this package. All com-
ponents of this package are implemented using
the the SED library.

5. Engines: The Engines package contains com-
ponents of the ICE and the interpolation tables
of the fuel consumption and the exhaust emis-
sions. Only mechanical components of the ICE
are modeled in this package.

6. Environments: Two sub-packages are included in
this package: the Cycle package providing differ-
ent cycle models for the determination of the op-
eration cycle and the Ambient package with dif-
ferent ambient models. The cycle models are im-
plemented with interpolation tables.

7. Examples: This package contains the different
concepts of vehicles.

Figure 1: The package browser of the SmartPower-
Trains library in Modelica.

8. Fuels: In this package the fuels are defined.

9. Interfaces: The Interfaces package groups the
Modelica standard bus connectors, VehicleInter-
faces bus connectors and advanced bus connec-
tors.

10. ProcessControllers: This package contains the
different blocks und models for implementing the
necessary control algorithms such as the virtual
driver, the operating strategy for vehicles, etc.

11. Thermals: The Thermals package includes the
thermal models of the thermal management such
as for instance the cooler, the pipeline, the water
pump, etc.

The communication between the SPT and SED li-
braries as well as the independent control of each com-
ponent allow the highest flexibility in the design of
HEV concepts. In the SPT library, the components
of the power train and the remaining vehicle compo-
nents are implemented by algebraic and differential
equations whereas the ICE is implemented by charac-
teristic curves. All parameters of the algebraic differ-
ential equations are defined by geometrical data of the
specific components.

3 The SmartElectricDrives library

The SED library uses basic models of electric ma-
chines which already exist in the Modelica standard
library [4]. However, without suitable drive control
blocks, these machine models cannot be utilized in a
resourceful and easy way. Based on the machine li-
brary, the SED library facilitates the modelling of dif-

26

D. Simic, H. Giuliani, C. Kral, J.V. Gragger

The Modelica Association Modelica 2006, September 4th – 5th

Figure 2: Model of a conventional vehicle.

ferent control structures and control strategies. Power
electronics and energy storage models are included as
well [5].

4 The example of a conventional ve-
hicle

Figure 2 shows a conventional vehicle concept with
front axle drive. All vehicle components are connected
by a expandable bus connectors. These bus connec-
tors are extended models based on the VehicleInter-
faces connectors [2]. The mechanical connection of
rotational components is indicated with solid lines and
circled flanges. The dashed lines show the mechanical
connection between the translational components.
In the block driver the behaviour of a virtual driver
is implemented. The virtual driver controls the state
of the following variables: the gas padel position, the
brake pedal position, the clutch pedal position and the
gear ratio of the transmission. The block cycle and
the block ambient define the desired vehicle veloc-
ity and the state of the environment temperature, the
pressure, the density, etc. The entire control unit of
the vehicle is implemented in the strategy block.
The drive train is realised using a conventional ICE
with a simple cooling circuit, a clutch, a con-
ventional manual transmission, marked as trans., a
cardan and the front axle. Both axles include two

Figure 3: Model of a HEV.

tire models considering slip, two brake models and
a differential model considering losses. The vehicle
handling is implemented in the chassis model.

5 The example of an HEV

The model of the HEV is based on the Toyota Lexus
concept. In this HEV concept three electrical ma-
chines are used. One electrical machine is used as
the starter/generator, indicated as SG in Figure 3, the
two other machines are traction machines (machine
front and machine rear). The SG is coupled
with the sun shaft of the power split device (PSD)
and the ICE is coupled with the carrier shaft respec-
tively. The machine front is coupled with the
axle front via the front differential input shaft
and the machine rear is coupled with the axle
rear via the rear differential input shaft, respectively.

A battery model taken from the SED library is
used as the energy source for the electrical compo-
nents of the HEV model. The intelligent operational
strategy is implemented in the strategy block. The
operational strategy is implemented using the Model-
ica_LinearSystems library. All other components and
models of the HEV are the same as in the conventional
vehicle simulation.

27

Simulation of Hybrid Electric Vehicles

The Modelica Association Modelica 2006, September 4th – 5th

Figure 4: Bubble diagram of the operation strategy

6 The operational strategy of the
HEV

For the optimization of the energy consumption of an
HEV concept an intelligent operational strategy is es-
sential. The operation of energy sources (ICE, SG and
traction machines) in an HEV drive train is monitored
and controlled with the intelligent operation strategy.
Each energy source is regulated independently based
on the state of the entire HEV system.

6.1 Operation modes

In this HEV concept the operation modes of the ICE
and the brake is defined as a state algorithm in the
intelligent operation strategy. In this HEV concept
the operation strategy is implemented using a state
algorithm that defines the main operation modes de-
termined by the state of the ICE and the state of
the brake. The following variables effect the ICE
state and the brake state: the vehicle velocity, the ve-
hicle acceleration and the state of charge (SOC) of
the battery. Figure 4 represents basically the switch
logic between the possible modes [6]. This opera-
tion strategy has four main modes: the standstill
mode, the creeping mode, the regen mode and
the pos/neg mode. In each mode the ICE state, in-
dicated as ign (ignition), and the brake state, indi-
cated as braking is defined. The switching between
the main modes is shown in Figure 4. The variable v,
with the non-SI unit km/h, is the vehicle velocity and
the variable dv is vehicle acceleration.

Standstill mode

If the vehicle is in standstill, the vehicle velocity is
zero and the ignition of the ICE is off. If the SOC
of the battery is low, or the battery and the ICE need
to be warmed up, the ignition of the ICE is on and
working near the idle speed to facilitate the charging
of the battery.

Creeping mode

If the vehicle speed is lower than 20km/h, the crep-
ping mode is active. In creeping mode the operation
strategy is devided into three sub-modes:

1. If the desired torque is not large and the SOC
of the battery is not below the lower limit, the
desired torque is distributed to both traction ma-
chines.

2. If the desired torque is very large and the SOC
of the battery is above the lower limit, the de-
sired torque is distributed to both traction ma-
chines and the SG.

3. If the SOC of the battery is below the lower limit,
the ignition of the ICE is on and the battery gets
charged.

Pos/neg mode

In pos/neg mode the ICE, the SG and the traction
machines are operated such way that maximum fuel
economy is achived. Depending on the SOC of the bat-
tery and the desired torque, the calculation of the dis-
tributed torque can be devided into three different sub-
modes: positive power split, parallel drive and nega-
tive power split.

1. Positive power split: In this sub-mode, the SG is
operated as a generator. If the SOC of the battery
is below the lower limit, the battery gets charged.
As long as the SOC of the battery is not above
the upper limit, the battery gets charged. If the
SOC of the battery is between the lower and the
upper limit, the distribution of the torque is used
to achieve higher efficiency of the ICE.

2. Parallel drive: If the parallel drive mode is ac-
tive, the vehicle is driven by both traction ma-
chines and the ICE. The distribution of the torque
is used to achieve higher efficiency of all power
sources (the ICE, the front and rear electric ma-
chine and the battery).

28

D. Simic, H. Giuliani, C. Kral, J.V. Gragger

The Modelica Association Modelica 2006, September 4th – 5th

3. Negative power split: If the SOC of the battery is

very large, the SG is operated as a motor. In this
case the speed of the SG accelerates in the nega-
tive direction and the speed of the ICE becomes
much lower. If the vehicle velocity is very large,
this sub-mode is active.

Regenerative mode

This regenerative mode, indicated as regen in Figure
4, is active if the brake pedal is applied or the deaccel-
eration of the vehicle is determined. In this case the
ignition of the ICE is off, and consequently, the ICE
gets stopped. Both traction machines are operated as
generators. If the vehicle is in the regenerative mode
and the SOC of the battery is below the upper limit the
battery gets charged.

6.2 Torque distribution

In each operation mode the desired torque (reference
system power, P) is distributed. This torque is defined
by the virtual driver and by the power split equation
(1). In this equation, wICE is the speed of the ICE and
tICE is the torque of the ICE, wSG is the speed of the
SG and tSG is the torque of the SG, wFM is the speed
of the front traction machine and tFM is the torque of
the front traction machine and wRM is the speed of the
rear traction machine and tRM is the torque of the rear
traction machine. The behaviour of the power split in
a planetary gear, PSD, in Figure 3, is extracted from
[7].

P = wICE · tICE −wSG · tSG + wFM · tFM + wRM · tRM

(1)

7 Sources data

The ICE of both investigated vehicle concepts is a
gasoline engine. The following parameters are taken
for modeling and parameterizing the ICE [8]: 1.5cc
displacement, 43kW maximum power at 4000rpm,
102Nm maximum torque at 4000rpm, four cylinders.
The fuel consumption map of this ICE is defined ac-
cording to [9].
The following parameters are taken for modeling
and parameterizing the Ni/MH battery of the HEV
concept: 1.2V cell voltage, 6 cells per module,
38modules, 273.6V battery package voltage, 6.5Ah
rated capacity.

Figure 5: The simulated values of vehicle velocity and
battery SOC

Both traction machines are 3 phase alternating current
(AC) permanent magnet synchronous machines with
an output power of 33kW. The SG has an output power
of 13kW and is also implemented as an permanent
magnet synchronous machine. All electric machines
are modeled using the SED library.
The parameters of the front axle and the rear axle
(brakes, differentials, inertia of rotational parts, etc.)
are defined using [10]. Basically, the Toyota Prius
component data are used to parameterize the HEV
components. The only difference between the pro-
posed HEV concept and the Toyota Prius is that the
proposed HEV concept is featured with one electric
traction machine for each axle. Both traction machines
have the same rated power.

8 Energy balance

Investigating the fuel consumption of a vehicle it is
necessary to assure that the system energy at the start
and the end of a test cycle is the same. In this work
both vehicle concepts are simulated in the New Eu-
ropean Driving Cycle (NEDC). The new NEDC de-
fines vehicle velocity profiles for one urban drive cycle
(UDC) as well as one extra-urban drive cycle (EUDC).
The simulation time of the HEV simulation is chosen
so long that the SOC reaches a steady state. The up-
per diagram in Figure 5 shows the vehicle velocity of
a vehicle concept driving 15 NEDC. The SOC of the
battery is represented in the lower diagram in Figure
5. It can be seen that the SOC of the battery is in bal-
ance on the last cycle. This value of the SOC is used as
the initial value of the SOC for the fuel consumption
calculation in one NEDC.

29

Simulation of Hybrid Electric Vehicles

The Modelica Association Modelica 2006, September 4th – 5th

Figure 6: The decrease in the fuel consumption at dif-
ferent nominal speeds of the electric machines in HEV

9 Simulation results

For the optimization of the HEV the nominal opera-
tion points of the SG and the front- and rear machine
are varied. All other design parameters of this com-
ponents are kept constant. The nominal speed of the
SG, WSG, shown in Figure 6, is varied from 200 rad/s
to 800rad/s and the nominal speed, WM, of the front
and rear electric machine is varied from 270 rad/sec to
700rad/s. The size of the used battery is kept constant
and the components of the drive train in the HEV are
not varied.
Figure 6 shows the simulated results of the HEV with
different nominal operation points of the traction ma-
chines and the SG. The decrease in the fuel consump-
tion (fuel consumption decrease) is given in
percent and shows the economic gain compared to
the conventional vehicle concept. The possible de-
crease in fuel consumption is in the range from 20% to
31.4% for this varied range of the nominal speeds of
the electric machines. The best efficiency of the HEV
is at WSG = 310rad/s and WM = 298rad/s. In this point
the decrease in fuel consumption is 31.4%.
Here the best design point of an HEV concept is cal-
culated and defined. In the simulations a number of
NEDCs is used. Therefore, the simulation results can
not be applied to other drive cycles. The simulation
results are valid for the performed NEDC only.

10 Conclusions

The implemented vehicle simulation allows the deter-
mination of the actual fuel consumption and shows ev-

idence of economic savings potential by using alterna-
tive drive train concepts – in this case a HEV. Different
vehicle drive train concepts and operating cycles can
rapidly be analized and tested on fuel consumption and
efficiency. Based on the presented results, the design
point of the energy sources and the energy consump-
tion of each vehicle component can be calculated and
determined. It is shown that the presented libraries can
be used to accelerate the design process of innovative
vehicle concepts significantly.
This investigation can only be used for the design of
vehicles, which are driven in an exact operating cycle
such as the exact city drive, the exact reiteration drive,
etc.
Based on the calculated decrease in fuel consumption
the reduction of energy and emissions of a vehicle on
European level can be projected. Focus of the devel-
oped process is the realisation of integrated and opti-
mized electric components in autmotive industry. For
demonstration purpose selected electrical components
such as an SG will be built and integrated in a test ve-
hicle in the near future.

11 Abbreviations

HEV hybrid electric vehicle

SPT SmartPowerTrains

SED SmartElectricDrives

ICE internal combustion engine

SG starter/generator

PSD power split device

SOC state of charge

AC alternating current

NEDC New European Driving Cycle

UDC urban drive cycle

EUDC extra-urban drive cycle

References

[1] Peter Fritzson, Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
IEEE Press, Piscataway, NJ, 2004.

30

D. Simic, H. Giuliani, C. Kral, J.V. Gragger

The Modelica Association Modelica 2006, September 4th – 5th

[2] M. Dempsey, H. Elmqvist, M. Gaefvert, P. Har-

man, C. Kral, M Otter, and P. Treffinger, “Co-
ordinated automotive library for vehicle system
modelling”, 5th International Modelica Confer-
ence 2006, 2006.

[3] D. Simic, H. Giuliani, C. Kral, and F. Pirker,
“Simulation of conventional and hybrid vehicle
including auxiliaries with respect to fuel con-
sumption and exhaust emissions”, SAE World
Congress 2006, April 2006.

[4] C. Kral and A. Haumer, “Modelica libraries
for dc machines, three phase and polyphase ma-
chines”, Modelica Conference, pp. 549–558,
2005.

[5] H. Giuliani, C. Kral, J.V. Gragger, and F. Pirker,
“Modelica simulation of electric drives for ve-
hicular applications . the smart drives library”,
ASIM, 2005.

[6] Y. Zhu, Y. Chen, and Q. Chen, “Analysis and de-
sign of an optimal energy management and con-
trol system for hybrid electric vehicles”, Electric
Vehicle Symposium, EVS19, Busan, Corea, Oc-
tober 2002, October 2002.

[7] W. Beitz and K.H. Küttner, Dubbel Taschenbuch
für den Maschinenbau, Springer Verlag, Berlin,
14 edition, 1981.

[8] G.C. Kim and Y.J. Lee, “The influence of driving
conditions on fuel economy and exhaust emis-
sions of the toyota PRIUS HEV”, The 20th In-
ternational Electric Vehicle Symposium and Ex-
position, 2003.

[9] National Renewable Energy Labaratory (NREL),
“Advisor documentation, advisor data file fc
prius jpn”, www.ctts.nrel.gov, 2002.

[10] Toyota Motor Corporation, Prius II Service Man-
ual, Toyota Motor Corporation, 2003.

31

Simulation of Hybrid Electric Vehicles

The Modelica Association Modelica 2006, September 4th – 5th

32

D. Simic, H. Giuliani, C. Kral, J.V. Gragger

Coordinated automotive libraries for vehicle system modelling

Mike Dempsey1, Magnus Gäfvert2, Peter Harman3,
Christian Kral4, Martin Otter5, Peter Treffinger6

1 Claytex Services Limited, Hatton, UK
2 Modelon AB, Lund, Sweden

3 Ricardo UK Limited, Leamington Spa, UK

4 arsenal research, Vienna, Austria
5 DLR, Oberpfaffenhofen, Germany

6 DLR, Stuttgart, Germany
vi@claytex.com

Abstract

A new free Modelica library, called VehicleInter-
faces, has been developed to promote compatibility
between Modelica automotive libraries. The library
provides standard system interface definitions that
enable the whole vehicle system to be conveniently
modelled. Example vehicle models are also pro-
vided to illustrate the use of the interface definitions.
Practical applications and examples of how these
interface definitions can be used are presented.

1 Motivation

A number of Modelica library developers are work-
ing independently on automotive libraries focused on
different vehicle systems such as PowerTrain [1],
Transmission [2], VehicleDynamics [3] and Smar-
tElectricDrives [4]. For many simulation activities it
is desirable to be able to create whole system models
[5] that combine elements from the different libraries

and provide easy ways to integrate user-developed
models.

This work is based on previous work carried out by
the authors and also builds on the work done on the
Modelica Vehicle Model Architecture published by
Tiller et. al.[6].

The approach adopted in developing this library has
been to focus on standardising the subsystem inter-
faces rather than developing a standard vehicle
model architecture. Several different example archi-
tectures based on these interfaces are provided as
examples in the VehicleInterfaces library. A typical
example is shown in Figure 1 where all the main
subsystems (driver, driverEnvironment, engine,
transmission, driveline, chassis, brakes, accessories,
road, atmosphere, etc.) are included at the top level
of the model. In this example it is assumed that the
controllers for the respective subsystems are part of
the subsystem model. In other architectures, the con-
trollers might be on the same level as the subsys-
tems.

All subsystem models in the architecture are de-

Figure 1: Example vehicle model using VehicleInterfaces shown in Dymola 6.0b

33

Coordinated Automotive Libraries for Vehicle System Modelling

The Modelica Association Modelica 2006, September 4th – 5th

clared as “replaceable”. When instanting an archic-
tecture model, the desired subsystem model can be
selected via a redeclaration. In Dymola there are two
ways to redeclare components using the graphical
user interface as shown in Figure 2.

The dialog box shown at the top of Figure 2 is ac-
cessed through the model browser by right-clicking
on the base class being extended. The scroll down
menus show the available subsystem models that can
be selected. As usual, these menus are automatically
constructed via the annotation “choicesAllMatching
= true” (all model components are shown that are
loaded into the Modelica simulation environment
and are derived by inheritance from the respective
superclass).

In Dymola 6 redeclarations can be made by right
clicking on a replaceable subsystem, the context
menu then allows the user to select an option from
the list of matching types. The list is determined

using the same annotation as the dialog box method.

2 Interface Definitions

The subsystem decomposition used within the Vehi-
cleInterfaces package follows the same basic struc-
ture as used in the Modelica VMA developed by
Tiller et al [6]. In the following sections we will dis-
cuss the subsystems and modelling methods intro-
duced with the VehicleInterfaces package.

2.1 Conditional Connectors

The VehicleInterfaces package makes extensive use
of conditional connectors so that a single subsystem
interface definition can be used for a wide range of
applications. A conditional component, such as a
connector, is one that is only instantiated in the
model if the corresponding Boolean condition is true.
The Modelica code for an example conditional com-
ponent is shown in Figure 3. In this example the
component shaft is only instantiated in the model if
the user sets the parameter includeInertia=true, if
the parameter is false then the component and all
related connections are completely removed from the
model.

If we consider the engine subsystem, this includes
conditional connectors for the engineMount and ac-
celeratorPedal connections. The engineMount con-
nector models the physical connection between the
engine block and the engine mounting system as a
MultiBody connection. This is not always required,
for example when modelling the engine as a simple
1D system. Similarly the acceleratorPedal, which is
a 1D translational connector provides a physical
connection between the engine subsystem and the
driver environment, which isn’t required in a drive-
by-wire vehicle.

By using conditional connectors these components
are completely eliminated from a model when they
are not required. If they were not eliminated it
would be necessary to add additional components to
ensure that all the flow variables within the connec-
tors were being properly defined. This would add
additional overhead to the simulation task and should

Figure 2: Two methods for the redeclaration

of subsystem models in Dymola 6

model Example
 parameter Boolean includeInertia=false;
 Rotational.Inertia shaft if includeInertia;
 ...
end Example;

Figure 3: Example of a conditionally instantiated
Inertia component.

34

M. Dempsey, M. Gäfvert, P. Harman, C. Kral, M. Otter, P. Treffinger

The Modelica Association Modelica 2006, September 4th – 5th

be avoided whenever possible.

Conditional connectors are used wherever a connec-
tor might not be needed in every application. These
include all MultiBody connectors and all the physi-
cal connections between the driver environment and
the subsystem models.

2.2 Modelling Rotating Components

Within VehicleInterfaces rather than limiting our-
selves to modelling rotating components as a simple
1D rotation we have built in the flexibility to model
rotating components as MultiBody systems. This
has been possible through the development of a new
connector called FlangeWithBearing. This is a hier-
archical connector that contains a 1D rotational con-
nector and a conditional MultiBody connector. The
use of the MultiBody connector is controlled by a
parameter in the connector. This enables the
FlangeWithBearing connector to model rotational
effects as a purely 1D system or it can correctly in-
clude MultiBody effects. The Modelica definition of
this new connector is shown in Figure 4 and the
connector is now available within the Multi-
Body.Interfaces package of the Modelica Standard
Library 2.2.1.

Where this connector is used in an interface defini-
tion the parameter includeBearingConnector is
linked to a parameter at the model level so that the
model developer can easily activate this connector if
required. An example of how this is used is shown
in Figure 5 where the driveline interface definitions
for a 2-axle vehicle are shown. In the Base class we
can see that three Boolean parameters are declared
as protected parameters. This means they are only
available to the model developer as they create the
subsystem model and cannot be changed when the
model is used.

The use of the bearing connectors needs to carefully
considered to avoid inadvertently creating mechani-
cal loops in the model. The following example
guidelines for the engine and transmission subsys-
tems should help highlight the issues so that the

model developer can determine when it is appropri-
ate to use the bearing connectors. For the engine and
transmission subsystem models:

1. When they are modelled as a pure 1D rotational
system then no bearing connectors are required.

2. When they are modelled as a 1D rotational sys-
tem with reactions on to a MultiBody system
then no bearing connectors are required

3. When they are being modelled as a MultiBody
system but they are rigidly connected together
then the bearing frame between the engine and
transmission should not be included. In this case
the transmissionMount connector should support
the MultiBody elements of the transmission.
The rest of the model then needs to be consid-
ered before deciding whether to include the bear-
ing between the transmission and driveline or be-
tween the engine and accessories subsystems.

4. When they are being modelled as a MultiBody
system but they are not rigidly connected to-

model Base
 MultiBody.Interfaces.FlangeWithBearing
 TransmissionFlange(
 final includeBearingConnector=
 includeTransmissionBearing);
 VehicleInterfaces.Interfaces.ControlBus
 ControlBus
 MultiBody.Interfaces.Frame_a drivelineMount
 if includeMount;
protected
 parameter Boolean
 includeWheelBearings=false;
 parameter Boolean includeMount=false;
 parameter Boolean
 includeTransmissionBearing=false;
end Base;

model TwoAxleBase
 extends Base;
 MultiBody.Interfaces.FlangeWithBearing
 WheelHub_1(
 final includeBearingConnector=
 includeWheelBearings);
 MultiBody.Interfaces.FlangeWithBearing
 WheelHub_2(
 final includeBearingConnector=
 includeWheelBearings);
 MultiBody.Interfaces.FlangeWithBearing
 WheelHub_3(
 final includeBearingConnector=
 includeWheelBearings);
 MultiBody.Interfaces.FlangeWithBearing
 WheelHub_4(
 final includeBearingConnector=
 includeWheelBearings);
end TwoAxleBase;

Figure 5: Modelica code for the
driveline interface definition

connector FlangeWithBearing
 parameter Boolean
 includeBearingConnector=false;
 Rotational.Interfaces.Flange_a flange;
 MultiBody.Interfaces.Frame bearingFrame
 if IncludeBearingConnector;
end FlangeWithBearing;

Figure 4: Modelica code and icon for

the FlangeWithBearing connector

35

Coordinated Automotive Libraries for Vehicle System Modelling

The Modelica Association Modelica 2006, September 4th – 5th

gether then the bearing frame between the engine
and transmission will be required to support the
intermediate drive shaft.

2.3 Driver and Driver Environment Subsys-
tems

The driver and the physical interaction between
driver and vehicle can be modelled as separate sub-
systems or combined as a single subsystem within
the VehicleInterfaces package. The decision is down
to the model developers and will influence the extent
to which models are reusable in other applications.
The physical interactions, such as steering and throt-
tle controls and feedback signals, are referred to as
the driver environment within VehicleInterfaces.

When the driver and driver environment are mod-
elled as separate subsystems the driver environment
model is responsible for converting the normalised
instructions passed from the driver model in to the
correct values for this particular vehicle model. For
example, a driver model should demand normalised
steering wheel angles between –1 and 1 and this
should be translated by the driver environment sub-
system in to the appropriate steering wheel angle for
the current vehicle. This enables the driver model to
be defined in a generic way for use on many differ-
ent vehicles.

The interaction between the driver and driver envi-
ronment subsystem is modelled using an expandable
connector known as the driver interaction bus. The
connections passed across this bus are a combination
of signal values and normalised physical connec-
tions. A normalised physical connection contains
both the normalised position and the actual force or
torque being applied across the connection. The
naming and types for the signals that are exchanged
between these two subsystems is defined within the
VehicleInterfaces package to ensure compatibility
between driver models and driver environment mod-
els from different libraries.

When only the driver environment subsystem is pre-
sent this should also include the driver model and it
is the responsibility of the individual model develop-
ers to provide a logical separation between the envi-
ronment and driver models.

2.4 Powerplant Mounts Subsystem

Unlike in the Modelica VMA the Powertrain mount-
ing systems are modelled as separate subsystems
when they are required in a model. In Figure 1 we
see that there are two separate mounting systems,
one for supporting the engine and transmission and

another that supports the differential. The modelling
of the mounting systems in this way reflects the
physical reality of a rear-wheel drive vehicle in
which the engine and transmission are rigidly con-
nected together and mounted as one system at the
front of the vehicle and the differential in the rear
axle is independently mounted. Vehicles with dif-
ferent driveline configurations would require a dif-
ferent arrangement for the mounting systems.

The mounting subsystems are all defined by extend-
ing a base class that includes a MultiBody connector
that should be connected to the vehicle body. There
are 3 mounting subsystem templates provided within
the VehicleInterfaces package that can be used to
support differing numbers of powertrain subsystems.
The connections to the powertrain subsystems are
modelled using MultiBody connectors.

When the mounting systems are not being modelled
these subsystems can be removed from the model
architecture to simplify the vehicle model.

2.5 Road Subsystem

The road subsystem is used to define the road sur-
face and supports varying friction coefficients, cur-
vature, gradients and banking. The road is defined
as a series of replaceable functions that are used to
determine the position along the road, the normal to
the road surface, the current heading of the road cen-
tre line and the friction coefficient. By redeclaration
of these functions a wide range of road models from
a straight flat road through to a curved undulating
road can be created.

When a road is used at the top level of a model it
should be declared with the prefix inner so that it can
be referenced from any subsystem or component
within the model that needs to determine information
about the road surface. When a subsystem needs to
refer to the road subsystem it should contain an outer
version of the road subsystem and this will then en-
able it to access the road definition from the top-
level of the model.

2.6 Atmosphere Subsystem

The atmosphere subsystem defines the ambient con-
ditions including temperature, pressure, humidity,
wind speed and direction. The atmosphere is defined
as a series of replaceable functions that determine
these conditions at a specified point in space. This
enables the ambient conditions to vary with the vehi-
cle position so effects such as wind can be varied as
the vehicle drives along a track.

36

M. Dempsey, M. Gäfvert, P. Harman, C. Kral, M. Otter, P. Treffinger

The Modelica Association Modelica 2006, September 4th – 5th

2.7 Example Vehicle Architectures

Using these interface definitions we can create a va-
riety of vehicle model architectures to suit different
applications. Figure 1 shows an example architec-
ture for a rear-wheel drive automatic transmission
passenger car that includes a separate driver model
and powertrain mounting systems. Figure 6 shows
some other possible model architectures including
(from top to bottom) a manual transmission vehicle;
an alternative layout for an automatic transmission
vehicle; a power-split hybrid vehicle model. In all
these cases it is possible to re-use the same subsys-
tem models because the interface definitions are con-
sistent even though the top-level model appears very
different.

3 Control Bus Structure

3.1 Overview

Within the VehicleInterfaces library every subsystem
that forms part of the vehicle model has a connection
to the control bus. The control bus is used to pass
information between the subsystems that would
normally be passed along the CAN bus or similar
vehicle communication network. The VehicleInter-
faces control bus does not model how the vehicle
network communication actually works but instead
provides a structure by which the same information
can be exchanged between the various subsystems.

The control bus is modelled using a series of hierar-
chical expandable connectors, which means that the
user can place any signal they need on to the control
bus. As part of the VehicleInterfaces library a mini-
mum set of signals and a structure for the control bus
is recommended so that systems that follow these
recommendations can easily be coupled together.

A hierarchical structure to the control bus is pro-
posed where the subsystem name is used to help
structure the signals on the bus. For example signals
placed on to the control bus from the chassis subsys-
tem should be placed within the chassisBus structure
of the controlBus, see Figure 7 for an illustration of
the current minimum set of signals for the control
bus. A full naming convention is included with the
VehicleInterfaces package.

3.2 Working with the Control Bus

Every subsystem within the VehicleInterfaces pack-
age contains a controlBus connector that will allow
the subsystem access to the complete control bus

structure. To access a signal within the control bus
hierarchy it is first necessary to add the appropriate
sub-bus connector to the model as a node, i.e. a pro-
tected connector. Signals within this part of the con-
trol hierarchy can then be accessed by connecting to
the sub-bus connector. Figure 8 shows how the lon-
gitudinal velocity signal within the chassisBus sub-
bus on the vehicle controlBus can be accessed. The
Modelica code for this example is also shown. This
methodology is necessary due to the way the Mode-
lica language specification defines expandable con-
nectors [7].

Figure 6: Example model architectures

37

Coordinated Automotive Libraries for Vehicle System Modelling

The Modelica Association Modelica 2006, September 4th – 5th

3.3 The Sub-bus Connectors

The sub-bus connectors are defined within the Vehi-
cleInterfaces.Interfaces package and are all defined
as expandable connectors. As such the connectors
don’t contain any signal names and yet we would
like it to be possible to generate a list of pre-defined
names to make it easier for the user to connect to the
control bus and access the appropriate signal.

To enable this to happen, within the VehicleInter-
faces package each expandable connector has been
extended and the standard signals have been defined
within these extended connectors. These connectors
are not intended for use directly within a model but
are necessary to enable a Modelica tool to generate a
list of possible signal names. Within Dymola, when
a connection to an expandable connector is made a
dialog box is generated with a list of signal names.
The list of signal names is now determined by
searching through the open libraries to find connec-
tors that extend from the type of expandable connec-
tor used in the current connection. All the signals
that are defined within the connectors that extend
from the base connector are then added to the list and
the user can select the appropriate one.

This functionality means that the user can easily
connect to one of the standard signal names but also
means that it is not absolutely necessary for them to
assign values to every signal that is defined as part of
the standard VehicleInterfaces control bus. It also
allows different library developers to extend the con-

trol signal bus in appropriate ways for their library
and to have the names automatically appear in mod-
els.

4 Usage Examples

Three different usage examples are presented to il-
lustrate different ways that the interface templates
can be used to model vehicles with different levels of
detail. The first two examples illustrate two different
approaches to modelling a rear-wheel drive driveline
and the third example illustrates how the different
commercial model libraries that are adopting these
interface definitions can be coupled together.

4.1 Rear-Wheel-Drive Vehicle as a 1D System

The simplest way to model a vehicle powertrain is as
a 1D rotational system. This approach does have
many uses, such as fuel economy studies, and this
example illustrates how the interface templates can
be used in this way. Figure 9 shows the driveline
model diagram for a rear-wheel drive vehicle mod-
elled as a purely 1D rotational system. Components
in this model are taken from the Modelica Standard
Library and the PowerTrain library.

In this example the parameters that control the condi-
tional connectors for the driveline interface class are
all left with their default values of false. This means

Figure 7: Current minimum set of

signals in the control bus

model controlBusDemo
 extends TwoAxleBase;
protected
 VehicleInterfaces.Interfaces.ChassisBus
 chassisBus;
public
 Modelica.Blocks.Math.Gain gain;
equation
 connect(controlBus.chassisBus,

 chassisBus);
 connect(gain.u,
 chassisBus.longitudinalVelocity);
end controlBusDemo;

Figure 8: Accessing signals on the control
bus (model diagram in Dymola)

38

M. Dempsey, M. Gäfvert, P. Harman, C. Kral, M. Otter, P. Treffinger

The Modelica Association Modelica 2006, September 4th – 5th

that the bearing frame connectors within the
FlangeWithBearing connectors (transmissionFlange,
wheelHub_1, etc.) are not instantiated in the model
and neither is the drivelineMount connector. This
leaves us with a simple model using just the 1D rota-
tional connectors for the transmission and wheel
hubs.

When modelling a 1D rotational system it is some-
times necessary to include the reactions of the 1D
rotational system on a MultiBody system [8].
Adapting the rear-wheel-drive model to include Mul-
tiBody effects would lead to the diagram in Figure
10. To enable this model to be built the driveline-
Mount connector needs to be enabled so that the
MultiBody reactions can be transmitted in to the ve-
hicle body. The bearing frame connectors within the
transmissionFlange and wheelHub connectors are
not required in this model as the driveline is not be-
ing modelled as a MultiBody system.

4.2 Rear-Wheel-Drive Vehicle as a MultiBody
System

The same driveline interface template can be used to
model the complete driveline as a MultiBody system.
In this case the use of the bearing connectors within
the FlangeWithBearing connectors needs to be
thought about carefully in order to make sure me-
chanical loops aren’t inadvertently created. Consid-
eration needs to be given to the way in which the
MultiBody components are being supported both in
the physical system and in the model itself.

In the case of a rear-wheel drive vehicle the prop-
shaft is supported by the transmission and the differ-
ential. So in this case the bearing frame in the
transmissionFlange needs to be included so that this
end of the propshaft is correctly supported. The dif-
ferential is also being modelled as a MultiBody sys-
tem so this will support the other end of the prop-
shaft. The differential itself is typically supported by
an elastic mounting system that would be connected

Figure 10: 1D Rotational model of a rear-wheel
drive driveline with reactions on to a MultiBody

system

Figure 9: Simple 1D Rotational model
of a rear-wheel drive driveline

Figure 11: MultiBody model of
a rear-wheel drive driveline

39

Coordinated Automotive Libraries for Vehicle System Modelling

The Modelica Association Modelica 2006, September 4th – 5th

to the driveline model via the drivelineMount con-
nector.

Finally it needs to be considered how the halfshafts
are supported, one end is attached to the differential
and supported by the output bearings of the differen-
tial, the other end is attached to the wheel hub and
supported by the wheel bearing. This means the
bearing frames in the wheel hub connectors need to
be included. An example of how this subsystem
might look is shown in Figure 11.

4.3 Active 4WD Vehicle Model

By combining models from the PowerTrain and Ve-
hicleDynamics libraries it is possible to study the
handling benefits of active four-wheel-drive systems
and compare this to the handling of the same vehicle
with a conventional, passive four-wheel drive sys-
tem.

The vehicle model is created using various subsys-
tem models from the PowerTrain library and the Ve-
hicleDynamics library. The PowerTrain library con-
tains an active four-wheel drive system model shown
in Figure 12. The driveline is modelled as a 1D rota-
tional system and includes the reactions on to the
vehicle body. To make this 1D driveline model
compatible with a MultiBody chassis model from the
VehicleDynamics library we need to activate the flag
usingMultiBodyChassis in the “Advanced” menu of
the driveline component parameter dialog. When this

parameter is set to true the bearing connectors within
the wheelHub connectors are included and zero
forces and torques are applied to these bearing con-
nectors.

The driveline control system model within the Pow-
erTrain library provides parameters to enable or dis-
able the control of the active differentials. When
disabled the driveline behaves as a conventional,
passive four-wheel-drive system so this model can
easily be used to assess the benefits of active versus
passive four-wheel-drive.

The vehicles are tested by accelerating from rest to
100kmh and then negotiating a tight chicane at
100kmh whilst trying to maintain this speed. Figure
13 shows how the yaw rate, steering angle and longi-
tudinal speed of the two cars varies during the test.
As a chassis model from the VehicleDynamics li-
brary is being used the behaviour of the cars during
the test can be animated, Figure 14 shows a compari-
son of how the two cars behave.

5 Outlook

The first version (1.0) of the VehicleInterfaces li-
brary has been presented. Future developments and
refinements will be based on feedback from automo-
tive library developers and users of the VehicleInter-

Figure 12: Active four-wheel drive system
 from the PowerTrain library

Figure 13: Comparing Active and Passive Four-
Wheel Drive. Yaw-rate (top), Longitudinal ve-

locity (middle) and Steering angle (bottom).

40

M. Dempsey, M. Gäfvert, P. Harman, C. Kral, M. Otter, P. Treffinger

The Modelica Association Modelica 2006, September 4th – 5th

faces library. Currently only a small set of standard-
ised signals have been defined on the control bus and
it is likely that this will need to be extended signifi-
cantly to meet the needs of users.

6 Acknowledgements

A number of automotive library developers and con-
sultants have co-operated to develop this release of
the VehicleInterfaces Library. The developers can all
be contacted by emailing vi@claytex.com. In addi-
tion to the authors of this paper the following people
have also contributed:

Arsenal Research: Franz Pirker, Anton Haumer,

DLR Oberpfaffenhofen: Christian Schweiger, Jakub
Tobolar.

DLR Stuttgart: Marcus Baur, Jörg Ungethüm

Modelon AB: Johan Andreasson

Ricardo UK Ltd: Mark Ingram

This library has been developed from work on the
original Modelica VMA [6] developed by Michael
Tiller et al. Additional ideas from intermediate work
by members of DLR Oberpfaffenhofen and Modelon
has also been incorporated.

Hilding Elmqvist from Dynasim AB is responsible
for bringing this group of developers together with
the objective of developing a standard automotive
model architecture. Dynasim have funded much of
the development of this library.

References

[1] Schweiger C., Dempsey M., Otter M.: The Power-
Train Library: New Concepts and New Fields of Ap-
plications. Proceedings of Modelica 2005 Confer-
ence. http://www.modelica.org/events/Confer-
ence2005/online_proceedings/Session6/Ses-
sion6a1.pdf

[2] Brandao F., Harman P.: An Integrated Simulation
Approach: Ricardo Transmission and Driveline Dy-
namic Simulation Library. IMechE Integrated Power-
train and Driveline Systems 2006

[3] Andreasson J., Gäfvert M.: Vehicle Dynamics Li-
brary. Proceedings of Modelica 2006 Conference.

[4] Giuliani H., Kral C., Gragger J.V, Pirker F.;. Mode-
lica Simulation of Electric Drives for Vehicular Ap-
plications – The Smart Drives Library. ASIM con-
ference, 2005

[5] Alexander T., Liu C.S., Monkaba V.: Multi-Body
Dynamic Modeling Methods and Applications for
Driveline Systems. SAE 2002-01-1195

[6] Tiller M., Bowles P., Dempsey M.: Development of a
Vehicle Modeling Architecture in Modelica. Proceed-
ings of the Modelica 2003 Conference.
http://www.modelica.org/events/Conference2003/pap
ers/h32_vehicle_Tiller.pdf

[7] Modelica: Language Specification 2.2. Feb. 2005.
Section 3.3.8, pp. 54 – 59 (expandable connectors).
http://www.modelica.org/documents/ModelicaSpec2
2.pdf

[8] Schweiger C., Otter M.: Modelling 3D Mechanical
Effects of 1D Powertrains. Proceedings of Modelica
2003 Conference,Nov. 2003.
http://www.modelica.org/events/Conference2003/pap
ers/h06_Schweiger_powertrains_v5.pdf

Figure 14: Visualising the behaviour of
the two cars in Dymola. The green car
has active four-wheel drive and the red

car has passive four-wheel drive.

41

Coordinated Automotive Libraries for Vehicle System Modelling

The Modelica Association Modelica 2006, September 4th – 5th

42

M. Dempsey, M. Gäfvert, P. Harman, C. Kral, M. Otter, P. Treffinger

The Modelica Association Modelica 2006, September 4th – 5th

The Modelica Association Modelica 2006, September 4th – 5th

The VehicleDynamics Library � Overview and Applications
J. Andreasson and M. Gäfvert

MODELON AB
{johan.andreasson,magnus.gafvert}@modelon.se

Abstract
The VehicleDynamics Library provides a foundation
for model-based vehicle dynamics analysis, in parti-
cluar related to road-vehicle handling. This commer-
cial new library is a major improvement and expan-
sion of the previously available free vehicle dynamics
library. This paper gives an introduction and overview
of the new library and gives some example use-cases.

1 Introduction
The potential of Modelica as a mean to ef�ciently de-
scribe vehicle models has been recognised for quite
a while [1, 2, 3, 4, 5] and lead to the initiative to
develop a library for vehicle dynamics studies [6].
This resulted in the free VehicleDynamics library that
was developed and maintained by Johan Andreasson
during 2000�2004, on the initiative and with support
from Hilding Elmqvist (Dynasim AB) and Martin Ot-
ter (DLR Research Center Oberpfaffenhofen).

The great interest in the free VehicleDynamics li-
brary and increased requirements and demands on new
features, continuity in maintenance and support, and
not the least complete documentation triggered the de-
cision to develope the library into a commercial prod-
uct. This initiative was taken by MODELON AB in
2004, and has resulted in the commercial VehicleDy-
namics Library. The current version 1.0 of the library
is a substantial extension and improvement of the now
deprecated free VehicleDynamics library.

The VehicleDynamics Library, or VDL, is in-
tended for vehicle dynamics analysis related to me-
chanical design and control design of automotive chas-
sis. Handling behaviour is the primary target, but the
library is also well suited for studies of other vehicle
properties. The sequel will enlighten the contents and
use of the library, pinpoint some key issues in the de-
velopment and outline some expected enhancements.

2 Model and Library Structure
A road vehicle contains a multitude of parts and sub-
systems. Conceptually, these can be organized in a
hierarchy. For example, a car contains a chassis, that
contains front and rear suspensions, that contains left
and right suspension linkages and steering, etc. In
analogy with this, it is natural to structure a model of a
vehicle similarly and that is also re�ected in how mod-
els in the VehicleDynamics Library and the library it-
self are organized as illustrated in �gure 1 which con-
tents are discussed more in section 3.

There are also vital models that are not re�ected in
neither of these illustrations that are gathered in special
sub-packages throughout the package hierarchy:

Interfaces The Interfaces sub-packages contain
common connector and parameter de�nitions and
are used as base classes to ensure compatibility.
Advanced users that de�ne their own component
models should use these classes, when applica-
ble.

Templates The Templates sub-packages contains
template classes that can be regarded as �wiz-
ards� to create more complex component mod-
els, vehicles, and experiments. By extending a
template model and �lling the placeholders with
actual component models, new models can be im-
plemented in an ef�cient way that is easy to main-
tain.

Components The Components sub-packages con-
tain models that are used to build component
models in the corresponding package. These
models can be used by advanced users that build
their own component models.

Internal The Internal packages contains models
of no normal interest for the user, and these mod-
els should not be directly used by the user.

Experiments Models in VDL that are complete
and meaningful to simulate are called Experi-
ments and are indicated by a speci�c icon. Tem-
plates for experiments are located throughout the

43

The VehicleDynamics Library - Overview and Applications

The Modelica Association Modelica 2006, September 4th – 5th

Figure 1: Hierarchy of an experiment model (top) and part of the hierarchical library structure (bottom).

44

J. Andreasson, M. Gäfvert

The Modelica Association Modelica 2006, September 4th – 5th

library structure and include setups like full ve-
hicle or chassis on a road, as well as test-rigs for
analysing individual components or subsystems
as discussed in section 5.

As for the sub-packages, there are also component
types that are found throughout the library:
Base Base class for group of components in a sub-

package. Located in Interfaces subpackage. Par-
tial (incomplete) classes that must be extended
before being instantiated.

Standard Base class for group of components in a
subpackage. The Standard base classes differs
from the Base base-classes in that they are less
general. Standard base classes are designed to
provide a standard connector interface that cov-
ers the most common variants for the component
type. Standard base-classes extend from Base
base-classes.

None No (empty) implementation of a component
that still simulates. Null components are mainly
used in templates as a way to �leave out� compo-
nents.

Typical Component that represents a typical vari-
ant.

Basic Basic model of a component.

Ideal Ideal model of a component.

3 Library Contents
3.1 Atmospheres
The Atmospheres package contains models of atmo-
spheric conditions such as wind speed, humidity and
density. This information is useful for analysis in-
volving aerodynamic resistance or downforce, and re-
sponses to wind disturbances. It can also be used
for other models that requires atmospheric information
such as engine cooling.

3.2 Drivers
The Drivers package contains con�gurable open-loop,
closed-loop, and event-driven driver models. The
open-loop models has an extended set of sources to
also be able to handle standard maneuvers such as
instability triggering sine with dwell time or sine in-
creasing amplitude. The closed-loop models use road
information (se below) for positioning on and speed
control. More complex sets of instructions are handled
by the event driven driver model that allows changing
between and combining open and closed loop tasks.

3.3 Roads and RoadBuilder
The Roads package contains road models and related
components. The �at ground with optional inclina-
tion is useful for open-loop studies, while the ver-
satile 3-dimensional table-based road model can be
used with closed-loop driver models to analyze ma-
neuver responses and driving on road-segments with
user-de�ned geometry. The road models also contain
reference trajectories for drivers without planning abil-
ities. Obstacles such as cones and wind indicators can
be used to make animations more illustrative.

The RoadBuilder sub-package contains utilities to
create tables for the 3D-road model, either specialized
for e.g. a double lane change or more generic, �gure2
illustrates typical input for the latter: Curvature is the
inverse of the radius of the center line (1), road slope at
the center line is the altitude increment along the road
heading direction (2) and banking is the altitude incre-
ment perpendicular to the road center line (3). Road
is the downwards-outwards increment from the center
line which is present on roads to allow ef�cient water
drainage (4). Left (5a) and right (5b) road edges are
de�ned so that positive values de�nes the offset to the
left of the center line. Note that the right edge always
should have a greater value than the left edge. The
start position (6) and heading angle (7) is the position
and angle of the center line at zero distance, respec-
tively. The track position (11) is de�ned as an offset
from the road's center line that a driver model may
follow by varying the steering input. If the offset is 0,
the driver will follow the road center line and accord-
ingly there is a velocity reference (11). The user can
also specify the maximum error that is allowed due
to linear approximation of a curve segment (8) and a
maximum allowed distance between two consecutive
grid points, this only occur for long straights (9). The
resolution (10) de�nes the minimum distance between
two grid points that RoadBuilder consider as separate
when merging the input tables. Additionally there are
cones that can be positioned along the road.

3.4 Vehicles
The Vehicles package contains models of whole vehi-
cles and related components. Vehicle models are par-
titioned into the subsystems: chassis, driver, environ-
ment, engine, transmission, driveline, and brakes. The
focus of VehicleDynamics Library is on chassis mod-
els, but there are also models of other subsystems such
as driver, environments, engines, transmissions, drive-
lines, and brakes. The Vehicles package contains one
sub-package for each subsystem.

45

The VehicleDynamics Library - Overview and Applications

The Modelica Association Modelica 2006, September 4th – 5th

Figure 2: An example of possible RoadBuilder user
inputs, note that the inputs in the example are exagger-
ated to make them clearer.

3.5 Chassis
The Chassis package is further partitioned into sub-
packages for bodies, suspensions, wheels, etc. It con-
tains a set of typical chassis con�gurations that repre-
sent standard cars like compacts, sedans, and SUV:s.
In particular, there are models of different �delities
with the same interface and it is thus possible to use
them with e.g. the same driveline and brake models.
This minimizes modeling effort.

3.6 Suspensions
VDL includes a wide range of suspension models of
both independent, semi-independent, and rigid axle
types. The �delity level spans from planar models
with �xed roll and pitch centers, to table-based and
geometric kinematic and elasto-kinematic models. As
described in section 5, there are full-�edged kinemat-
ics and compliance (K&C) experiments of full sus-
pensions as well as sub-components for analysis and
model reduction.

3.7 Bodies
The Bodies package contains body models including
inertial and aerodynamic properties as well as anima-
tion shape. Bodies can also conveniently be con�gured
for different payloads.

3.8 Wheels and Tyres
The main content of this package is the tyre models.
VDL includes a selection of well-known and com-
monly used tyre models for handling such as variants
of Magic Formula, Pacejka models, Rill models, and
semi-empirical models based on brush-model mechan-
ics. An advantage is that the partitioning of the models

allow the same models throughout the chassis �delity
range which allow convenient con�guration and com-
parison of results.

3.9 Sensors
Sensors can be freely located on the vehicle to be used
as feedback signals for controllers or observers. VDL
includes a set of sensors that are easy to con�gure and
extend.

3.10 Drivelines and Brake Systems
The driveline and brake system models in VDL in-
clude 3D-position and orientation as described in sec-
tion 4.1. Models of joints, shafts, differentials and
more resolve driveline effects in a detail suitable for
handling analysis. VDL also includes ideal and ba-
sic hydraulic brake systems and also allow inclusion
of user-de�ned models based on any Mechanics inter-
face from the Modelica Standard Library (MSL).

3.11 Engines and Transmissions
The engine package contains map-based and MVEM
engine models and basic models of manual, automatic
and CVT transmissions. Again, the adaption of a ro-
tational interface with 3D capabilities, user de�ned
models based on both the Rotational and the Multi-
Body interfaces in MSL can be adapted.

3.12 The Modelon Package
The Modelon Library contains classes that comple-
ments the MSL. The structure of the library follows
MSL whenever possible to facilitate navigation. Com-
ponents that have a corresponding component in MSL
are in general modi�ed/improved versions but with the
same basic functionality as the MSL version. The next
section highlights some of the contents.

4 Development key issues
4.1 Rotational3D
There has been some development to describe the
three-dimensional effects of components in the ro-
tational library such as coriolis forces [7] but there
was no satisfactory approach available for slightly
more complex components such as shafts with dif-
ferent joint geometries. To overcome this, a package
Rotational3D was introduced with a composite inter-
face de�nition consisting of a 1D rotational �ange re-
solved in a MultiBody frame. This allow the minor
rotations of the axle mounts to be separated for the

46

J. Andreasson, M. Gäfvert

The Modelica Association Modelica 2006, September 4th – 5th

Figure 3: Rotational3D package contents.

axle spin which allows a consistent interface to both
MSL.Rotational and MSL.MultiBody and a snapshot
of the library contents is seen in �gure 3.

4.2 State Selection in Suspensions
Unlike many other tools, Dymola use symbolic ma-
nipulation to resolve kinematic constraints which es-
sentially mean that for a linkage model without in-
cluded elasticities, the number of states correspond to
the number of degrees of freedom that needs to be cho-
sen with care. This is best illustrated with an exam-
ple; consider the double wishbone linkage in �gure 4.
The leftmost version is completely rigid and the �ve
links used constrain �ve of the original six degrees of
freedom and there are thus two states that needs to be
selected. If Dymola is able to select the states by its
own, there are at least four combinations that could
come up but only two of these turn out to be reason-
able. Having the state in the unsuspended body is not
reasonable for at least three reasons: First the numer-
ical accuracy, if the vehicle is moved a considerable
distance from its reference position, the resolution of
the wheel travel would be low since it means subtract-
ing two large numbers from eachother. Secondly, since
the motion of the upright would be de�ned relative to
the world frame which would mean that if the vehicle
would roll enough, the representation would be numer-
ically tough and eventually singular. The third reason
is common with having the state in the strut and allow
multiple solutions according to �gure 5. For some sus-
pension linkages, multiple solutions could also occur
when having the state selection in the joints but ex-
perience has shown that this is far easier to deal with
simply by just supplying reasonable start values.

As seen from the discussion above, the ability to
explicitly chose states is of signi�cant important and
it is not enough to be able to select all or no states in
a joint as illustrated by the elasto-kinematic linkage in
�gure 4. The kinematic linkage needs two states to

Figure 4: State selection for a kinematic (left) and an
elasto-kinematic (right) double wishbone suspension
linkage.

Figure 5: If s would be chosen as state, it is dif�cult
to separate between wanted (left) and unwanted (right)
con�gurations. Chosing ϕ instead makes the con�gu-
rations unique.

specify the only degree of freedom which can be set
in either of the joint pairs. Using bushings instead of
inner joints gives ten additional degrees of freedom,
i.e. eleven in total. However, since each of the pair
of bushings have twelve potential states, 22 out of 24
have to be selected.

The standard MultiBody library has been designed
with ease of use in mind [8] so the available mod-
els have the state selection lumped for all degrees of
freedom which in the above case only would allow the
user to specify 12 of the 22 states and leaving the rest
for Dymola to �gure out which works in some cases
but not always. To overcome this issues, a set of joint
models were developed with advanced users in mind,
where each joint state candidate can be set indepen-
dently of the others. Additionally, a body model with-
out potential states was implemented, which enforces
the possible states to be relative motion in joints. Also
the quaternion representation was disabled since it re-
quire additional code and events for the dynamic state
selection.

4.3 Signal Bus
Any complex modeling involving some kind of control
sooner or later run into the need to structure informa-

47

The VehicleDynamics Library - Overview and Applications

The Modelica Association Modelica 2006, September 4th – 5th

Figure 6: Choice of protocol in a transmitter.

tion exchange. More speci�cally, the following desires
were identi�ed: 1) Being able to prede�ne a set of pos-
sible signals on the bus. 2) Being able to replace this
set. 3) Being able to have several sets at the same time.
4) Allowing ef�cient diagnosis for fault detection of
connections. 5) Allowing GUI support from the tool.
6) Being able to model the dynamics of the actual bus
(e.g. delay). 7) No need to draw extra connections to
have components exchange signals with the bus.

The suggested implementation use the dynamic
name lookup using the inner and outer constructs
that allow coupling of models throughout the hierar-
chy. The actual bus de�nition is built around a base
package de�nition containing a bus and a protocol and
this package is declared as a replaceable type
in the receiver and transmitter models.

By this construction, a user can de�ne any own
protocol by extending the base package de�nition and
complement with the signal names that should be
available. When connecting a component to the bus
using a transmitter or a receiver component, the user
can select what of the prede�ne protocols should be
used and there is also enough information for a tool
such as Dymola to actually display a list of the avail-
able signals in the selected protocol, see �gure 6.

Despite any bus de�nition, the actual signal �ow
remain complex and being able to support the user in
fault detection and debugging is crucial for ef�cient
usage. Since a general Modelica model is free from
causalities, it occurs as systems of equations and thus
if a signal on the bus is not de�ned or de�ned more
than once, the whole model will become singular and
it is hard for a tool to give useable feedback on these
types of errors.

The suggested construction allow multiple busses
but require that there is only one set of signals per bus

which allow ef�cient diagnosis. By introducing a de-
bug mode with a cardinality variable, the bus model
can ensure that one and only one transmitter is con-
nected to each signal and also replaced unde�ned sig-
nals with dummies. In this way warnings can be given
if two or more transmitters try to send the same signal
to the bus, if a receiver tries to access a variable that is
not sent by a transmitter etc.

5 Library Usage
This section highlights some issues relating to the li-
brary usage.

5.1 VDWorkbench
VDWorkbench is a user-writable area that is installed
together with the VehicleDynamics Library. It is
opened from the File|Libraries menu. In this area
users can work with examples and store their own
models and experiments. The structure of VDWork-
bench is laid out to mimic the one in VehicleDynam-
ics and users that produce a lot of custom models and
components are encouraged to continue this.

5.2 Summary Records
Many standard components contain a Summary
record, indicated with an icon in the diagram layer.
There are different summary records for different
classes of components. The summary record con-
tains variables that are of general interest for post-
simulation analysis and plotting. For example, the
summary record for a standard engine contains the
variables for engine speed, torque, and power.

Summary records are convenient to use in the
Variable Browser in the Simulation tab. By clicking
the Advanced button and entering �summary� in the
search �lter the variable list is restricted to summary
records as illustrated in 7.

5.3 Custom Vehicles
The library provides templates for building models of
standard cars. Non-standard vehicles are built either
directly from the component base classes. It is also
possible to de�ne custom templates for non-standard
vehicles. The library contains a large number of com-
ponents that can be used in the templates and it pos-
sible for users to de�ne their own components to use
in templates. For example, parts like A-arms, bush-
ings, struts, links, gears etc. are available in the Sus-
pensions package for users that de�nes their own sus-
pensions. Figure 8 shows the the implementation of a

48

J. Andreasson, M. Gäfvert

The Modelica Association Modelica 2006, September 4th – 5th

Figure 7: An example of using a summary record.

vehicle with autonomous corner modules (ACM), [9],
where each wheel is steered, cambered, suspended and
driven/braked individually.

Figure 8: Custom vehicle design exempli�ed with the
ACM concept.

5.4 Migration
The Pars�leConverter utility is used for migrating
models from the Pars�le format used by CarSim into
VehicleDynamics Library. The utility can handle hi-
erarchical Pars�les that are split into multiple �les as
well as �at single-�le Pars�les. The Pars�leConverter
is a stand-alone executable that is supplied with VDL.

5.5 Vehicle Control
A major area of application for VDL is vehicle control.
This example illustrates how active stabilizers that can
be used to enhance stability are incorporated in a Ve-
hicleDynamics model. Figure 9 shows the response
of an evasive lane change performed by a closed loop
drivers for two full loaded vehicles, with and without
roll control.

Figure 9: Active stabilizers can be used to prevent roll-
induced instability.

5.6 Component Analysis
A vital part in any system design is a thorough un-
derstanding of the involved subsystems and an anal-
ysis of a full vehicle is often useless if the behavior
of involved subsystems is not suf�ciently understood.
To isolate component behavior and to avoid unneces-
sary computational cost, test rig experiments are great
aids. In VDL they are designed, parameterized and
animated as real test rigs where applicable. To a test
rig, various controller can be attached to govern the
experiment and facilitate the test procedure. Figure 10
illustrates a typical K&C experiment with the corre-
sponding user settings.

5.7 Wheels and Tyres
The tyres are critical components to determine the re-
sponse of a road vehicle to driver inputs. Tyres are
also infamously dif�cult to model and calibrate with
experimental data. VDL include several of the most
well-known and established tyre models for handling
studies. It is important to understand the differences
between the different models, and to have full insight
into the properties of different data-sets for the model
parameterizations in order to correctly interpret ex-
periment results on chassis. To support the users in
this, VDL includes versatile test rigs where wheels and
tyres can be studied in isolation. The test rig in �g-
ure 11 can be used to study quasi-static and dynamic
properties under combinations of sweeps and constant
levels of slip-angle, slip ratio, camber, load, and veloc-
ity.

49

The VehicleDynamics Library - Overview and Applications

The Modelica Association Modelica 2006, September 4th – 5th

Figure 10: K&C experiment (right) with user settings (left).

Figure 11: Tyre test rig.

5.8 Vehicle Analysis
Vehicle analysis can be performed both on road using
a driver or robot to control the vehicle which allow
simulations to mimic real test procedures to generate
e.g. cornering characteristics diagram. Additionally,
there are also ideal models of e.g. drivelines that allow
precise wheel spin velocities or torques to be applied.
Additionally, just as for a component, the vehicle can
be constrained in different test rigs to generate various
kinds of measures that requires extensive laboratory
equipment to be performed in reality.

In �gure 12 such an experiment is exempli�ed us-
ing a shaker rig. The model allow the level under each
wheel to be adjusted individually and depending on
the input used, this can be used to analyze chassis out-
of-plane characteristics such as roll and pitch dynam-

Figure 12: Vehicle mounted in a test rig.

ics, spring and damper settings and roll moment dis-
tributions. Additionally, it can for example be used to
analyze driveline motion and study joint angles, shaft
lengths, and other variables during various suspension-
travel scenarios to verify or tune the geometric design.

6 Ongoing and Future Extensions
This section enlightens some of the extensions of
the VDL that are ongoing and/or under consider-
ation. Two other Modelon libraries, PneuLib and
HyLib, opens up for incorporation of more detailed
hydraulics and pneumatic models. Hydraulics mod-
els are relevant for especially brake systems but also
other hydraulic systems found in e.g. power steerings.
Pneumatics is highly relevant for the ongoing enhance-
ment to also consider heavy vehicles, �gure 13, both
for brake systems and air spring suspensions. For this
extension, �exible elements are of increased impor-

50

J. Andreasson, M. Gäfvert

The Modelica Association Modelica 2006, September 4th – 5th

Figure 13: Tractor with semitrailer negotiating a turn.

Figure 14: Cornering characteristics test of a Formula
SAE chassis.

tance and this is discussed in more detail in [10].
A racing extension is also considered, requiring

mainly different types of suspensions and analyzes,
�gure 14 shows a test run of a Formula SAE chassis.

Acknowledgements
The development of the VehicleDynamics library has
included the generous support and encouragement of
many people and organizations. Especially, the au-
thors would like to thank:

• DLR, Oberpfaffenhofen, main author of the Mod-
elica MultiBody library, in particular Prof. Mar-
tin Otter, for support and cooperation in realizing
a Modelica vehicle dynamics library

• Royal Institute of Technology, Division of Vehi-
cle Dynamics, Stockholm, Sweden, for generous
support in the realization of the library

• Dynasim AB, for extensive support and enhance-
ments of Dymola to form an optimal platform for
vehicle dynamics modeling and simulation. Par-
ticular thanks to President Dr. Hilding Elmqvist.

References
[1] J. Andreasson, A. Möller, and M. Otter. Modeling

of a racing car with Modelicas MultiBody library. In
Proc. of the 1st Int. Modelica Workshop, Lund, Octo-
ber 2000. The Modelica Association and Lund Uni-
versity.

[2] S. Drogies and M. Bauer. Modeling Road Vehicle Dy-
namics with Modelica. In Proc. of the 1st Int. Mod-
elica Workshop, Lund, October 2000. The Modelica
Association and Lund University.

[3] B. Jacobson et al. Modelica usage in automotive prob-
lems at Chalmers. In Proc. of the 1st Int. Modelica
Workshop, Lund, October 2000. The Modelica Asso-
ciation and Lund University.

[4] M. Tiller et al. Detailed vehicle powertrain model-
ing in Modelica. In Proc. of the 1st Int. Intermational
Modelica Workshop, Lund, October 2000. The Mod-
elica Association and Lund University.

[5] M. Dempsey et al. Coordinated automotive libraries
for vehicle system modelling. In Proc. of the 5th Int.
Modelica Conf., Wien, September 2006. The Model-
ica Association and arsenal research.

[6] J. Andreasson. VehicleDynamics library. In Proc.
of the 3rd Int. Modelica Conf., Linköping, November
2003. The Modelica Association and Linköping Uni-
versity.

[7] C. Schweiger and M. Otter. Modelling 3D Mechan-
ical Effects of 1D Powertrains. In Proc. of the 3rd
Int. Modelica Conf., Linköping, November 2003. The
Modelica Association and Linköping University.

[8] M. Otter, H. Elmqvist, and S.E. Mattson. The new
Modelica MultiBody library. In Proc. of the 3rd
Int. Modelica Conf., Linköping, November 2003. The
Modelica Association and Linköping University.

[9] S. Zetterström. Electromechanical steering, suspen-
sion, drive and brake modules. In Proc. of 56th Vehic-
ular Technology Conference, volume 3, pages 1856 �
1863. IEEE, 09 2002.

[10] N. Philipson. Leaf spring modeling. In Proc. of the
5th Int. Modelica Conf., Wien, September 2006. The
Modelica Association and arsenal research.

51

The VehicleDynamics Library - Overview and Applications

The Modelica Association Modelica 2006, September 4th – 5th

52

J. Andreasson, M. Gäfvert

 Session 1c

The Modelica Association Modelica 2006, September 4th – 5th 53

Session 1c

Language, Tools and Algorithms 1

Session 1c

The Modelica Association Modelica 2006, September 4th – 5th 54

The Modelica Association Modelica 2006, September 4th – 5th

Modelica CDV
A Tool for Visualizing the Structure of Modelica Libraries

Martin Loeffler1, Michaela Huhn1, Christoph Richter2, Roland Kossel3

1Technical University of Braunschweig, Institute for Programming and Reactive Systems, Germany
2Technical University of Braunschweig, Institute for Thermodynamics, Germany

3TLK-Thermo GmbH, Germany
m.loeffler@tu-bs.de, m.huhn@tu-bs.de, ch.richter@tu-bs.de, r.kossel@tlk-thermo.de

Abstract

The simulation language Modelica is an object
oriented language with all the advantages and
potential drawbacks that are characteristic for object
oriented programming languages. The reusability of
source code and the possibility to develop nicely
structured libraries using inheritance, aggregation
and polymorphism are two of the main advantages
object oriented languages have to offer. Although
there are good mechanisms given to structure
libraries, one of the drawbacks is that it can become
very hard to understand large libraries especially for
users who just want to use them to carry out
simulations without getting into all the details. The
presented work has the goal to provide an easy to use
tool that is capable of graphically visualizing the
structure of Modelica libraries and that therefore
enables the developer as well as the end user of
Modelica libraries to better control and understand
the structure of libraries.
Keywords: Object oriented modeling; visualization;
class diagram

1 Introduction

The object oriented character of Modelica is one of
its very important features. It enables the developer
to reuse code in a very efficient way, improves team
work in the design process of a library and helps the
user to easily exchange components in a simulation.
There are other advantages that could be added to
this list. But there also are drawbacks that almost
every Modelica developer and user knows from his
own experiences. A growing aggregation depth and
multiple inheritance can make a library almost
illegible. Tracking bugs, implementing new models
or changing existing models might become very
difficult for developers that are not completely
familiar with the library and its structure. The

sustainability of the library might be in danger while
it should be improved by using object oriented
techniques. Having been in this situation gave us the
idea to develop a tool that helps to analyze the
structure of Modelica libraries. The developed tool,
Modelica CDV, enables the Modelica developer to
improve the structure of the developed library and
offers the user of the library a simple way to
understand its structure. The tool will be available as
freeware.

2 Modelica Libraries

To build and maintain models on the basis of
Modelica libraries the developer needs a clear and
detailed understanding not only of the library
elements but also of the object oriented structure of
the library and in particular of the relations among
the elements. The Modelica Association coordinates
the development of free libraries. There are for
example libraries available to simulate multi-body
systems, to model fuel cells and to model magnetic
actuators and drives. For more information about
available libraries see [1]. The structuring concepts
of Modelica like multiple inheritance,
polymorphism, aggregation, and composition are a
prerequisite for the compatibility and reuse of
submodels (for details see [2]). Consequently, they
considerably contribute to the efficiency and
conciseness of modeling in Modelica. However, if
the structuring concepts are used in combination in a
large library, the overall structure may become far
from trivial.
Modelica is based on a Cardelli type system [3] and
supports multiple inheritance. In difference to
nominal type systems like in Java [4], subclasses
cannot only be declared explicitely by a keyword
like extends, e.g. “model A extends model B”, but
also implicitly by the fact that a class extends the set
of public attributes of another class. For building a

55

Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries

The Modelica Association Modelica 2006, September 4th – 5th

subtype this way, all public attributes of the desired
base class have to be implemented (using the same
names and types) manually. Hence, to reconstruct
the inheritance hierarchy within a library the
information about the explicitly stated extensions has
to be joined with the analysis on extensions
implicitly given by inclusion of public attributes.
Modelica provides powerful mechanisms for
polymorphism which are an essential device for
compositionality and exchangeability of submodels.
The first mechanism for polymorphism concerns
exchangeable objects, i.e. using the keyword
replaceable an exchangeable object is built as an
attribute of a class. When the class gets instantiated
the type of the object can be changed in the class
modifier. This way an element of a circuit (for
example a resistor) can easily be replaced by another
element (for example a capacitor).
The second mechanism for polymorphism is local
classes. A local class is used if one wants to replace
a number of objects within a complex model but all
replacements have to coincide on the type, e.g. in an
electric circuit several resistors may be replaced
under the condition that all of them belong to the
same resistor type. Technically, exchangeability is
achieved by declaring a local class as a parameter of
the model. The parameter is set to a concrete type
when instantiating the model and all submodels
(objects) that are derived from the local class within
the model are set to that concrete type.
The third and most complex mechanism for
polymorphism is variable inheritance. It is used for
modeling generic objects that can assume the shape
of all objects of a category.

model GenericResistor
 replaceable model ResistorModel =
 CeramicResistor extends Resistor;
protected
 extends ResistorModel
end GenericResistor;

model Circuit
 GenericResistor resistor(redeclare model
 ResistorModel = SyntheticResistor);
end Circuit;

Figure 1: Modelica code example for variable
inheritance

Figure shows the implementation of a generic
resistor using variable inheritance. The generic
resistor is derived from the exchangeable local class
“ResistorModel”. Changing the type of the local

class when instantiating an object of the generic
resistor results in changing the base class of the
generic resistor. The advantage compared to the
other mechanisms is that the exchange of an object is
not only possible inside its container class.
The keyword redeclare cannot only be used for
exchanging objects. The expression “redeclare
record extends GeometryData” for example allows
the extension of the already existing record
“GeometryData”. Additional attributes can be
created easily that way.
Member variables (also called attributes) are typed.
They are either simple or complex. Complex
attributes representing associations between objects
further enhance the structuring concepts of Modelica
libraries. An association represents a dependency
relation between objects. Of particular interest are
aggregation and composition as two specific
associations that express whole/part relations. For
instance, a car can be modeled as composition of a
motor, wheels, etc. In Modelica, composition is
mainly used to assemble complex objects.
Composition, the stronger form, is most appropriate
in the context of physical objects where the
components are assigned to a unique compositum,
e.g. a motor object is part of a particular car.
Whether a complex attribute represents an
aggregation or composition is hardly to analyse
statically because it results from the context in which
the attributes will be used.
The structuring concepts of Modelica significantly
ease the work of a library developer but they
complicate the analysis of a library for the user.
Modelica libraries are stored in hierarchically
structured directories. The position of a file reflects
the affiliation of the classes stored in this file with
respect to a package, because directories represent
packages. Thus the structure of the repository
partially reflects the structure of the library.
Alternatively, all classes of a library can be stored
within one file. Then the affiliation to packages only
depends on the arrangement of the classes inside the
file.
For analyzing the object oriented structure of
Modelica libraries it is important to understand the
structure of the classes, objects and dependencies
among each other. Because the “algorithms” and
“equations” inside a class are less relevant for the
structure of the library, they are neglected in this
paper.
To summarize, Modelica provides a great variety of
structuring concepts that may be used in combination
and lead to complex library structures that are hardly
understandable on the basis of pure code review.

56

M. Loeffler, M. Huhn, C.C. Richter, R. Kossel

The Modelica Association Modelica 2006, September 4th – 5th

3 Parsing

Parsing is the transformation of text files into an
internal data representation. Most of the Modelica
parsers are used in commercial applications and are
not available for developers. However, there are
some free parsers available. An example is
ModelicaXML that parses Modelica code to an XML
representation [5]. We still did not use one of the
free parsers to be as independent as possible. The
parser that was developed within the scope of this
work only parses information that is required for an
object-oriented analysis of the library but could
easily be extended to parse more information.
In our application the goal of parsing is the creation
of an internal data structure that contains all
information of a Modelica library that is required for
drawing a class diagram. Therefore every class of a
library will be represented by an object containing
the following information

• name and type (i.e. package, model,…)
• path of the text file that contains the class
• code
• local classes
• all attributes (member variables)
• all associations (inheritance, aggregation)
• version of the class (if specified)
• package(s) the class belongs to

The process of parsing a Modelica library can be
decomposed into the following steps

• read in the code
• format the code
• detect classes
• detect attributes of classes
• detect associations
• analyze redeclarations
• perform name lookup
• analyze dependencies caused by Cardelli type

system
The steps have to be performed in the given order
due to their interdependence. Detecting associations
for example cannot be performed before all classes
have been detected.
The following passage explains the parser in more
detail.
Reading in a Modelica library starts with reading in
the required text files. There are in general two ways
to store Modelica libraries: all classes and packages
of a library can be stored in one file or they can be
split up into different files that are nested in folders

to represent the affiliation to packages. If the classes
are stored in several files, there needs to be a file
“package.mo” in each folder declaring the package.
All other classes declared in files within this folder
or in sub-folders belong to this package. The parser
takes the path of the folder that contains the library
as an input and checks, whether a file “package.mo”
exists in the specified path. The parser will then read
in the “package.mo” and all dependent files in the
same folder and will register the package affiliation
for each file read in. This process is repeated for
each subfolder containing a “package.mo”. If there is
only one file containing the whole library, the
content of this file can be read in without analyzing
the package affiliation.

Figure 2: Example for formatting process during
parsing

The entire library is internally available as a
character string after this first step. The parser
formats the code in a second step carrying out the
following operations:

• word-wraps get removed
• superfluous space characters get removed
• annotations other than “version information”

get removed (i.e. annotations for
documentation, icon information)

This second step simplifies the following process by
transforming the unformatted string into a well
formatted character string containing only the
information necessary to perform an object-oriented
analysis. Figure 2 shows an example for the
formatting process.
The next step is to detect all classes and to create
objects representing them. This step requires
considering the nested structure of classes in
Modelica. Classes are detected recursively starting at
the top level. The beginning and the end of a class is
detected on the base of keywords. If a class has been

57

Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries

The Modelica Association Modelica 2006, September 4th – 5th

found, an object with all necessary attributes for its
representation is generated. Not all attributes of the
represented object can be generated at this time
because some information (associations, member
variables) is not yet available. The name of the class,
its source code, comments and information about its
package affiliation are stored. The code of a nested
Modelica class is not stored within the containing
class if it is not a local class. Local classes are for
example used for polymorphism. The model
“ResistorModel” from Figure 1 is a local class.
Detecting attributes of each class includes detecting
the type and the name of each attribute as well as its
default value and the comment if specified. Start
values and further attributes such as min and max
values are omitted but could be included in a future
version.
The keyword extends defines inheritance in
Modelica. A derived class inherits all attributes from
its super class, implying that all attributes of the
super class have to be copied into the derived class
However, this is not possible at that point because all
classes are represented by an object but thery are not
linked to each other. This means that copying the
attributes from super to derived classes has to be
perfomed after the name lookup. If an attribute is not
primitive it is handled as aggregation.

Figure 3: Modelica code example for redeclaration

The keyword redeclare indicates in Modelica that
the type of the object can be changed. Figure 3
shows the extension of a record “GeometryData”
within the package “Cylinder” “GeometryData” is
extended by the attribute “diameter”. If the class
“GeometryData” from “Cylinder” is used
somewhere, it contains the attribute “diameter”. The
parser handles this just like inheritance. A new class
is internally generated that contains all attributes
from “GeometryData” plus the attribute “diameter”.
This class belongs to the package “Cylinder” and

will later be displayed as derived from
“GeometryData”.
All information collected until now is represented as
character strings. As mentioned earlier, it is very
often necessary to have a link to an object
representing a certain class. The already described
situation of inheritance is a very good example in
which all attributes of the super class have to be
copied to the derived class. If there is a definition
like “model GasCar extends Car” the parser has to
resolve the class “Car”. The problem arising here is
that there might be several classes with the name
“Car” within the analyzed library because Modelica
allows different classes having the same name. Name
lookup ensures that the correct class is used within
the given context. In general all classes within the
package containing the class whose name has to be
resolved are possible choices. It is also possible to
give a bit more specific information when extending
a class. One could for example write “model GasCar
extends Basics.Car” “Basics” is in this case the
package that the class “Car” belongs to. Another
important case to be considered is the “import”
statement. With this keyword, namespaces can be
defined or used. If there is a definition like “import
myCar = Basics.Car” the name lookup has to be
performed with “Basics.Car” instead of “myCar”.
It is also possible to use short notations such as
“package C = B;” in Modelica. In this case all
classes of package “B” get duplicated and copied
into package “C”. The declaration can be interpreted
as equivalent to its long form “package C extends
B”. The associations of a class are stored inside the
representing object. Thereby associations from and
to another class are available.
Modelica uses the Cardelli type system which is a
structural type system. Many other object oriented
languages such as Java use a nominal type system
(see [3] for more information). There has been a
discussion within the Modelica language group to
change the Modelica type system in a future version
but no decision has been made so far. To analyze
type equivalence of classes or to find subtypes of a
class it is necessary to compare all public attributes
of each class. If two classes have the same public
attributes they are type equivalent within the scope
of a Cardelli type system. If they have at minimum
the same public attributes the class with more public
attributes is a subtype of the other class. When there
is a large number of classes with many attributes,
comparing all of them with each other can take quite
some time.

58

M. Loeffler, M. Huhn, C.C. Richter, R. Kossel

The Modelica Association Modelica 2006, September 4th – 5th

After all parsing steps have been performed the
internal data representation is available and can be
used for displaying the object oriented structure of
the library in the style of a UML class diagram (see
[6]).

4 Layout

For the automated graphical representation of the
structure of Modelica libraries, the selection and
tuning of the layout algorithm is crucial. Thus, we
consider three types of layout algorithms for drawing
the object oriented structure of Modelica libraries.
Layout algorithms rely on graph theory. The object
oriented structure of libraries is interpreted as a
directed graph where a node represents a class and
an edge represents an inheritance relationship or
aggregation. The selected layout algorithms optimize
the graphical representation according to the
following goals:

• Minimization of the area used for the resulting
chart because libraries can be large.

• Minimization of the number of crossing edges
supports the understanding and conceives the
diagram. If there is no crossing edge the graph
is called planar. The direction of edges is also
an important fact: A class that inherits from
another should be placed below the class it
inherits from.

• Computational efficiency is important so that
even for large libraries the class diagrams are
generated in an acceptable time.

The first group of layout algorithms relevant for the
representation of structural information is the group
of the so-called “tree algorithms” [7] which are
available in many variations. They are especially
suited to illustrate the inheritance relationships of
classes while their runtime is linear. A class is
represented by a node and all derived subclasses
become children of this node. However, tree
algorithms are less appropriate for the layout of
aggregation relationships since the generated trees
can become wide and might need a large area.
Another way to layout graphs is the “Spring
Embedder” [8].The graph represents a physical
model where nodes repulse each other. The closer
two independent nodes get, the larger the mutual
force of repulsion becomes. Nodes also gravitate
towards each other in case of a common edge. This
algorithm works iteratively. All forces are calculated
and the nodes are relocated according to the affecting
forces. After a certain number of iterations all forces
will be balanced. The size of the resulting chart is

small but it might contain a lot of crossing edges.
Moreover, runtime of the Spring Embedder may
become a critical issue.
The third group of algorithms minimizes the set of
crossing edges.
The Spring Embedder and the algorithm for
minimizing crossing edges do not care about the
direction of edges and the right adjustment of classes
that inherit from another. Each algorithm has its
advantages and drawbacks. In order to get a good
layout, it is necessary to use two algorithms in
combination.
Modelica CDV generates a class diagram closely
related to the UML notation (see [6]). The most
important elements, the classes, are represented by
rectangular boxes containing the name, the attributes
and the operations. Here we will omit the operations,
i.e. equations and algorithms of a model.
The layout module in Modelica CDV is still subject
of discussions and experiments as the advantages
and disadvantages of different variants have to be
balanced carefully.
A class diagram is considered as a directed graph
where a node represents a class and an edge
represents an association, i.e. inheritance or
aggregation.
For a good layout of a Modelica library several
partially contradicting criteria have to be taken into
account.
Usually, derived classes are placed below their super
class. Consequently, the algorithm tries to do this the
same way. Another optimization criterion is a short
distance between classes having a relation since one
often needs to look at the associated classes as a
whole to understand the aggregation or inheritance
structure. Hence, minimizing the distance improves
readability. But when minimizing the distance
between nodes one also decreases the area on which
classes are placed. Unfortunately, in larger diagrams
with a lot of complex associations you often will not
see the end of an association without changing the
point of view. Additionally, crossing edges are
complicating readability. To simplify the detection
of crossing edges, associations are restricted to
horizontal and vertical straight lines.

59

Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries

The Modelica Association Modelica 2006, September 4th – 5th

distinct hyper edge

A

CB

A

CB

Figure 4: Edge notation for inheritance

After several experiments we decided that the user
should direct the layout to his point of interest: Thus,
the user may select the elements of a class he wants
to see. This way, the user may choose the level of
detail he is interested in. If detailed information is
faded out, the user will see more classes and
associations on the screen.
The size of a class is calculated dynamically before
the layout algorithm starts. The size of classes
depends on the settings given by the user. Specifying
that additional attributes should be shown in the
diagram will change the dimension of classes. Every
time settings are modified all calculations have to be
repeated because the algorithm calculates the
absolute position of every class on the panel. If a
class becomes larger it probably would overlap with

another one otherwise. The width of the class
representation results from the longest word that has
to be displayed inside a class. For inheritance
associations a “hyper edge” notation is used (see
Figure 4). Aggregation associations are characterized
by their multiplicity. Therefore an inscription would
be needed which might be misleading at the hyper
edge. For this reason aggregation is displayed as
distinct edges.

Figure 6: Swapping leaves for minimizing crossing
edges

The algorithm for lay outing the classes first
calculates the size of every class. Thereafter
inheritance associations are analysed and layouted by
a tree algorithm from bottom to top and the
dimension of the resulting tree is calculated.
The algorithm for adding aggregation associations is
still under investigation. After all aggregation
associations have been added a swap procedure will

Figure 5: Screenshot of the Modelica Class Diagram Visualizer

60

M. Loeffler, M. Huhn, C.C. Richter, R. Kossel

The Modelica Association Modelica 2006, September 4th – 5th

remove crossing edges by swapping some leaves
(inherited classes) of a tree or the trees itself (see
Figure 6). Now nails for the associations will be
calculated and all elements will be displayed. The
algorithm for swapping and rearranging the leaves
(classes) is still in a prototype state at the moment.

5 Using Modelica CDV

The purpose of Modelica CDV is to help the
Modelica user as well as the Modelica developer
with getting an overview over the structure of
libraries.
The graphical user interface that was completely
developed in Java using Swing [9] can be configured
to best suite the users’ preferences. The user may
select color and font for each type of class and also
choose to display or hide additional information that
is usually not displayed in a class diagram but might
be handy when analyzing libraries. Figure 7 shows a
screenshot of the current configuration dialog. The
user can decide to display parameters, constants and
variables for both, the public and the protected
section, in the class diagram.
Figure 5 shows a screenshot of a class diagram
generated by Modelica CDV. The package “Blocks”
from the Modelica Standard Library 2.2 was parsed
and displayed for this example. Note that only the
inheritance associations are displayed in the example
screenshot. The different class types such as blocks
(i.e. “LogicalSwitch”) or models (i.e. “And”) are
discriminated by their graphical appearance both in
shape and color and according to the user’s settings.
Information about the variables contained in each
class is also displayed. The final version of Modelica
CDV will also display connectors as small icons.
The package tree containing all classes of the parsed
library is displayed on the left hand side of the class
diagram as shown in Figure 5. When selecting a
class with the mouse the respective block in the class
diagram on the right hand side is highlighted and
centered.
An important aspect when using Modelica CDV is
the time it takes to parse, layout and display a
library. The Modelica Standard Library in the
version 2.2 containing about 2500 classes was parsed
as a representative example which took about two
minutes on a standard laptop computer. While the
Modelica Standard Library is very likely much larger
than most libraries that will be displayed with
Modelica CDV, two minutes still is too long. The
user can therefore choose to save the parsed library
which cuts down the time requirements to a few

seconds. The user just has to be aware that he is
using a pre-computed version of the library when
using the saved version. A warning is displayed to
remind the user of the current operation status.

Figure 7: Screenshot of the option dialog in
Modelica CDV

6 Conclusions

Modelica CDV is a tool to help Modelica developers
and users to better understand the structure of
libraries by generating class diagrams closely related
to the UML notation. It uses a combination of
different layout algorithms to automatically generate
a class diagram that is as readable as possible. In the
class diagram additional information (i.e. about
variables) may be displayed and it can be configured
according to the users’ preferences.
Visualizing the structure of libraries is the first step
towards improving the readability which ensures its
sustainability. The developed tool is available as
freeware to the Modelica community. The current
version only parses and displays information that is
required for an object-oriented analysis. Additional

61

Modelica CVD - A Tool for Visualizing the Structure of Modelica Libraries

The Modelica Association Modelica 2006, September 4th – 5th

information about equations and algorithms and
enhanced analysis that might be of interest is
currently neglected but might be included in a future
version.

References

[1] Modelica – Modeling of Complex Physical
Systems, Modelica Libraries,
http://www.modelica.org/library/

[2] ModelicaAssociation, 2005, Modelica – A
Unified Object-Oriented Language for
Physical Systems Modeling, Language
Specifications, Version 2.2

[3] A.B. Tucker (Ed.), The Computer Science
and Engineering Handbook, CRC Press,
1997

[4] B. Eckel, Thinking in Java, 4th Edition,
Prentice Hall, 2002

[5] A Pop and P. Fritzon, 2004, ModelicaXML:
A Modelca XML Representation with
Application, Proc. of 4th International
Modelica Conference, Hamburg, Germany

[6] M. Jeckle, C. Rupp, J. Hahn, Barbara
Zengler, S. Queins, UML 2 glasklar, Hanser
Verlag München, Wien, 2004

[7] M.Kaufmann, D. Wagner, „Drawing Graphs
– Methods and Models“, Springer Verlag,
2001

[8] Guiseppe Di Battista, Peter Eades, Roberto
Tamassia und Ioannis G. Tollis, “Graph
Drawing – Algorithms for the Visualization
of Graphs”, Prentice Hall, 1999

[9] Sun Microsystems, Java Foundation Classes,
http://java.sun.com/products/jfc/

62

M. Loeffler, M. Huhn, C.C. Richter, R. Kossel

The Modelica Association Modelica 2006, September 4th-5th,2006

Advanced modeling and simulation techniques in MOSILAB:
A system development case study

Christoph Nytsch-Geusen1

Thilo Ernst1 André Nordwig1
Peter Schwarz 2 Peter Schneider2
Matthias Vetter3 Christof Wittwer3
Andreas Holm4 Thierry Nouidui4
Jürgen Leopold5 Gerhard Schmidt5
Alexander Mattes6

1Fraunhofer Institute for Computer Architecture and Software Technology
Kekuléstr. 7, D-12489 Berlin, christoph.nytsch@first.fhg.de

Fraunhofer IIS/EAS2, Fraunhofer ISE3, Fraunhofer IBP4, Fraunhofer IWU5, Fraunhofer IPK6

1 Abstract

The design and the optimization of complex techni-
cal systems can be supported efficiently by using
simulation methods and tools. For this reason, the
generic simulation tool MOSILAB (Modeling and
Simulation Laboratory) is being developed by a con-
sortium of six Fraunhofer institutes in the GENSIM
project. For the modeling process, MOSILAB uses
the object- and equation-oriented model description
language Modelica®, with a backwards-compatible
extension to incorporate elements for describing
model structure dynamics [1].
In this article we will use illustrate how MOSILAB’s
advanced modeling and simulation techniques sup-
port the user, with the help of two case studies: a
complex energy system and a cutting tool system.
Thus, the case studies illustrates very different uses
MOSILAB.

2 Case studies

2.1 Complex energy system

The case study of a solar heating system will demon-
strate MOSILAB’s advanced modeling and simula-
tion techniques, such as model-based development,
model structure dynamics, external simulator cou-
pling, or the distributed execution of simulation ex-
periments. The considered system model includes a

solar energy plant model, a building model, a model
for the control strategy and an environment model
for the climate parameters (see Figure 1).

Figure 1: Energy system for solar heating system
The solar energy plant model consists of a primary
solar cycle with the collector field, the solar pump
and some tubes. The solar energy is transferred by a
counterflow heat exchanger to the secondary storage
cycle, where a storage pump loads the thermal stor-
age. A discrete two-point controller switches on both
mentioned pumps, if the temperature difference be-
tween the collector output is higher than the fluid
temperature in the lowest point of the storage. The
other side of the storage provides the building model
with heating energy by a heating cycle. A continuous
controller regulates the mass flow between zero and
a maximum value, subject to the difference of the
current room temperature and the set room tempera-
ture. An auxiliary heater delivers additional thermal
energy, if the set flow temperature isn’t achieved by
the storage output temperature.

63

Advanced Modeling and Simulation Techniques in MOSILAB: A System Development Case Study

The Modelica Association Modelica 2006, September 4th-5th,2006

2.2 Cutting tool system

At present high performance and high precision cut-
ting tools often are designed as modular systems
with a complex mechanical behavior. Static and dy-
namic tool deformations or deflections affect the re-
liability of the technological process as well as the
quality of the workpiece. Tool designers need con-
venient modeling techniques to predict the tool be-
havior under working conditions in order to optimize
the tool design. Simulation can also help users to
choice the most suitable tool and to optimize the cut-
ting conditions.

Figure 2: Coupling of FEM-simulators and MOSI-
LAB for cutting tool systems
In the case study of a machining tool, MOSILAB is
coupled with two external domain-specific FEM (Fi-
nite-Element-Methods) simulators. To simulate the
behaviour of high performance cutting machine
tools, the machining processes are considered to de-
termine the loading conditions, the tool deformation,
the cutting edge displacement and possible malfunc-
tions caused by overloads. Non-linear effects at in-
terfaces between components of a modular cutting
tool are also included.
The mechanical and thermal tool loads undergo
changes while complex workpiece geometries are
machined e.g. dies and molds. Detailed knowledge
of the occurring forces and temperatures caused by
the chip building for any section of the tool path en-
ables an adjustment of the process parameters to the
specific cutting conditions. Thus, the feed rate is op-
timized by using FEM and analytically based simula-
tion approaches.
This coupled consideration of tool loading and the
corresponding tool behaviour enables the choice of
the most suitable tool, an estimation of the work-
piece quality and provides significant improvements
in the efficiency of machining operations.

3 Model-based development with the
MOSILAB-IDE

An integrated development environment offers users
support at every step of the simulation – from model
building to simulation to post-processing [6]. In or-

der to the traditional component diagrams (compare
Figure 2), which give overviews about the structures
of the plant- or sub-models, further UMLH - diagram
types are available. The class diagrams are used to
organize classes and their relationships in libraries.
Statechart diagrams can be used to model reactive
behaviour of components, e.g. the drivers for model
structural dynamics. An integrated meta-model en-
sures model consistency for all diagram types [8].
Thus, the behaviour of a solar thermal plant during
„normal operation“ or in different unscheduled states
can be represented in an integrated state-dependent
structure variable model. Unscheduled states could
be the plant behaviour whilst damaged pumps or
self-activated pressure control valves, when the solar
collector becomes overheated.

Figure 2: Solar heating system as component Dia-
gram in the MOSILAB-IDE
To support a gap-free model-based development
process, a code generator plug-in can be used to pro-
duce native embedded system code for controller
relevant sub-models.
With this feature, a newly designed controller algo-
rithm can be tested in combination with the virtual
model of the controlled system. After successful test-
ing, the same controller algorithm can work on the
real controller hardware.
Technically, the description of such controller mod-
els uses Modelica’s block and algorithm concepts.
Each block implementation can be automatically
transformed into controller code for the target oper-
ating system. The approach was tested on the em-
bedded Linux derivate BOSS [2].

4 Use of model structural dynamics

Using model structural dynamics [1], MOSILAB is
able to adapt the model description, depending on
the model state. One example of MOSILAB’s flexi-

64

C. Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schwarz, P. Schneider, M. Vetter, C. Wittwer, A. Holm, T. Nouidui, J.
Leopold, G. Schmidt, A. Mattes

The Modelica Association Modelica 2006, September 4th-5th,2006

bility is its capability to switch between simulation
models varying in local resolution. We have chosen
the application of a 1D-thermal storage model, em-
bedded in the solar heating system model to illustrate
this advantage.
During periods of low collector temperatures or
when the storage pump is off, the thermal stratifica-
tion in the storage can be calculated sufficiently with
few numerical nodes (n_zones = 4). When hot water
enters the storage, it is necessary to use a storage
model with substantially more numerical nodes for
the thermal gradient calculation (n_zones = 12, com-
pare Figure 3).

Figure 3: Structural variable storage model, which
uses a different number of zones in dependency of
the current thermal layering.
The following code fragments of the system model
show the implemented strategy for switching be-
tween both models. The first part includes the decla-
ration of the component models.
model SolarHeatingSystem
 ...
 ThermalCollectorDynamic collector(...);
 Pump pump_solar(...), pump_storage(...),
 pump_heating(...);
 Tube tube1(...), tube2(...), tube3(...),
 tube4(...);
 HeatExchangerCounterflow heat_exchanger(...);
 TwoPointController controller_solar(...);
 TanhController controller_heating(...);
 FlowHeater heater(...);
 ThermalBuildingHeatEx building(...);
 dynamic Storage storage, tempStorage;
 event Boolean finer(start=false);

The dynamic parts of the system model are marked
with the prefix dynamic, in our use case the storage
model. Further, the Boolean-variable finer has the
prefix event, which is needed to trigger the re-
placement from the coarser to the finer storage
model.
equation
 finer = pre(finer) or
 collector.out.T-pump_storage.in.T > 3.0
 and controller_solar.out > 0;

The first equation in the equation-section is true,
if the difference of the collector temperature and the
temperature in the lowest storage zone exceeds 3 K
(and the solar pump is on). Then the storage model
has to switch from 4 to 12 zones for a better repro-
duction of the thermal gradient.
The following code illustrates that only the static
connect-equations are available in the equa-
tion-section. All dynamic connects between the
storage model and its surrounding components are
not closed:

 // controller solar and storage cycle
 collector.out.T = controller_solar.in1;
 pump_storage.in.T = controller_solar.in2;
 pump_solar.alpha = controller_solar.out;
 pump_storage.alpha = controller_solar.out;

 // controller heating cycle
 building.T_air = controller_heating.in2;
 273.15 + 20.0 = controller_heating.in1;
 pump_heating.alpha = controller_heating.out;
 ...
 // solar circle:
 connect(collector.out, tube1.in);
 connect(tube1.out, heat_exchanger.in1);
 connect(heat_exchanger.out1, tube2.in);
 connect(tube2.out, pump_solar.in);
 connect(pump_solar.out, collector.in);
 // storage solar circle:
 // no static connect between
 // heat_exchanger.out2 and storage.in_supply1
 // no static connect between
 // storage.out_supply1 and pump_storage.in
 connect(pump_storage.out,heat_exchanger.in2);
 // heating circle:
 // no static connect between
 // storage.out_load_1 and heater.in
 connect(heater.out, tube3.in);
 connect(tube3.out, building.in);
 connect(building.out, tube4.in);
 connect(tube4.out, pump_heating.in);
 // no static connect between
 // pump_heating.out and storage.in_load1
 ...

In the statechart-section, which is responsible
for the model structure dynamics, the states of the
system model (startState, lowResolution, highReso-
lution) are declared and the transitions between the
states (startState -> lowResolution, lowResolution ->
highResolution) are modelled:

statechart
 state SolarHeatingSystemBasic
 extends State;
 State lowResolution, highResolution;
 State startState(isInitial = true);

 entry action
 storage := new Storage(n_zones = 4,
 volume = 30.0,
 ...);
 end entry;

65

Advanced Modeling and Simulation Techniques in MOSILAB: A System Development Case Study

The Modelica Association Modelica 2006, September 4th-5th,2006

At the beginning of the simulation experiment
(startState -> lowResolution) the storage model is
added to the system model and the connections of
the storage model to its surrounding components are
closed.

 transition startState -> lowResolution
 add(storage);
 connect(heat_exchanger.out2,
 storage.in_supply1);
 connect(storage.out_supply1,
 pump_storage.in);
 connect(storage.out_load1, heater.in);
 connect(pump_heating.out,
 storage.in_load1);
 end transition;

If the transition lowResolution -> highResolution is
triggered by the variable finer during the simulation
experiment, the connections from the storage model
are cut by using disconnect(a.p,b.p) and the old
storage model is removed.

 transition lowResolution -> highResolution
 event finer action
 disconnect(heat_exchanger.out2,
 storage.in_supply1);
 disconnect(storage.out_supply1,
 pump_storage.in);
 disconnect(storage.out_load1, heater.in);
 disconnect(pump_heating.out,
 storage.in_load1);
 remove(storage);

Now a new storage model is instantiated with new in
a higher resolution (n_zones = 12). The start values
of the new storage model are determined from the
current state of the old storage model:

 tempStorage := new Storage(n_zones = 12,
 volume = 30.0,
 ...):
 tempStorage.content.T_zone[1] :=
 storage.content.T_zone[1];
 tempStorage.content.T_zone[2] :=
 storage.content.T_zone[1];
 tempStorage.content.T_zone[3] :=
 storage.content.T_zone[1];
 tempStorage.content.T_zone[4] :=
 storage.content.T_zone[2];
 ...
 tempStorage.content.T_zone[10] :=
 storage.content.T_zone[4];
 ...

Then the new storage model substitutes the old
model, must be added to the system model and the
connection to its adequate components are closed
again.

 storage := tempStorage;
 add(storage);
 connect(heat_exchanger.out2,
 storage.in_supply1);
 connect(storage.out_supply1,
 pump_storage.in);
 connect(storage.out_load1, heater.in);
 connect(pump_heating.out,
 storage.in_load1);

 end transition;
 end SolarHeatingSystem_SC;
end SolarHeatingSystem;

The simulation experiment with MOSILAB for this
system model for a summer day is shown in Figure
4. The diagram shows the implemented behaviour.
During the morning hours, the solar controller
switches the pumps on first (third curve). Two hours
later the temperature between the collector output
and the temperature in the lowest layer of the storage
is greater than 3 K. (This temperature is equal to the
input temperature of the storage pump.) As a result,
MOSILAB exchanges the coarse storage model with
the higher-resolution model (n_zones = 4 -> n_zones
= 12, fourth curve).

Figure 4: Simulation experiment for a summer day:
MOSILAB switches to the detailed model, when hot
water enters the storage model and its thermal gradi-
ent has to be recalculated in a finer resolution.

5 Numerical coupling with external
simulators

Building on the MOSILAB platform, reusable com-
ponents for simulator coupling have been developed
within the GENSIM project. The components sup-
port integration with standard tools, such as MAT-
LAB/Simulink or FEMLAB/COMSOL Multiphysics
and also domain-specific FEM-Tools such as MARC
and DEFORM. This represents a departure from and
an improvement upon the typical separate handling
of system simulation and FEM (Finite Element
Method) simulation.

5.1 MATLAB/Simulink

MOSILAB offers an optional generic interface for
MATLAB/Simulink [3]. Thus, it is possible to de-
velop control strategies for embedded systems within
MATLAB/Simulink and combine them with a
Modelica model of the mixed-continuous discrete
system environment. In this scenario each sub-

66

C. Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schwarz, P. Schneider, M. Vetter, C. Wittwer, A. Holm, T. Nouidui, J.
Leopold, G. Schmidt, A. Mattes

The Modelica Association Modelica 2006, September 4th-5th,2006

system is modelled in with the appropriate modelling
paradigm within adequate simulation engineering
tools.
For a smooth integration of both modelling views, a
proxy object is introduced in each view. Within a
view, the proxy object represents the wrapped simu-
lator which is realized in the other view. This leads
to symmetric model perspectives, which are close to
the mental model of the engineer.
In MATLAB/Simulink a generic MOSILAB proxy
model can be imported and parameterized via the
block parameter dialog. (Compare with Figure 5.)

Figure 5: Simulink with an embedded MOSILAB-
model
The controlled system model itself (in the case study,
the solar energy plant and the building model) is de-
veloped using MOSILAB and will be associated
with this proxy model, which is shown in the follow-
ing code fragment:
block RemoteModel
 constant Boolean isRemoteModel=true;
 parameter Integer nInp, nOutp;
 input Real inp[nInp];
 output Real outp[nOutp];
end RemoteModel;

The constant isRemoteModel indicates the presence
of a further simulator/driver behind this model. Thus,
the numeric algorithms can handle the input and out-
put vectors correctly. The number of input and out-
put variables can be given by nInp and nOutp. The
vectors itself are given by inp and outp.
The following code illustrates the direct use of this
generic remote interface within a Modelica model:
model SolarHeatingSystem
 ThermalCollectorDynamic collector
 Pump pump_solar(...);
 StorageSimple storage(...);
 ...
 // the Simulink interface model
 RemoteModel ctrl_solar(nInp=2, nOutp=1);
 ...
equation
 ...
 // controller solar cycle
 collector.port_out.T = ctrl_solar.inp[1];
 storage.content.T_zone[4] = ctrl_solar.inp[2];
 pump_solar.alpha = ctrl_solar.outp[1];

 pump_storage.alpha = ctrl_solar.outp[1];

 // solar cycle:
 connect(collector.out, tube1.in);
 connect(tube1.out, heatexchanger.in1);
 connect(heat_exchanger.out1, tube2.in);
 connect(tube2.out,pump_solar.in);
 connect(pump_solar.out,collector.in);

 // storage solar cycle:
 connect(heatexchanger.out2,storage.in_supply1);
 connect(storage.out_supply1,pump_storage.in);
 connect(pump_storage.out,heat_exchanger.in2);
 ...
end SolarHeatingSystems;

In this configuration the simulation is driven by
MATLAB/Simulink as the master simulator. Figure
6 illustrates a coupled simulation experiment for the
solar heating system during a simulation period of
one week in spring. The top screen shows the output
signal of the discrete controller, calculated in MAT-
LAB/Simulink. This signal switches the solar pump
depending on the temperature difference between the
collector output temperature and the temperature in
lowest level within the water storage.

Figure 6: Coupled simulation of MOSILAB with
MATLAB/Simulink.

67

Advanced Modeling and Simulation Techniques in MOSILAB: A System Development Case Study

The Modelica Association Modelica 2006, September 4th-5th,2006

The bottom screen illustrates the dynamic behaviour
of the controlled system, calculated in MOSILAB,
for the same time period. The curves represent both
state variables, which are the input signals of the
controller (collector output and storage temperature).

5.2 FEMLAB/COMSOL Multiphysics

One other aspect within the project was the devel-
opment of a numeric coupling between the simula-
tors MOSILAB and FEMLAB [4]. For simulator
couplings which incorporate FEMLAB, two basic
principles exist:
1. Coupling within the MATLAB Framework –

here the MATLAB engine is used in a C-
program or a dedicated coupling model is im-
plemented based on the MEX-interface.

2. FEMLAB is used as a stand-alone simulator –
within FEMLAB Java-API models can be
loaded, the simulation can be controlled, and
the data exchange can be organized.

The second principle is used for this implementation.
Figure 7 illustrates the basic structure of the cou-
pling.

Figure 7: Numerical coupling between MOSILAB
and FEMLB/ COMSOL Multiphysics
 The communication between the two sides is han-
dled by TCP/IP sockets. This extends the usage of
the simulator coupling for a distributed computer
environment. Due to a lean coupling implementation,
the communication time for the data exchange is
much shorter than the simulation time for simple
FEM-models. This allows an effective simulation
including realistic transient boundary conditions
even in combination with models requiring small
simulation time steps.
Hence, simulator coupling is suitable for a wide
range of applications. This enables the analysis of
control systems with a detailed consideration of the
controlled process. Furthermore, components in a
complex system can be analysed in detail using the
MOSILAB-FEMLAB environment, e.g. the multi-
dimensional flow within the heat storage as a part of
a solar heating system.

5.3 MARC

The finite element code MARC can be used to model
complex nonlinear mechanical and thermo-
mechanical structures such as machining tools con-
sisting of different components with contact and fric-
tion problems. Thus, it is possible to simulate com-
plex system behavior which cannot be adequately
described by analytical functions. For example, non-
linear load dependent contact behavior between tool
components may results in non-linear tool deforma-
tions which require an expensive finite element
analysis (FEA). Because of long computing times
with FEA the coupling between MOSILAB and
MARC will be off-line in most cases. For that pur-
pose a special interface has been developed. The
coupling of MOSILAB with MARC will enable to
opt between analytical models for relatively simple
cutting tools or the more complex FEM-models. That
way it is possible to optimize the accuracy of the
description of the tool behavior and the expense of
the calculations.
Finite element analyses will run outside of MOSI-
LAB and the input and output streams to respectively
from the MOSILAB databases will be realized by
readData() and writeData() commands. Using that
interface it will also be possible to use predefined
FEM-models from a tool model library without spe-
cial knowledge of finite element modeling.
The loading conditions required by analytical or fi-
nite element analyses are provided by the simulation
of the cutting process (see chapter 5.4).

5.4 DEFORM

Originally developed for metal forming processes,
the FEM-tool DEFORM is also suited for simulation
of the chip formation during the machining process.
DEFORM is advantageous for an efficient handling
of the mesh distortion, which is caused by the high
strains within the chip formation zone. Through the
remeshing function it is possible to generate a new
mesh and to transfer the interpolated values for each
node. Thereby the program is able to simulate the
mechanical and thermo-mechanical behavior.
In addition, a simplified and fast model for the chip
building process in Modelica was developed, which
is based on analytical equations (e.g. cutting force
calculation according to Kienzle [5]). First of all, the
parameters of the simplified Modelica-model have to
be calculated with a large number of detailed DE-
FORM simulations. As a result, the fast Modelica
model can be used in the area of validity of these
DEFORM calculations.

68

C. Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schwarz, P. Schneider, M. Vetter, C. Wittwer, A. Holm, T. Nouidui, J.
Leopold, G. Schmidt, A. Mattes

The Modelica Association Modelica 2006, September 4th-5th,2006

The cooperation between MOSILAB and DEFORM
for the determination of these parameters has been
fully automated. First, a routine for automated pre-
and post processing for DEFORM was developed.
The execution of DEFORM by an external program
is possible using the text mode of the software. This
enables set up and run of simulations without going
through the graphic user interface. The routine needs
initial input information about tool geometry and
machining parameters provided in a text file. To
transfer amongst others, the values for the angles of
the cutting wedge or for the feed rate and width of
cut from MOSILAB the commands readData() and
writeData() are applied.

model DataExchange
 model Kienzle
 ...
 end Kienzle;

 parameter String fname = "inputData.txt" ;
 parameter String fnameOut = "outputData.txt";
 Kienzle k;
 algorithm
 when initial() then
 readData(fname, k);
 end when;
 when terminal() then
 writeData(fnameOut,k);
 end when;
end DataExchange;

These loose coupling of MOSILAB with DEFORM
helps to combine the advantages of both methods:
First, the short computation time, when solving ana-
lytical equations in Modelica and second, the mani-
fold possibilities by analyzing the chip building
process through FEM-Analysis.

6 Distributed execution of simulation
experiments

Simulators developed using MOSILAB can be gen-
erated in various configurations – from a “barebone”
variant suitable for constrained environments, such
as embedded systems, to a regular desktop applica-
tion, to a web service for distributed simulation.

6.1 Simulator Services and Interoperability

MOSILAB follows a service-based architectural
style. For all configurations except the minimal one,
the simulators generated by MOSILAB are created
as services communicating through a standard inter-
face. The standard interface is based on the
W3C/OASIS web services protocol suite (most im-
portantly, HTTP and SOAP), which allows MOSI-

LAB-developed simulators to be controlled from a
wide variety of software environments such as Java,
C++, C#/.NET, MATLAB, Python, Perl, and Ruby.
MOSILAB also supports a more bandwidth-efficient
proprietary stream command interface, a direct C++
API, and a Python API. The Python layer abstracts
from the underlying transport mechanism; i.e. the
same Python experiment script can be used to control
a simulator running as a local subprocess and com-
municating via OS standard I/O pipes, or to control a
simulation web service running on a remote machine
but having been generated from the same Modelica
model (compare figure 8).

Simulation

Kernel

Steering

Server

C
+

+
 A

P
I

S
tr

e
a

m

S
O

A
P

Runtime

System
Numerical

Solver

Simulator

Service

Python API

Figure 8: MOSILAB steering interface options
These interfaces are all manifestations of one and the
same abstract protocol (called the MOSILAB unified
steering protocol), which is only expressed in differ-
ent programming languages. The generic interfaces
to other simulators described in section 5 have been
developed using these interfacing options specific to
MOSILAB, in addition to Modelica’s standard ex-
ternal function interface.

6.2 Speeding up parameter studies by distrib-
uted simulation

Often, the system design task at hand requires a large
number of simulation runs with differing parameter
values, e.g. to obtain knowledge about the system’s
behaviour under parameter variations (“robust de-
sign”), or to approximate a certain desired property
of the system being designed (“optimization”). In the
system model from the case study, it makes sense to
consider variations of the model parameters “collec-
tor area”, “heat store volume” or “building orienta-
tion”, as well as parameters of the controller model.
The following Figures 9 and 10 illustrate a variation
of the collector area parameter.

69

Advanced Modeling and Simulation Techniques in MOSILAB: A System Development Case Study

The Modelica Association Modelica 2006, September 4th-5th,2006

Figure 9: Multiple simulation experiments in the
MOSILAB-IDE for varying the collector area

Figure 10: Impact of different collector areas on the
storage temperature during a period of 3 days
Variations of multiple parameters lead to multidi-
mensional variant spaces, the size of which (i.e. the
total number of simulation runs needed) soon be-
comes impractical, due to the sheer computation time
needed. Statistics-based methods exist to achieve a
substantial reduction of the variant space with only a
marginal loss of result quality, but even with such
methods in place, a large number of necessary simu-
lation experiments are likely to remain. MOSILAB’s
service-based architecture allows for distribution of
simulation experiments as independent, parallel jobs
in clusters and computational grids, thus empower-
ing the user to make optimal use of the computa-
tional resources available. The individual distributed
simulators can nevertheless be interactively con-
trolled and supervised from the MOSILAB-IDE (see
Figure 10).

Development

Environment

(Mosilab IDE)

Experiment

Support

Visuali-

zation

Modeling

Support

Desktop PC

Simulation

Kernel

Steering

Server

C
+

 -
A

P
I

S
tr

e
a
m

S
O

A
P

Runtime

System
Numerical

Solver

Simulator

Service

Node_N

Simulation

Kernel

Steering

Server

C
+

+
 A

P
I

S
tr

e
a
m

S
O

A
P

Runtime

System
Numerical

Solver

Simulator

Service

Node_1

TCP/IP

...

Figure 10: Executing simulator services in the Grid
For very large numbers of parallel experiments, cen-
tral steering limits scalability, and interactive super-
vision becomes impractical. In this case, MOSILAB-
generated simulators can be distributed in the Grid as
independent batch jobs. For more information on
MOSILAB and Grid computing, see [7].

70

C. Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schwarz, P. Schneider, M. Vetter, C. Wittwer, A. Holm, T. Nouidui, J.
Leopold, G. Schmidt, A. Mattes

The Modelica Association Modelica 2006, September 4th-5th,2006

References

[1] Nytsch-Geusen, C. et al. MOSILAB:
Development of a Modelica based
generic simulation tool supporting
model structural dynamics. Proceed-
ings of the 4th International Mode-
lica Conference TU Hamburg-
Harburg, 2005.

[2] Nordwig, A. et. al: Codegenerierung
aus Simulationsmodellen von hetero-
genen technischen Systemen am Bei-
spiel einer Pendelsteuerung, VSEK-
Report. FKZ01ISC65, 2005.

[3] Nordwig, A.: Coupling of Modelica
and Matlab/Simulink models. Tech-
nical Report, Fraunhofer FIRST
2006.

[4] Clauß, C. et. al: Simulatorkopplung
mit FEMLAB. Proceedings of the
1th FEMLAB Conference, Frankfurt
am Main, 2005.

[5] König, W.: Fertigungsverfahren –
Band 1: Drehen, Fräsen, Bohren.
VDI-Verlag, 1990.

[6] MOSILAB-Homepage:
http://www.mosilab.de

[7] Ernst, T. et al.: MOSILAB: Modeli-
ca Simulation from Desktop to Grid.
2. Workshop "Grid-Technologie für
den Entwurf technischer Systeme",
Dresden, 2006.

[8] Nordwig, A.: Integration von Sichten
für die objektorientierte Modellie-
rung hybrider Systeme, Verlag dis-
sertation.de, ISBN 3-89825-692-8,
2003.

71

Advanced Modeling and Simulation Techniques in MOSILAB: A System Development Case Study

The Modelica Association Modelica 2006, September 4th-5th,2006

72

C. Nytsch-Geusen, T. Ernst, A. Nordwig, P. Schwarz, P. Schneider, M. Vetter, C. Wittwer, A. Holm, T. Nouidui, J.
Leopold, G. Schmidt, A. Mattes

The Modelica Association Modelica 2006, September 4th – 5th

Quantised State System Simulation in Dymola/Modelica
using the DEVS Formalism

Tamara Beltrame
VTT, Industrial Systems

PO Box 1000, VM3
02150 Espoo, Finland

Tamara.Beltrame@vtt.fi

François E. Cellier
Institute of Computational Science

ETH Zurich
8092 Zurich, Switzerland
FCellier@Inf.ETHZ.CH

Abstract

Continuous-time systems can be converted to discrete-
event descriptions using the Quantised State Systems
(QSS) formalism. Hence it is possible to simulate
continuous-time systems using a discrete-event simu-
lation tool, such as a simulation engine based on the
DEVS formalism.
A new Dymola library, ModelicaDEVS, was devel-
oped that implements the DEVS formalism.
DEVS has been shown to be efficient for the simu-
lation of systems exhibiting frequent switching opera-
tions, such as flyback converters. ModelicaDEVS con-
tains a number of basic components that can be used
to carry out DEVS simulations of physical systems.
Furthermore, it is also possible - with some restric-
tions - to combine the two simulation types of Mod-
elicaDEVS and Dymola (discrete-event and discrete-
time simulation) and create hybrid models that contain
ModelicaDEVS as well as standard Dymola compo-
nents.
Keywords: DEVS formalism; Quantised State Sys-
tems; Event-Based Simulation; Numerical Integration

1 Introduction

Since Dymola/Modelica was primarily designed to
deal with continuous physical problems, numerical
integration is central to its operation, and therefore,
the search for new algorithms that may improve the
efficiency of simulation runs is justified.
Toward the end of the nineties, a new approach for
numerical integration by a discrete-event formalism
has been developed by Zeigler et al. [13]: given
the fact that all computer-based continuous system
simulations have to undergo a discretisation of one
form or another –as digital machines are not able
to process raw continuous signals– the basic idea

of the new integration approach was to replace the
discretisation of time by a quantisation of state.
The DEVS formalism turned out to be particularly
well suited for implementing such a state quantisation
approach, given that it is not limited to a finite number
of system states, which is in contrast to many other
discrete-event simulation techniques.
The Quantised State Systems (QSS) introduced by
Kofman [6] in 2001 improved the original quantised
state approach of Zeigler by avoiding the problem of
ever creating illegitimate models, and hence gave rise
to efficient DEVS simulation of large and complex
systems.

The simulation of a continuous system by a (dis-
crete) DEVS model comes with several benefits:
When using discretisation of time, variables have to
be updated synchronously1. Thus, the time steps have
to be chosen according to the variable that changes the
fastest, otherwise a change in that variable could be
missed. In a large system where probably very slow
but also very fast variables are present, this is critical
to computation time, since the slow variables have
to be updated way too often. The DEVS formalism
however allows for asynchronous variable updates,
whereby the computational costs can be reduced
significantly: every variable updates at its own speed;
there is no need anymore for an adaptation to the
fastest one in order not to miss important develop-
ments between time steps. This property could be
extremely useful in stiff systems that exhibit widely
spread eigenvalues, i.e., that feature mixed slow and
fast variables.
The DEVS formalism is very well suited for problems
with frequent switching operations such as electrical

1Note that this is not true for methods with dense output. How-
ever, the above statement holds for the majority of today’s integra-
tion methods, since they rarely make use of dense output.

73

Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism

The Modelica Association Modelica 2006, September 4th – 5th

power systems. Given that the problem of iteration at
discontinuities does not apply anymore, it even allows
for real-time simulation.
For hybrid systems with continuous-time, discrete-
time, and discrete-event parts, a discrete-event method
provides a “unified simulation framework”: discrete-
time methods can be seen as a particular case of
discrete-event methods [6], and continuous-time parts
can be transformed in a straightforward manner to
discrete-time/discrete-event systems.
When using the QSS approach of Kofman in order to
transform a continuous system into a corresponding
discrete system, there exists a closed formula for the
global error bound [2], which allows a mathematical
analysis of the simulation.

Since the mid seventies, when Zeigler introduced the
DEVS formalism [11], there have emerged several
DEVS implementations, most of them designed to
simulate discrete systems. However, one simula-
tion/modelling software system aimed at simulating
continuous systems is PowerDEVS [8]: it provides
a library consisting of block diagram component
models that can be used for modelling any system
described by ODE’s (DAE’s), thereby allowing for the
simulation of continuous systems.
The implementation of ModelicaDEVS has been
kept close to the PowerDEVS simulation soft-
ware. Hence ModelicaDEVS can be considered a
re-implementation of PowerDEVS in Modelica.

2 Continuous System Simulation
with DEVS

2.1 The DEVS Formalism

The DEVS formalism has been introduced by Zeigler
in 1976 [11]. It was the first methodology designed
for discrete-event system simulation that is based on
system theory.

A DEVS model has the following structure:

M = 〈X ,Y,S,δint(s),δext(s,e,x),λ(s), ta(s)〉

where the variables have the following meaning (see
also [2], Chapter 11):
X represents all possible inputs, Y represents the
outputs, and S is the set of states.
The variable e indicates the amount of time the system
has already spent in the current state. δext(s,e,x)
is the external transition that is executed after an

external event has been received. δint(s) is the internal
transition that is executed as soon as the system has
spent in its current state the time indicated by the
time-advance function.
ta(s) is the so-called time advance function that
indicates how much time has to pass until the system
undergoes the next internal transition. The time-
advance function is often represented by variable σ

which holds the value for the amount of time that the
system has to remain in its current state in the absence
of external events.
The λ-function is the output function. It is executed
prior to performing an internal transition. External
transitions do not produce output.
Figure 1 illustrates the functioning of a DEVS model:
the system receives input (top graph) at certain time
instants, changes its states according to the internal
and external transitions (center graph), and produces
output (bottom graph).

Figure 1: Trajectories in a DEVS model.

In theory, DEVS models can describe arbitrarily
complex systems. The only drawback is that the more
complex the system is, the more difficult it will be
to set up the correct transition functions describing
the system. Fortunately, complex systems can be
broken down into simpler submodels that are easier to
handle. The fact that DEVS is closed under coupling
[2] makes such an approach viable.
Figure 2 illustrates this concept: the model N consists
of two coupled atomic models Ma and Mb. N can be
said to wrap Ma and Mb and is indistinguishable from
the outside from an atomic model.

74

T. Beltrame, F.E. Cellier

The Modelica Association Modelica 2006, September 4th – 5th

Figure 2: Coupled DEVS models [2].

2.2 Quantised State Systems

For a system to be representable by a DEVS model,
it must exhibit an input/output behaviour that is de-
scribable by a sequence of events. In other words,
the DEVS formalism is able to model any system
with piecewise constant input/output trajectories, since
piecewise constant trajectories can be described by
events [2].
Continuous state variables are being quantised. Con-
sider the following system represented by the state-
space description:

ẋ(t) = f(x(t),u(t), t)
where x(t) is the state vector and u(t) is the input
vector, i.e. a piecewise constant function. The cor-
responding quantised state system has the following
form:

ẋ(t)≈ f(q(t),u(t), t)
where q(t) is the (componentwise) quantised version
of the original state vector x(t). A simple quantisation
function could be:

q(t) = floor(x(t)).
Unfortunately, the transformation of a continuous
system into its discrete counterpart by applying an
arbitrarily chosen quantisation function can yield an
illegitimate model2. Thus, the quantisation function
has to be chosen carefully, such that it prevents
the system from switching states with an infinite
fequency. This property can be achieved by adding
hysteresis to the quantisation function [6], which
leads to the notion of a Quantised State System (QSS)
as introduced by Kofman [6] providing legitimate
models that can be simulated by the DEVS formalism.
A hysteretic quantisation function is defined as
follows [2]: Let Q = {Q0,Q1, ...,Qr} be a set of real
numbers where Qk−1 < Qk with 1 ≤ k ≤ r. Let Ω

2Definition [2]: “A DEVS model is said to be legitimate if it
cannot perform an infinite number of transitions in a finite interval
of time.” Illustrative examples of illegitimate models can be found
in [2] and [6].

be the set of piecewise continuous trajectories, and
let x ∈ Ω be a continuous trajectory. The mapping
b : Ω → Ω is a hysteretic quantisation function if the
trajectory q = b(x) satisfies:

q(t)=

Qm if t = t0
Qk+1 if x(t) = Qk+1∧q(t−) = Qk∧ k < r
Qk−1 if x(t) = Qk− ε∧q(t−) = Qk∧ k < 0
q(t−) otherwise

and:

m =

0 if x(t0) < Q0
r if x(t0)≥ Qr

j if Q j ≤ x(t0) < Q j+1

The discrete values Qi and the distance Qk+1 −Qk
(usually constant) are called the quantisation levels
and the quantum, respectively. The boundary val-
ues Q0 and Qr are the upper and the lower saturation
values, and ε is the width of the hysteresis window.
Figure 3 shows a quantisation function with uniform
quantisation intervals.

Figure 3: Quantisation function with hysteresis [2].

The QSS described above is a first-order approxima-
tion of the real system trajectory. Kofman however
has also introduced second- and third-order approx-
imations that may reduce the error made by the
approximation. These systems are referred to as QSS2
[7] and QSS3 [9], respectively.

3 ModelicaDEVS

The average block of the ModelicaDEVS library ex-
hibits the following basic structure:

75

Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism

The Modelica Association Modelica 2006, September 4th – 5th

1 block SampleBlock
2 extends ModelicaDEVS.Interfaces. ... ;
3 parameter Real ... ;
4
5 protected
6 discrete Real lastTime(start=0);
7 discrete Real sigma(start=...);
8 Real e;
9 Boolean dext;
10 Boolean dint;
11 [...other variable declarations...]
12
13 equation
14 dext = uEvent;
15 dint = time>=pre(lastTime)+pre(sigma);
16
17 when {dint} then
18 yVal[1]= ...;
19 yVal[2]= ...;
20 yVal[3]= ...;
21 end when;
22 yEvent = edge(dint);
23
24 when {dint, dext} then
25 e=time-pre(lastTime);
26 if dint then
27 [..internal transition behaviour..]
28 else
29 [..external transition behaviour..]
30 end if;
31 lastTime=time;
32 end when;
33
34 end SampleBlock;

The following sections will offer more insight into the
reasons for this specific block structure.

In accordance with the PowerDEVS implemen-
tation, ModelicaDEVS event ports (connectors)
consist of four variables representing the coefficients
to the first three terms (constant, linear, and quadratic)
of the function’s Taylor series expansion, and a
Boolean value that indicates whether a block is
currently sending an event.
Dense output can then be approximated as:

yout = y0 + y1 · (t− tlast)+ y2 · (t− tlast)2

whereby the coefficient of the quadratic term of
the Taylor series, y2 = yVal[3], is only used by
the third-order accurate method, QSS3, whereas the
linear term, y1 = yVal[2], is used by QSS2 and QSS3.

Let us now consider a small example in order to gain
increased insight into the role of the Boolean variable
of the port. Let us assume a two-block system consist-
ing of block A and block B, where the only input port
of block B is connected to the only output port of block
A. Every block features a variable dext accompanied

by an equation
dext = uEvent;

where uEvent is the Boolean component of the con-
nector that represents an input event. Suppose now
that block A produces an output event at time t = 3.
At this precise instant, it updates its output vector with
the appropriate values (the coefficients of the Taylor
series) and sets A.yEvent to true:

when dint then
yVal[1]= ...; //new output value 1
yVal[2]= ...; //new output value 2
yVal[3]= ...; //new output value 3

end when;
yEvent = edge(dint);

Still at time t = 3, block B notices that now B.uEvent

has become true (note that B.uEvent = A.yEvent

because the two blocks are connected), and therefore
dext has become true, also. Consequently, Block B is
executing its external transition [4].

A DEVS model must contain code to perform
internal and external transitions, as well as execute the
time advance and output functions at the appropriate
instants. All of these functions have to be explicitly or
implicitly present in the ModelicaDEVS blocks.
The time advance function is normally represented
by a variable sigma. It is a popular trick in DEVS
to represent the current value of the time advance
function by sigma [2].
The internal transition is executed when dint is true.
An internal transition depends only on sigma. Hence
the value of dint can be calculated as:
dint = time >= pre(lastTime) + pre(sigma);

where lastTime holds the time of the last execution of
a transition (internal or external).
The external transition is executed when dext is true.
The variable dext is defined as follows:

dext = uEvent;

The internal and external transitions are represented
by a when-statement. The reason for packing
the internal and external transitions into a single
when-statement instead of having two separate when-
statements, one representing the internal transition
and the lambda function, the other one representing
the external transition, is due to a rule of the Modelica
language specification that states that equations in
different when-statements may be evaluated simul-
taneously. Hence, if there are two when-statements
each containing an expression for a variable X, X
is considered overdetermined. This circumstance
would cause a syntactical problem with variables that
have to be updated both during the internal and the

76

T. Beltrame, F.E. Cellier

The Modelica Association Modelica 2006, September 4th – 5th

external transition and thus would have to appear in
both when-statements. For this reason, we need to
have a when-statement that is active if either dint

or dext becomes true. Subsequently, an additional
discrimination is done within the when-statement,
determining whether it was an internal (dint is true)
or an external transition (dext is true) that made the
when-statement become active, and as the case may
be, updating the variables with the appropriate value.
The lambda function is executed right before an
internal transition. Lines 17-22 of the “block basic
structure” code (beginning of Section 3) constitute
the typical lambda function part, containing a when-
statement and a separate instruction for the yEvent

variable. The right hand side of the equations in the
lambda function normally depends on pre() values
of the used variables. This is due to the fact that
the lambda function has to be executed prior to the
internal transition. The variable yEvent has to be
true in the exact instant when an internal transition
is executed and false otherwise. This behaviour is
obtained by using the Modelica edge() operator.

There is one particular situation that can occur
in a model that requires special attention: let us
assume two connected blocks, where both block A
and block B have to execute an internal transition
simultaneously (Figure 4). Whereas block A simply

Figure 4: Concurrent events at block B.

executes its internal transition, block B is confronted
with the problem of concurrent events: from block
A it receives an external event, but at the same time,
it was about to undergo its own internal transition.
Which event should be processed first? This question
is to be answered by the priority settings between the
two blocks.
In our simple two-block example there are only
two possible priority orderings with the following
consequences: either block A is prior to block B, and
block A will produce the output event before block
B executes the internal transition (block B will first
execute an external transition triggered by the external
event it received from block A), or block B is prior

to block A, such that block B will first undergo its
internal transition and receive the external event right
afterwards, when A will be allowed to execute its
internal transition.
The problem of block priorities can be solved in
two ways: by an explicit, absolute ordering of all
components in a model (e.g., a list), or by letting
every block determine itself whether it processes the
external or the internal event first, in case both of them
occur simultaneously. ModelicaDEVS implements
the latter approach. As can be seen in the “block
basic structure” code, internal transitions take always
priority over external transitions (line 26: the code
checks first whether dint is true).
The reason for this choice is quite simple. As internal
events are processed before external events, and since
internal events are accompanied by output events,
the variable yEvent can be computed as a function
of dint alone. If we were to force external events
to be processed before internal events, we would
need to make sure that yEvent is only set true in the
case that the internal event is not accompanied by
a simultaneous external event. Thus yEvent would
now be a function of both dint and dext. Yet, dext
is a function of uEvent. Thus, if ModelicaDEVS
blocks were connected in a circular fashion, as this is
often the case, an algebraic loop in discrete (Boolean)
variables would be created, which would get the
Dymola compiler into trouble.
By forcing the internal events to always take pref-
erence over external events, ModelicaDEVS blocks
can be interconnected in an arbitrary fashion without
ever creating algebraic loops in the Boolean event-
indication variables.
Note that since Dymola/Modelica is already aimed at
object-oriented modelling, which includes the reuse
of multi-component models as parts of larger models,
the issue of hierarchically coupled models did not
require any special treatment in ModelicaDEVS.

Dymola can trigger two types of events: state
events that require iteration to locate the event time,
and time events that make Dymola “jump” directly to
the point in time when the time event takes place.
The only expressions responsible for activating the
when-statements in the models, namely:

dext = uEvent;

and:
dint = time >= pre(lastTime) + pre(sigma);

both trigger time events and hence avoid the computa-
tionally more expensive state events.

77

Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism

The Modelica Association Modelica 2006, September 4th – 5th

An earlier version of ModelicaDEVS used an ap-
proach that triggered mostly state events. Inspired by
the book of Fritzson [4], a number of small modifica-
tions have been applied that converted all state events
to time events. Performance comparisons carried out
between the two versions showed that the time-event
approach is roughly four times faster than an equiva-
lent approach triggering state events.

4 Results

4.1 Efficiency

In order to compare the run-time efficiency of Mod-
elicaDEVS to other simulation software systems
(PowerDEVS and standard Dymola), a system with
frequent switching operations was modelled using
each of the three tools (PowerDEVS, ModelicaDEVS
and Dymola), and the execution times of the three
codes were compared against each other.
The chosen system is the flyback converter example
presented in [5].
The flyback converter can be used to transform a
given input voltage to a different output voltage. It
belongs to the group of DC-DC converters.
A very simple electrical circuit with a voltage source
connected to the primary winding of the converter
and a load to its secondary winding looks as shown in
Figure 5.

Figure 5: The flyback converter in Dymola.

Figure 6 shows the first two milliseconds of a simula-
tion run of the flyback converter circuit given in Figure
5. The rapid switching is a result of the high switching
rate of the ideal switch.
The flyback converter is described by a set of acausal
equations in Dymola. However, in order to be able to
model the flyback converter in either ModelicaDEVS

Figure 6: The flyback converter output.

or PowerDEVS, the behaviour of the converter needs
to be converted to a causalised block diagram3, which
then can be modelled using component models of the
PowerDEVS/ModelicaDEVS libraries.
Figure 7 shows the flyback converter model built in
ModelicaDEVS. The structure of this block diagram
is also valid for the PowerDEVS model.

Figure 7: The ModelicaDEVS flyback converter.

Table 1 provides the average simulation CPU time
for a simulation of 0.002 seconds of the flyback con-
verter model in standard Dymola, ModelicaDEVS,
and PowerDEVS, respectively. The Dymola and Mod-
elicaDEVS model were simulated setting the numeri-
cal integration method to LSODAR4. Testing has been
carried out on an IntelCeleron 2.6 GHz Laptop with
256MB RAM. The resulting CPU time may vary from

3For more details on the causalising process in the flyback con-
verter example, see [1].

4Although ModelicaDEVS does not make use of LSODAR di-
rectly, the event handling behaviour of Dymola is somewhat influ-
enced by the selection of the numerical integration algorithm.

78

T. Beltrame, F.E. Cellier

The Modelica Association Modelica 2006, September 4th – 5th

one computer system to another, but the relative order-
ing is expected to remain the same.

Table 1: Execution efficiency comparison.
CPU time result

time [s] events points
Dymola 0.062 239 738

QSS1 3.55 6363 11829
M-DEVS QSS2 0.688 958 2299

QSS3 0.656 833 2164
QSS1 0.064 N/A N/A

P-DEVS QSS2 0.019 N/A N/A
QSS3 0.018 N/A N/A

Table 1 shows a clear ordering of the three different
systems in terms of performance: PowerDEVS is
faster than Dymola, which in turn is faster than
ModelicaDEVS.
First, it needs to be remarked that standard Dymola
simulates this model very efficiently. The switching
(BooleanPulse) block leads to time events only,
whereas the diode should lead to state events. Yet, this
is not the case.
Switching at the input leads immediately to a switch-
ing of the diode as well. Since Dymola iterates after
each event to determine a consistent set of initial
conditions, the switching of the diode is accomplished
at once without need of first triggering a state event.
Second, the model is quite trivial. The execution
time is almost entirely dictated by the number of time
events handled. What happens in between events is
harmless in comparison.
Standard Dymola performs exactly one time event
per switching. In contrast, ModelicaDEVS performs
considerably more time events. Time events take here
the role of integration steps.
Figure 8 shows the constant term of the Taylor series
expansion of the load voltage as a function of time
for QSS1 and QSS3. QSS1 requires a new time event
as soon as the constant output no longer represents
the true output, whereas QSS3 requires an event
only, when the second-order accurate Taylor series
expansion no longer approximates the true output.
QSS1 requires roughly eight times as many events
as QSS3, and is therefore between five and six times
slower. Yet, even QSS3 requires roughly three times
as many events as standard Dymola. In addition, the
ModelicaDEVS model contains roughly three times
as many variables as the standard Dymola model.
All of these variables are being stored at every event.
Consequently, QSS3 is roughly nine times slower than
standard Dymola.

Figure 8: QSS3 simulation vs. QSS1 simulation.

Yet, QSS3 in PowerDEVS is roughly three times
faster than standard Dymola for comparable ac-
curacy. A comparison between PowerDEVS and
ModelicaDEVS is not straightforward. PowerDEVS
implements Zeigler’s hierarchical simulator [12],
whereas ModelicaDEVS operates on simultaneous
equations and synchronous information flow [10].
Consequently, PowerDEVS suffers from requiring
message passing to implement the communication
between blocks, but enjoys the advantage of only
having to process those equations that are directly
involved with the event being handled. In contrast,
ModelicaDEVS needs to visit all equations of all
blocks whenever an event takes place. Which vari-
ables are to be updated in each case is decided by
Boolean expressions associated with the various
when-statements.
Yet the true difference in speed has probably more
to do with the event handling itself. Dymola has
been designed for optimal speed in the simulation
of continuous models and for optimal robustness in
handling hybrid models.
The algorithms implemented in Dymola for robust
event handling are important in the context of hybrid
modelling. In the context of a pure discrete-event
simulation, these algorithms are an overkill. For
example, in a pure discrete-event simulation there is
no need for iteration after each event to determine a
new consistent set of initial conditions. In Dymola,
many variables are being stored internally in order
to allow LSODAR to integrate continuous state
equations correctly across discontinuities. In a pure
discrete-event simulation, variables need to be stored
for output only.

79

Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism

The Modelica Association Modelica 2006, September 4th – 5th

4.2 Mixed Systems

Mixed systems contain both Dymola and Modelica
blocks. Figure 9 shows an example of a simple elec-
trical circuit modelled in Dymola, and in a mixed ver-
sion with a ModelicaDEVS capacitor. Figure 10 illus-

Figure 9: Two versions (Dymola and Dy-
mola/ModelicaDEVS) of a simple electrical circuit.

trates the implementation of the ModelicaDEVS ca-
pacitor. On its outside, this block looks like a normal
electrical Dymola component, but internally it consists
of ModelicaDEVS blocks that model the behaviour
of a capacitor: The Gain block multiplies the incom-
ing signal by the value of 1

C , where C is specified
by a parameter, and passes it on to the Interpolator.
Taken as a whole, the ModelicaDEVS blocks consti-
tute nothing more than the well known capacitor for-
mula v = 1

C

R
i dt.

Figure 10: The internal structure of the Modeli-
caDEVS capacitor.

Unfortunately, it is not as straightforward as it may
seem at first glance to replace a component from
the Dymola standard electrical library by its Modeli-
caDEVS equivalent: since the electrical components
do not assume a certain data flow direction (they are
described by acausal equations), whereas the Model-
icaDEVS components do (DEVS components feature
input and output ports), the ModelicaDEVS capacitor
must turn acausal equations into causal ones. It as-
sumes the capacitive current i to be given, and hence
computes the capacitive voltage v. Note that such a ca-
pacitor would not work anymore correctly if we were
to connect it to a voltage source instead of a current
source.
An even more severe problem is caused by the Sam-
plerTime block applying the der() operator to the sig-
nal that it receives through its input port:

du=der(u);

when sample(start,period) then
yVal[1]=u;
yVal[2]=if method>1 then du else 0;
yVal[3]=if method>2 then der(du) else 0;

end when;

Given that the input of the SamplerTime block de-
pends algebraically on the output of the Interpolator
in the DEVS capacitor, Dymola would have to differ-
entiate discrete variables, which it is unable to do.
An attempt to solve this problem was made using Dy-
mola’s “User specified Derivatives” feature described
in the Dymola User’s Manual [3]: functions for the
first and second derivatives have been inserted into the
Interpolator, but due to unknown reasons, this did not
resolve the issue either.
In order to be able to perform mixed simulations
nonetheless, another trick has been applied: supple-
mentary to the standard ModelicaDEVS SamplerTime
block that uses the Modelica der() operator, an ad-
ditional block has been programmed: the Sampler-
TimeNumerical block avoids the problem caused by
the der() operator by means of the delay() function
that is used to differentiate the input variable numer-
ically. Instead of the first and second derivatives of
the input signal, the SamplerTimeNumerical returns a
numerical approximation:

Du = delay(pre(u),D);
D2u= delay(pre(u),2*D);

yVal[1]= pre(u);
yVal[2]= if method>1 then

(pre(u)-Du)/D else 0;
yVal[3]= if method>2 then

(pre(u)-2*Du+D2u)/(D*D) else 0;

Using the new sampler block, the mixed simulation
could be carried out without any problems, and the re-
sults differ only slightly from the simulation with con-
ventional Dymola components (see Figure 11).

4.3 Hybrid Systems

Hybrid systems contain mixed integration methods:
standard Modelica integrators and ModelicaDEVS In-
tegrator blocks. An example of a hybrid system is
for instance an electrical circuit with at least one
ModelicaDEVS capacitor/inductor (using the Model-
icaDEVS Integrator block) and at least one Dymola
capacitor/inductor (using the Modelica der() opera-
tor). The flyback converter of Section 4.1, where the
capacitor in the secondary winding is replaced by an
equivalent ModelicaDEVS capacitor, may serve as an

80

T. Beltrame, F.E. Cellier

The Modelica Association Modelica 2006, September 4th – 5th

Figure 11: Standard Dymola (blue) and mixed (red)
simulation of the simple electrical circuit (Figure 9).

example of a hybrid system.
Note that the ModelicaDEVS capacitor applies numer-
ical differentiation in order not to obtain “DAE index
reduction” error messages (see previous section).

Figure 12: Standard Dymola (blue) and mixed (red)
simulation of the flyback converter.

Figure 12 shows the output of the mixed simulation
compared to the result of the standard Dymola simula-
tion. Just as it was the case with the simpler example
of Section 4.2, the output of the hybrid simulation dif-
fers only slightly from the Dymola simulation.
Thus, it is also possible to perform not only accurate5

mixed simulations, but also hybrid simulations.

5Note that due to the numerical differentiation used in the Sam-
plerTimeNumerical block, the result is not as accurate as if analyt-
ical differentiation had been used. However, the accuracy is suf-
ficient for most purposes, and also adjustable through selection of
the width parameter, D.

5 Conclusions

A new Dymola/Modelica library implementing a
number of Quantised State System (QSS) simulation
algorithms has been presented. ModelicaDEVS dupli-
cates the capabilities of PowerDEVS. The graphical
user interfaces of both tools are practically identical.
However, the underlying simulators are very different.
Whereas PowerDEVS implements Zeigler’s hierar-
chical DEVS simulator, ModelicaDEVS operates on
simultaneous equations and synchronous information
flows.
The embedding of ModelicaDEVS within the Dy-
mola/Modelica environment enables users to mix
DEVS models with other modelling methodologies
that are supported by Dymola and for which Dymola
offers software libraries.
Unfortunately, ModelicaDEVS is much less efficient
in run-time performance than PowerDEVS. The loss
of run-time efficiency is probably caused by Dymola’s
event handling algorithms that have been designed for
optimal robustness in the context of hybrid system
simulation rather than run-time efficiency in the
context of pure discrete-event system simulation.
Although ModelicaDEVS offers a full implementation
of a DEVS kernel and can therefore be used for the
simulation of arbitrary discrete-event systems, the
modelling blocks that have been made available so far
in ModelicaDEVS are geared towards the simulation
of continuous systems using QSS algorithms.

References

[1] Beltrame, T. (2006), Design and Development of
a Dymola/Modelica Library for Discrete Event-
oriented Systems using DEVS Methodology, MS
Thesis, Institute of Computational Science, ETH
Zurich, Switzerland.

[2] Cellier, F.E. and E. Kofman (2006), Continuous
System Simulation, Springer-Verlag, New York.

[3] Dynasim AB (2006), Dymola Users’ Manual,
Version 6.0, Lund, Sweden.

[4] Fritzson, P. (2004), Principles of Object-
Oriented Modeling and Simulation with Model-
ica 2.1, Wiley-Interscience, New York.

[5] Glaser, J.S., F.E. Cellier, and A.F. Witulski
(1995), “Object-Oriented Switching Power Con-

81

Quantised State System Simulation in Dymola/Modelica Using the DEVS Formalism

The Modelica Association Modelica 2006, September 4th – 5th

verter Modeling Using Dymola With Event-
Handling,” Proc. OOS’95, SCS Object-Oriented
Simulation Conference, Las Vegas, NV, pp.141-
146.

[6] Kofman, E. and S. Junco (2001), “Quantised
State Systems: A DEVS Approach for Contin-
uous Systems Simulation,” Transactions of SCS,
18(3), pp.123-132.

[7] Kofman, E., “A Second Order Approximation for
DEVS Simulation of Continuous Systems,” Sim-
ulation, 78(2), pp.76-89.

[8] Kofman, E., M. Lapadula, and E. Pagliero
(2003), PowerDEVS: A DEVS-based Environ-
ment for Hybrid System Modeling and Simula-
tion, Technical Report LSD0306, LSD, Univer-
sidad Nacional de Rosario, Argentina.

[9] Kofman, E., “A Third Order Discrete Event
Method for Continuous System Simulation,”
Latin American Applied Research, 36(2),
pp.101-108.

[10] Otter, M., H. Emqvist, and S.E. Mattsson (1999),
“Hybrid Modeling in Modelica Based on the
Synchronous Data Flow Principle,” CACSD’99,
IEEE Symposium on Computer-Aided Control
System Design, Hawaii, pp.151-157.

[11] Zeigler, B.P. (1976), Theory of Modeling and
Simulation, John Wiley & Sons, New York.

[12] Zeigler, B.P. (1984), Multifacetted Modelling
and Discrete Event Simulation, Academic Press,
London.

[13] Zeigler, B.P. and J.S. Lee (1998), “The-
ory of Quantized Systems: Formal Basis for
DEVS/HLA Distributed Simulation Environ-
ment,” SPIE Proceedings, Vol. 3369, pp.49-58.

Biographies

Tamara Beltrame received her
MS degree in computer science
from the Swiss Federal Institute
of Technology (ETH) Zurich in
2006. She recently started working
at VTT (Finland), where she deals
with problems of simulation aided
automation testing.

François E. Cellier received his BS
degree in electrical engineering in
1972, his MS degree in automatic
control in 1973, and his PhD de-
gree in technical sciences in 1979,
all from the Swiss Federal Institute
of Technology (ETH) Zurich. Dr.
Cellier worked at the University of

Arizona as professor of Electrical and Computer Engi-
neering from 1984 until 2005. He recently returned to
his home country of Switzerland. Dr. Cellier’s main
scientific interests concern modeling and simulation
methodologies, and the design of advanced software
systems for simulation, computer aided modeling, and
computer-aided design. Dr. Cellier has authored or co-
authored more than 200 technical publications, and he
has edited several books. He published a textbook on
Continuous System Modeling in 1991 and a second
textbook on Continuous System Simulation in 2006,
both with Springer-Verlag, New York. He served as
general chair or program chair of many international
conferences, and serves currently as president of the
Society for Modeling and Simulation International.

82

T. Beltrame, F.E. Cellier

 Session 1d

The Modelica Association Modelica 2006, September 4th – 5th 83

Session 1d

Mechanical Systems and Applications 1

Session 1d

The Modelica Association Modelica 2006, September 4th – 5th 84

The Modelica Association Modelica 2006, September 4th-5th,2006

The DLR FlexibleBodies library to model large motions of beams
and of flexible bodies exported from finite element programs

Andreas Heckmann∗, Martin Otter∗, Stefan Dietz� and José Dı́az López‡

∗German Aerospace Center (DLR), Institute of Robotics and Mechatronics
Oberpfaffenhofen, 82234 Wessling, Germany

�INTEC GmbH, Argelsrieder Feld 13, 82234 Wessling, Germany
‡Dynasim AB, Ideon Research Park, SE-223 70 Lund, Sweden

Abstract

The new DLR FlexibleBodies library enables and sup-
ports the object-oriented and mathematically efficient
modelling of flexible bodies as components of multi-
body and of arbitrary physical systems. It provides
Modelica model classes to model (a) beams and (b)
general flexible bodies exported from finite element
programs. The motion of a flexible structure is de-
fined by superposition of a in general large, non-linear
motion of a reference frame with small elastic defor-
mations. This paper gives an overview on the back-
ground, concepts and ideas on which the library is
based and how the Modelica user may take advantage
of it.

Keywords: Flexible body, modal representation,
standard input data (SID), floating frame of reference

1 Introduction

The DLR FlexibleBodies library is based on the ”Stan-
dard Input Data of flexible bodies“ (SID) which is an
object-oriented data structure that was developed at the
DLR-Institute of Robotics and Mechatronics to gener-
ally describe the properties of elastic bodies, see [13].
It facilitates the use of data which may originate from
a finite element description or from continuum mod-
els and has been used by various multibody codes, es-
pecially by SIMPACK [10], in industrial applications
since the early 1990’s. The implementation of this
general, stable and well-established approach offers
new possibilities for multiphysical modelling tasks in
Modelica and is nevertheless open for further devel-
opment and improvements, e.g. concerning multifield
problems [6].

2 Modelling Capabilities

The DLR FlexibleBodies library is a commercial
Modelica package. It provides two basic Modelica
model classes: the Beam model and a general Modal-
Body model, see Figure 1.

Figure 1: Icons of Beam and ModalBody models.

If a Beam object is instantiated, a dialogue menu,
see Fig. 2, supports the definition of the geometrical
and physical properties of a straight, homogenous and
isotropic beam. For the specification of the cross sec-
tion an additional menu offers predefined cross section
profiles such as tubes, U-pipes or T-beams, see Fig. 3.
The parameters defined there are also used for anima-
tion purposes. The choice general in Fig. 3 enables
the direct input of the mechanical essentials, i.e. the
geometrical moments of inertia of the cross section.

Figure 2: Cutout of the user interface to specify pa-
rameters of the Beam model.

85

The DLR FlexibleBodies Library to Model Large Motions of Beams and of Flexible Bodies Exported from Finite
Element Programs

The Modelica Association Modelica 2006, September 4th-5th,2006

Figure 3: Input for predefined cross section profiles of
the Beam model.

The beam model takes bending in two planes,
lengthening and torsional deflections into account.
The deformations are discretised by eigenforms, i.e.
the analytical solutions of the eigenvalue problem of
the Euler-Bernoulli beam, see Sec. 3.

Only those eigenforms and eigenfrequencies re-
spectively that are specified by their ordinal numbers
are considered in the model. In Fig. 4 the first, third
and fifth eigenmode are selected, whereas a damp-
ing coefficient of 0.02 is assigned to the first, 0.03 to
the second and 0.01 to the third eigenfrequency. This
feature gives the experienced modeller the possibility
to reduce the number of degrees of freedoms, since
some eigenmodes might not contribute to the mod-
elling problem.

Additionally, appropriate boundary conditions
that constrain the deformation field of the beam with
respect to its floating frame of reference have to be de-
fined. As a general rule, the boundary condition should
correspond to the joint where the beam is attached to.

If a ModalBody is instantiated, a file name has to
be specified by the user in which the SID structure is
present. This SID-file has to be generated in a prepro-

Figure 4: Menu to specify modes of the beam model.

cessing step from finite element data of the body. We
recommend the preprocessor FEMBS, see Sec. 4 and
[5], from the DLR spin-off company INTEC GmbH
that is capable to prepare data from the FE-programs
ABAQUS, ANSYS, MSC.Nastran, NX Nastran, I-
DEAS, PERMAS.

For both the Beam and the ModalBody
model the frame connectors of the Model-
ica.Mechanics.MultiBody library are used to define
the connection of the flexible body instance to other
system components such as joints, force or sensor
elements. Besides the two frames at both ends an ar-
bitrary number of intermediate frames may be defined
as parameters of the Beam model. E.g. the parameter
xsi={0.5} in Figure 2 specifies an additional frame at
the center of the beam. The ModalBody model has
one vector of frame connectors that are associated
with nodes of the finite element model.

3 Mechanical Background

The mechanical description is based on the floating
frame of reference approach, i.e. the absolute posi-
tion rrr = rrr(ccc, t) of a specific body particle is subdivided
into three parts: the position vector rrrR = rrrR(t) to the
body’s reference frame, the initial position of the body
particle within the body’s reference frame, i.e. the La-
grange coordinate ccc 6= ccc(t), and the elastic displace-
ment uuu(ccc, t):

rrr = rrrR +ccc+uuu , (1)

where all terms are resolved w.r.t. the body’s floating
frame of reference (R). That’s why the angular ve-
locity of the reference frame ωωωR have to be taken in
account when the kinematic quantities velocity vvv and
acceleration aaa of a particle are derived:

vvv = ω̃ωωR rrr + ṙrr = vvvR +ω̃ωωR (ccc+uuu)+ u̇uu , (2)

aaa = aaaR +(˙̃ωωωR +ω̃ωωR ω̃ωωR) (ccc+uuu)+2ω̃ωωR u̇uu+ üuu , (3)

r
()I

()R

r
R

c

u

Figure 5: Vector chain of the floating frame of refer-
ence.

86

A. Heckmann, M. Otter, S. Dietz, J.D. López

The Modelica Association Modelica 2006, September 4th-5th,2006

where the ˜()-operator is used to replace the vector
cross product using the appropriate skew-symmetric
matrix instead so that e.g. the identity ωωω × ccc = ω̃ωω ccc
holds.

The decomposition in (1) makes it possible to su-
perimpose a large non-linear overall motion of the ref-
erence frame with small elastic deformations.

The displacement field is approximated by a sec-
ond order Taylor expansion with space-dependent
mode shapes ΦΦΦ(ccc) ∈ R

3,n
,ΦΦΦx(ccc),ΦΦΦy(ccc),ΦΦΦz(ccc) ∈ R

n,n

and time-dependent modal amplitudes qqq(t) ∈ R
n [13]:

uuu = ΦΦΦ qqq+
1
2

qqqTΦΦΦx
qqqTΦΦΦy
qqqTΦΦΦz

qqq . (4)

The focus of the second order expansion is not to de-
pict large deformations e.g. for crash analysis but the
incorporation of stress stiffening and softening effects,
e.g. the weak bending behaviour of a slender beam un-
der the influence of a large axial thrust force, see Sec.
6.2.

The kinematic quantities together with the vector
of applied forces fff e are inserted into Jourdain’s prin-
ciple of virtual power:

δvvvT
Z

body

(d fff e −aaa dm) = 0 . (5)

Subsequently, the equations of motion of an un-
constrained flexible body are formulated neglecting
deflection terms of higher than first order [13, (38)]:

mIII3 sym.

md̃ddCM JJJ
CCCt CCCr MMMe

aaaR
ω̇ωωR
q̈qq

 =

= hhhω −

000
000

KKKe qqq+DDDe q̇qq

+hhhe , (6)

where the following quantities and symbols appear:
m body mass
III3 3×3 identity matrix
dddCM(qqq) position of center of mass
JJJ(qqq) inertia tensor
CCCt(qqq) inertia coupling matrix
CCCr(qqq) inertia coupling matrix
hhhω(ωωω,qqq,q̇qq) gyroscopic and centripetal forces
hhhe external forces
MMMe structural mass matrix
KKKe structural stiffness matrix
DDDe structural damping matrix

If, for the sake of demonstration, the body is as-
sumed to be rigid, those rows and columns in (6)
vanish that are associated with the generalised elas-
tic acceleration q̈qq. Since (6) is formulated in terms of
the translatory and angular acceleration of the floating
frame of reference, such reduction leads to the classi-
cal Newton-Euler equations of a rigid body. There-
fore, SHABANA calls (6) the generalised Newton-
Euler equations of an unconstrained deformable body
in [11, Sec. 5.5].

On the other hand, if the motion of the reference
frame is constrained to be zero, (6) is reduced to the
classical structural equation (see Sec. 6.2 and (12) for
the definition of fff q):

MMMe q̈qq+DDDe q̇qq+KKKe qqq = fff q . (7)

Applying the classical deformation assumptions of
RAYLEIGH and BERNOULLI, it is possible to describe
the displacement field of a beam up to second order
terms analytically, see [2, (4.104)]:

uuu =

u
v
w

+

− 1
2

x
R

0
(v′2 +w′2)dx̄

−
x

R

0

x̄
R

0
θw′′d ¯̄xdx̄+

x
R

0
u′v′dx̄

x
R

0

x̄
R

0
θv′′d ¯̄xdx̄+

x
R

0
u′w′dx̄

, (8)

where u denotes the lengthening deformation, v the
bending deflection in xy-plane, w the bending deflec-
tion in xz-plane and θ the torsional deformation of a
point on the beam’s x-axis. The ()′-operation com-
plies with the partial derivation w.r.t. the x-coordinate.

Eq. (8) may be formulated in the manner of (4), if
a Rayleigh-Ritz approach such as

v = ΘΘΘv qqqv (9)

is made not only for v but for all four deformation
types u, v, w and θ. The deformation state of the beam
may then be characterised by qqq = [qqqT

u qqqT
v qqqT

w qqqT
θ]T .

The DLR FlexibleBodies library uses the analyt-
ical solutions Θi of the spatial problem to the eigen-
value τi l of an Euler-Bernoulli beam with length l:

Θi =

cosh(τi x)
sinh(τi x)
cos(τi x)
sin(τi x)

T

c1
c2
c3
c4

i

(10)

to form a set of spatial shape functions for each of the
deformation coordinates. Hereby, c1 to c4 represent

87

The DLR FlexibleBodies Library to Model Large Motions of Beams and of Flexible Bodies Exported from Finite
Element Programs

The Modelica Association Modelica 2006, September 4th-5th,2006

constants associated to specific boundary conditions,
see [12, Ch. V].

To summarise, the Beam model class is based on
an analytical continuum description of beams via (8)
to (10). Contrary, the ModalBody class is supposed
to represent bodies with an arbitrary geometry derived
from a finite element description The FE- model of the
body is transformed and utilised in such a way that (1)
to (6) also hold for the ModalBody class.

We recommend the use of the pre-processor
FEMBS from INTEC GmbH that enables this transfor-
mation of FE-data as a reliable and sophisticated pro-
cess, controlled via its own graphical user interface.

4 FEMBS an Interface between MBS
and FEA-tools

FEMBS the time-tested interface between the multi-
body system code SIMPACK and the most impor-
tant finite element codes can also be used as a pre-
processor for Modelica.

The number of degrees of freedom of multi-body
systems is small, when compared with finite element
models. Therefore, the main task of flexible body in-
tegration is the reduction of the number of degrees of
freedom. Currently, this is to be done in two steps.

First, standard reduction schemes like Guyan re-
duction or Craigh-Bampton reduction are used to ex-
port the model from the finite element code into
FEMBS’s flexible body input file.

Reduction in finite element codes is performed
based upon a user defined set of degrees of freedom
at nodes which are to be retained. When using the
Craigh-Bampton method proper dynamic behaviour of
the reduced finite element model can be guaranteed
within the frequency range of the application. This
additionally requires the specification of a number of
so-called dynamic degrees of freedom. They are the
eigenmodes of the flexible body, whose retained de-
grees of freedom were fixed by constraints.

Once the time consuming reduction has been fin-
ished the finite element model has less than 1500 de-
grees of freedom. This first reduction step is to be
done in order to keep FEMBS’s flexible body input
file small. The contents of the FEMBS input file are:

• The mass and stiffness matrix of the reduced
model.

• the retained nodes

• The eigenmodes which are to be obtained by
a modal analysis of the reduced finite element
model.

• Geometric stiffening matrices which are to be ob-
tained by extra static analyses of the reduced fi-
nite element model. These analyses consider the
pre-stresses which are relevant for the applica-
tion.

• The mesh of finite element model. This data is
taken from the FEA input file that contains the
elements and nodes of the original, non-reduced
model.

Based on this data, the second reduction step [9] in
FEMBS is to be performed by selecting modes for
multi-body simulation. The user is recommended to
select all eigenmodes which correspond to the fre-
quency range which is important for the current ap-
plication.

Additionally the user should calculate so-called
frequency response modes in FEMBS in order to im-
prove the accuracy of the modal representation [3].
Frequency response modes represent local deforma-
tions which may occur near the attachment points of
the flexible body, where it is connected by force el-
ements, constraints and joints with the surrounding
multi-body system.

To generate the frequency response modes (11) in
FEMBS the user selects first the nodes and then the
directions of the forces and moments which may be
transmitted by the force elements or constraints. The
frequency response modes uuui

(KKK−Ω2MMM)uuui = pppi (11)

are based upon the unit load cases pppi for each coupled
degree of freedom i, the mass matrix MMM the stiffness
matrix KKK and an excitation frequency Ω which is set to
the half of the minimum eigenfrequency of interest.

Frequently, only a subset of the frequency re-
sponse modes has significant influence on the flexi-
ble body deformation. The superfluous frequency re-
sponse modes may be detected by their large frequen-
cies, which follow from a modal analysis which is
automatically performed in FEMBS. Thus, FEMBS
can automatically select the important frequency re-
sponse modes based on a cut-off frequency, whose de-
fault value is five times greater than the maximum fre-
quency of interest.

As described, the finite element model with say
millions of degrees of freedom is transformed to a

88

A. Heckmann, M. Otter, S. Dietz, J.D. López

The Modelica Association Modelica 2006, September 4th-5th,2006

Figure 6: The multi-body system model with the flex-
ible chassis

modal representation of typically about fifty to hun-
dred degrees of freedom. This modal representation is
stored in the standard input data file [9] that is input
for SIMPACK and Modelica, respectively.

The static deflection of many different flexible
bodies such as railway and automotive car bodies,
chassis, engine parts, subframes etc. was calculated
in the multibody system code SIMPACK. They were
compared with the results of static analyses performed
in the finite element code based upon the original, non-
reduced model. For the static deflection a difference
less than one percent can be expected between the re-
sults of the finite element model and the multi-body
system. Also the eigenfrequencies of the flexible body
calculated in SIMPACK are very close to the eigenfre-
quencies, which are obtained by corresponding finite
element analyses.

Thus FEMBS provides efficient and accurate in-
put for multi-body system analyses.

Detailed FEM models of a sport utility vehicle’s
chassis and also its front and rear subframes were
integrated into the multi-body system model which
was created using SIMPACK for comfort analyses,
see Figure 6. The chassis consisted of about 2.4 mil-
lions degrees of freedom. All finite element models
were dynamically reduced within NASTRAN. Differ-
ent sets with 30 to 40 modes consisting of eigenmodes
and frequency response modes were used for multi-
body system analyses. CAD files of the finite element
mesh were also generated by FEMBS and used for the
graphical representation.

Fig. 7 shows the good correlation of the model to
measured data in the frequency domain up to 25 Hz.

Figure 7: Correlation of the model to measured data:
Seat rail acceleration at the right hand side

5 Animation of Modal Bodies

In this section, we describe briefly some visualisation
aspects of the ModalBody. The visualiser object used
in FlexibleBodies library has been designed to meet
the specific requirements of flexible bodies animation
in MBS context. It can be accessed from a Modelica
model via a built-in function provided by the Modelica
modelling and simulation environment Dymola [4].

5.1 Interpolation scenario

Consider a body Ω. The typical animation scenario for
Ω is depicted in Fig. 8. As stated in (1), the numerical
simulation of this modal body provides the position
vector rrrR and the orientation of the body’s reference
frame as well as the elastic displacements uuu(ccci, t) of
a finite set of nodes ccci on the body. The set of space
points that can be obtained from this information and
setting uuu(ccc, t) ≡ 0 is called simulation points set.

On the other hand, the preprocessor FEMBS pro-
vides a Wavefront file [14] that contains the mesh def-
inition of the FE description in the undeformed state
with respect to the reference frame of the body. This
data is the basis for the flexible body animation. The
set of node points of this description is called anima-
tion points in this section.

The basic interpolation problem is discussed at
hand of the simple rectangular plate shown in Fig. 8.
The animation set consists of the points in the grid.
The simulation points are only the four corners of Ω,
that is,

ccc1 = (0,0,0), ccc2 = (1,0,0),

89

The DLR FlexibleBodies Library to Model Large Motions of Beams and of Flexible Bodies Exported from Finite
Element Programs

The Modelica Association Modelica 2006, September 4th-5th,2006

ccc3 = (0,1.3,0), ccc4 = (1,1.3,0)

and we define as deformation field uuu(ccci, t) the follow-
ing

uuu1 = (0,0,0), uuu2 = (0,0,0),

uuu3 = (0,0,0), uuu4 = (0,0,sin 20πt)

This is the typical scenario for animation of flex-
ible bodies. The discretisation of a flexible body, in
the general case, ends up with a set of nodes such that
the error of the FE discretisation is minimised. Then,
a modal analysis is performed. For some special ge-
ometries, the resulting modes can be deduced in closed
form on ccc, but it is a difficult task in general, [9]. That
is why in general, each mode is defined in discretised
form, i.e. by the related displacements that are given at
the node points only.

With these constraints in mind, the visualiser used
in FlexibleBodies meets the following design criteria

• The solution of the equations of motion results
in the displacements uuui at simulation points ccci for
t ≥ t0. The visualiser has to determine the abso-
lute position of the animation points whereas the
instantaneous positions of the simulation points
and the positions the animation points in the un-
deformed configuration are given.

• The topological information is just provided for
the animation points. That is, the simulation point
set is just a set of non-structured points in R 3.

• The ModalBodyVisualizer uses a special
interpolation technique that results in visually
appealing images under the assumption that the
simulation and animation point sets describe an
elastic deformation field. No general interpola-
tion technique (like polynomial interpolation or
splines) is used. Instead, an approach inspired by
potential theory applied to elasticity is used, [8].

Figure 8: Interpolation problem setup with the rectan-
gle plate

Figure 9: Interpolation result using the
ModalBodyVisualizer

5.2 ModalBodyVisualizer in Flexible-
Bodies library

To show how ModalBodyVisualizer works, we
applied it to Ω in the setup described before. The re-
sults are depicted in Fig. 9. The body Ω is originally
defined in the plane xy, The outer most right point (ccc4)
is now moved up and down.

The initial position is depicted in the left upper
figure. Then, when the elongation is maximally posi-
tive in the y-axis in the right upper figure. After some
time, the deformation is maximally negative, depicted
in the left lower figure. Finally, and to give some feel-
ing about the animation, we present a frame with 4
past positions.

In this example, 165 nodes are interpolated from
the information in the four corners of the rectangle.
More general interpolation techniques are not so suit-
able for elastic deformation fields. The main reason is
the lack of smoothness and loss of connectivity in the
single body, making artificial cracks, peaks or weird
artifacts to be shown as part of the simulation.

Taking just the simulation point set for animation
can make hard to imagine the body behaviour, so a
larger set of animation points is needed for good visu-
alisation.

6 Example Models

The DLR FlexibleBodies library contains several ex-
amples that demonstrate the use of the provided capa-
bilities.

90

A. Heckmann, M. Otter, S. Dietz, J.D. López

The Modelica Association Modelica 2006, September 4th-5th,2006

6.1 Slider Crank Model

world

x

y

a b

n={0,0,1}
actuatedRevolute

n={0,0,1}

revolute1

a b

n={0,0,1}

revolute2

a b

ba

n={1,0,0}

prismatic

constSpeed

crank conrod

friction

slider

r={0.1,0,0}

ba

Figure 10: Diagram layer of the slider crank model.

One of theses examples is a model of a slider
crank mechanism with two beam instances that repre-
sent the crank and the conrod. The crank rotates with
constant angular velocity.

Gravity forces are applied to all bodies of the sys-
tem and an additional Coulomb friction force acts on
the slider that has one translational degree of freedom.

The bending behaviour of the conrod is repre-
sented by one mode that is related to 1 Hz eigenfre-
quency, while the crank bending mode corresponds to
3.9 Hz eigenfrequency. The model aligns with an ex-
ample from literature and may therefore also be used
for verification purposes [9, Sec. 6.5.5].

Figure 10 depicts the graphical set-up of this
model in Modelica. The model 3D animation is shown
in Figure 11, where the menu option to show an addi-
tional exaggerated displacement field beside the exact
in-scale deformations is activated.

Fig. 12 shows the simulation results of this plane,
closed-loop mechanism with discontinuously applied
friction force. For the integration of the 10-s-scenario
0.671 CPU-s were spent with 10−6 integration toler-
ance on a 1.6 GHz Intel Pentium Laptop with Win-
dowsXP.

Figure 11: Animation of the slider crank model. The
grey animations are scaled versions of the red anima-
tions and exaggerate the deformations of the beams.

0 2 4 6 8 10

−4

−2

0

2

4

time [s]

f [
N

]

x
[m

]

q
 [−

]

−0.04

−0.02

0

0.02

0.04

conrod: q [−]

crank: q [−]

friction force [N]

slider position [m]

Figure 12: Slider Crank simulation results.

6.2 Buckling of a beam

Figure 13: Set-up of the model Beam Buckling.

Considered is a bending beam with 18.8 Hz eigen-
frequency that is supported but not clamped on both
ends. At one end an external force is applied and is
increased linear in time until the classical Euler buck-
ling force (in this case: 16.6 kN) is reached. This is
the scenario of the model Beam Buckling of Fig. 13.
It is supposed to document that the present approach
is capable to cover the bending behaviour of the beam
until buckling occurs, see Fig. 14. This requires to in-
clude stress stiffening terms in (6) that originate from
the second order displacement field description, here.

Consider the physical force vector fff ∈ R
3 that is

applied on the structure at the point ccc f . The equations
of the model Beam Buckling then get the form of (7)
whereas fff q has to be defined using (4) and the Jaco-
bian JJJ:

fff q = JJJT fff (12)

with JJJ :=
∂uuu(ccc f , t)

∂qqq
= ΦΦΦc f +

qqqTΦΦΦx
qqqTΦΦΦy
qqqTΦΦΦz

c f

.

91

The DLR FlexibleBodies Library to Model Large Motions of Beams and of Flexible Bodies Exported from Finite
Element Programs

The Modelica Association Modelica 2006, September 4th-5th,2006

Figure 14: Animation of the model Beam Buckling in
the instant the bifurcation occurs.

Consequently, an increasing force fff may be ad-
ditionally amplified by the increasing deflection qqq, so
that the stability of the system may be affected. This is
in particular the case for axial loads on slender beams
as it is given in this model.

Since the deformation behaviour is not deter-
mined beyond the bifurcation point, an additional
small harmonic excitation torque with 1 Nm and 1 Hz
is applied at the other end at the beam. This is nec-
essary to ensure that the buckling actually occurs and
can be animated as it is done in Fig. 14.

The results of the simulation are shown in Fig.
15. At the beginning the harmonic excitation hardly
influences the state of the beam. With increasing
thrust force the bending behaviour is weakened until
the buckling occurs after about 10 s. These results
perfectly correspond to the theoretical prediction. The
nonlinear characteristics of the beam are reproduced
until buckling. However, it should be pointed out that
beyond this point the model is no more valid.

0 2 4 6 8 10

0

4

8

12

16

20

time [s]

[k
N

]
 [

N
m

]
 [

−]

thrust force [kN]

excitation torque [Nm]

amplitude: q * 500 [−]

Figure 15: Simulation results: Buckling of a beam.

6.3 Helicopter Rotor

Figure 16: Set-up of the model Helicopter Rotor.

The model Helicopter Rotor in Fig. 16 mainly
consists of a rheonom driven, cylindrical rotor base,
two joints and one blade. The rotor base rotates around
its cylinder axis that coincides with the global z-axis,
while the lag joint allows for a rotation around the lo-
cal z-axis at the outer radius of the rotor base. The flap
joint defines a angular motion around the local y-axis
at the circumference of the rotor base.

In its initial state the rotor base does not move
and the flap stop, a bump stop modelled as a nonlinear
spring, applies the torque to counterbalance the grav-
ity of the blade. A linear spring-damper element ac-
tuates according to the state of the lag joint. The 6 m
long blade is modelled as a flexible beam with 7 bend-
ing modes in its xz-plane and 2 bending modes in its
xy-plane so that a frequency range up to 270 Hz is cov-
ered.

Fig. 17 visualises the initial, static deformation
state of the blade which is dominated by the first xz-

Figure 17: 3D-View: Helicopter Rotor in its initial
state with red in-scale and grey exaggerated deflection.

92

A. Heckmann, M. Otter, S. Dietz, J.D. López

The Modelica Association Modelica 2006, September 4th-5th,2006

0 2 4 6 8 10

−15

−10

−5

0

5

time [s]

[ra
d

s−2
]

[°

]

drive acceleration [rad s−2]

lag joint angle [°]

flap joint angle [°]

Figure 18: Time plot of joint variables of the model
Helicopter Rotor.

bending mode at 7.9 Hz. The design, the geometrical
and physical parameters of the model correspond to a
typical helicopter configuration of the 1960’s, see [7].

The result plot Fig. 18 shows the applied, smooth
rotor drive acceleration of the simulated start-up sce-
nario. The flap joint angle tends against zero with
increasing rotor rotation so that the blade moves to-
wards its vertical alignment. The instantaneous lag
joint angle is associated to the torque applied by the
linear spring-damper element witch transmits the drive
torque to the blade.

Fig. 19 presents the dominance of 7.9 Hz mode
at the initial static configuration. The plot of xy-plane
bending modes clearly correspond to the lag joint plot
which is again due to the torque applied by the lin-

0 2 4 6 8 10
−0.01

0

0.01

0.02

0.03

0.04

0.05

time [s]

be
nd

in
g

in
 x

z−
pl

an
e:

 q
 [−

]

78 Hz

252 Hz

7.9 Hz

26 Hz

53 Hz

be
nd

in
g

in
 x

y−
pl

an
e:

 q
 *

 1
04 [−

]

−1

 0

 1

 2

 3

 4

 5

Figure 19: Plot of modal deformation amplitudes q(t)
for 2 bending modes in xy-plane (78 Hz, 252 Hz) and
3 bending modes in xz-plane (7.9 Hz, 26 Hz, 53 Hz).

ear spring-damper element. Generally, all modal am-
plitudes decrease with the increasing angular velocity
and clarify its stabilising influence. Note that the sta-
bilising effect again relies on the second order descrip-
tion (4). Neglecting these terms would lead to com-
pletely wrong results for this scenario.

6.4 Piston Rod

Figure 20: ANSYS finite element model of a piston rod.

In order to demonstrate the use of DLR Flexible-
Bodies library with body data that originate from finite
element data, a simplified piston rod was modelled in
Ansys with 2.788 tetrahedral elements of type Solid95
[1] and 15.492 degrees of freedom, see Fig. 20.

The model was preprocessed in FEMBS and three
eigenmodes with 809 Hz, 1040 Hz and 1244 Hz eigen-
frequency were selected to represent the deformation
field of the piston rod on the multibody side. 97 of the

Figure 21: Modelica 3D-View of one cylinder com-
bustion engine with flexible piston rod.

93

The DLR FlexibleBodies Library to Model Large Motions of Beams and of Flexible Bodies Exported from Finite
Element Programs

The Modelica Association Modelica 2006, September 4th-5th,2006

0.1 0.2 0.3 0.4 0.5 0.6 0.7

 0

20

40

60

80

time [s]

ω
 [

ra
d

/ s
]

f

[h
N

]

gas force

angular
velocity

q
*

10
6 [

−]

−4

−2

0

2

4

6

8

809 Hz: q[1]

1040 Hz: q[2]

1244 Hz: q[3]

Figure 22: one-cylinder-combustion engine: simula-
tion results.

5164 finite element nodes were selected in FEMBS so
that the animation scheme has to map the motion of 97
simulation nodes on 5164 animation nodes.

Fig. 21 gives a 3D-View of a one cylinder com-
bustion engine where the flexible piston rod is assem-
bled. The dark-red, solid structure depicts the un-
scaled deformation state while the blue mesh exagger-
ate the deflections of the piston rod.

A start-up manoeuvre of this engine has been sim-
ulated applying a simplified gas force and no load. The
plot of the gas force and the increase of the angular
velocity of the crank shaft are given in Fig. 22. For
each of the eigenmodes the related modal amplitude
as function of time is plotted there as well.

7 Conclusion

This paper presents the new DLR FlexibleBodies li-
brary, that is based on the “Standard Input Data” (SID)
file format for flexible bodies. The library provides the
intrinsic capability to generate this data for beam-like
bodies. For more general bodies, this data has to be
supplied by an external tool on the basis of an available
finite element model. This preprocessing is performed
using the FEMBS-Software of the INTEC GmbH in
Wessling, Germany, that supports all major FE pro-
grams.

The animation of general flexible bodies is based
on new features provided in Dymola. Especially,
wavefront files are supported in Dymola and a sophis-
ticated algorithm is included to map the movement of
simulation to animation nodes.

Furthermore, the mechanical background and the
graphical user interface of the FlexibleBodies library

have been presented. In several application examples,
the usage of the model classes Beam and ModalBody
have been demonstrated.

As a final conclusion it may be stated that this li-
brary opens new chances for the set-up of multibody
models in Modelica since flexible components may
now be included and so that future application fields
are numerous.

8 Acknowledgements

A first preliminary version of the ModalBody model
was implemented by Gerhard Schillhuber with advice
by Professor Dr. Oskar Wallrapp.

We would like to thank Hans Olsson from Dy-
nasim for helping with some implementation details.

This work was partly funded by the Bayerisches
Staatsministerium für Wirtschaft, Verkehr und Tech-
nologie which supported the Conceptual Design
Labratory (CDL) project. The authors are grateful for
this support.

References

[1] ANSYS R© Release 7.1 Theory Reference, AN-
SYS, Inc., Canonsburg, USA, 2003.

[2] H. Bremer and F. Pfeiffer: Elastische
Mehrkörpersysteme, Teubner–Verlag, Stuttgart,
1992.

[3] S. Dietz: Vibration and Fatigue Analysis of
Vehicle Systems Using Component Modes,
Fortschritt-Berichte VDI Reihe 12, Nr. 401,
VDI–Verlag Düsseldorf, 1999.

[4] Dynasim: Dymola Version 6. Dynasim AB,
Lund, Sweden, 2006, http://www.dynasim.se/

[5] FEMBS: http://www.simpack.com/downloads/-
pdf/datasheet fembs.pdf

[6] A. Heckmann. The modal multifield approach
in multibody dynamics. Fortschritt-Berichte VDI
Reihe 20, Nr. 398. VDI–Verlag, Düsseldorf,
2005.

[7] W. Just: Hubschrauber und Vertikalstart-
flugzeuge, Verlag Flugtechnik Stuttgart,
Stuttgart, 1963.

[8] Perdomo, Y. Reproducing kernels and Potential
theory for the Bergman Spaces Doctorate thesis
in Mathematics, Lund University, 2004.

94

A. Heckmann, M. Otter, S. Dietz, J.D. López

The Modelica Association Modelica 2006, September 4th-5th,2006

[9] R. Schwertassek and O. Wallrapp: Dynamik

flexibler Mehrkörpersysteme, Vieweg Verlag,
Braunschweig, 1999.

[10] SIMPACK: http://www.simpack.com.

[11] A.A. Shabana: Dynamics of Multibody Sys-
tems, Cambridge University Press, Cambridge,
2nd ed., 1998.

[12] S. Timoshenko: Vibration Problems in Engineer-
ing. D. Van Nostrand, Princeton, 1955.

[13] O. Wallrapp: Standardization of Flexible Body
Modeling in Multibody System Codes, Part 1:
Definition of Standard Input Data, Mechanics of
Structures and Machines 22(3):283-304, 1994.

[14] Wavefront: http://www.fileformat.info/format/-
wavefrontobj/egff.htm.

95

The DLR FlexibleBodies Library to Model Large Motions of Beams and of Flexible Bodies Exported from Finite
Element Programs

The Modelica Association Modelica 2006, September 4th-5th,2006

96

A. Heckmann, M. Otter, S. Dietz, J.D. López

The Modelica Association Modelica 2006, September 4th – 5th

3D Flexible Multibody Thin Beam simulation in Modelica with the

Finite Element Method

Xabier Murua, Felix Martinez, Aron Pujana, Jon Basurko, Juan Manuel Pagalday

Ikerlan S.Coop.

P. JM. Arizmendiarrieta Nº2, Mondragón (Basque Country), Spain

{xmurua, Felix.Martinez, APujana, JBasurko, JMPagalday}@ikerlan.es

Abstract

This paper presents the development, simulation and

validation of 3 dimensional flexible beam models

using Modelica. The models are based on finite ele-

ment method (FEM) application, following mathe-

matical calculations proposed by Shabana [2], and

are 3D extensions to the 2D model developed by F.

Schiavo [3]. The element formulation is independent

of applied boundary conditions, making the element

suitable for any 3D multibody simulation.

All models use standard connectors defined in the

Modelica multibody library, thereby guaranteeing

full compatibility with library components. Mathe-

matical modelling details are fully analyzed, indicat-

ing motion equation development. Models also fea-

ture a graphical interface, and visualization of simu-

lation outcomes using the same 3D environment as

the multibody library, providing the user with imme-

diate visual feedback. Finally, models are analyzed

and validated by means of selected simulation ex-

periments, with reference to theoretical predictions

and comparison with results obtained with commer-

cial FEM code.

Keywords: flexible beam; Multibody; FEM; finite

element formulation

1 Introduction

Whilst 2D flexible model development is widely

covered by literature [2], its application to 3 Dimen-

sional models normally only goes as far as the initial

stages of the mathematical development. This paper

presents the application of 2D model redevelopment

and implementation [3] to 3D models using Mode-

lica. At times shall descriptions made by Schiavo [3]

are used.

With the aim of creating a reusable parametric ele-

ment, is has been considered only the modelling of

one particular scenario: a beam containing two con-

nection points, one at each end.

In this paper the linear elasticity theory for thin beam

modelling are considered, ignoring shear deforma-

tion effects and assuming uniform cross sectional

properties throughout the element length. Cross sec-

tional dimensions compared to element length rigid

configuration deflection are also assumed to be

small.

Taking into account the object-oriented capability of

the Modelica language, some parametric features

have been implemented in the model, for example:

cross sectional beam shape (rectangular or cylindri-

cal), hollow or full section, and mesh length density

(from 1 to N elements). This provides a parametric

mesh of the element enabling computation of points

along the element length and precision-

computational cost control.

The implementation of other shape sections can be

easily carried out, but are not included in the model

in order to simplify the user interface menu.

It has been also developed a model that for importing

mass and stiffness matrix values from condensed FE

models to 12 degrees of freedom (dof).

2 Degrees of Freedom (dof)

Consider a generic multibody system (Figure 1). The

position, in body coordinates, of a point in a specific

deformable body is expressed as follows:

f0 uuu += (1)

where u0 is the “undeformed” (i.e., rigid) position

vector and uf is the deformation contribution to posi-

tion (i.e., the deformation field).

97

3D Flexible Multibody Thin Beams Simulation in Modelica with the Finite Element Method

The Modelica Association Modelica 2006, September 4th – 5th

Figure 1: Flexible body reference systems

The mathematical description of a body’s generic

deformation requires that the deformation field be-

long to an infinite dimensional functional space, re-

quiring, in turn, an infinite number of deformation

degrees of freedom.

In this paper, the deformation field is described by an

approximation to the functional basis space it be-

longs to, assuming that such space has a finite di-

mension, say M, so that vector uf can be expressed

by the following finite dimensional product:

ff Squ = (2)

where S is the [3×M] shape function matrix (i.e., a

matrix of functions defined over the body domain

and used as a basis to describe the deformation field

of the body itself) and qf is the M-dimensional vector

of deformation degrees of freedom.

The position of a point in a deformable body can

then be expressed in world reference as follows:

()
ff ASqAuRSquARAuRr ++=++=+= 00
 (3)

where R is the vector identifying the origin of the

body local reference system and A is the rotation ma-

trix for the body reference system.

The representation of a generic deformable body in

world reference requires then 6+M d.o.f. (i.e., 6 cor-

responding to rigid displacements and rotations and

M to deformation fields):

[] []Tf

T

fr qRqqq θ== (4)

where R and θ represents unreformed body position

and orientation angles and qf is a vector containing

flexible degrees of freedom.

3 Motion Equations

The equations are solved using a classical Lagran-

gian approach. The equation for flexible element

motion, in body axes, can be expressed as [2],[3] (a

general demonstration to motion equations in [2] and

in more detail in [3]):

+

+

−

=

=

⋅

f
e

e

R
e

f
v

v

R
v

fff

fff

f

T
tRR

Q

Q

Q

Q

Q

Q

qK

O

O

q

R

m

II

SS
~

m

θθ

θθθ α

3

3

&&

&&

 (5)

Equations are valid for a general deformable body,

though many of the quantities involved (e.g., the Kff

matrix) depend on specific body characteristics such

as the shape and material properties, but do not de-

pend on element deformation.

The mass matrix obtained using the formulation of

[3], takes the following form:

=
i
ff

Ti
f

Ti
fR

i
f

iTi
R

i
Rf

i
R

i
RR

i

MMM

MMM

MMM

M

θ

θθθθ

θ

 (6)

Where mass matrix components (6) are calculated in

the following manner, assuming that the body is a

3D elastic continuum, with constant cross-sectional

properties, isotropic material behaviour and is per-

fectly elastic.

∫=
iV

iii
RR IdVM ρ

(7)

i

V

iiiiTi
R

i
R GdVu~AMM

i

−== ∫ ρθθ (8)

∫ ==
iV

iiiiiii
Rf SAdVSAM ρ (9)

X1

X3

X2

X
i
1 X

i
3

X
i
2

R
i

r
i

u
i

u
i
f

u
i
0

P
i

O

O

98

X. Murua, F. Martinez, A. Pujana, J. Basurko, J.M. Pagalday

The Modelica Association Modelica 2006, September 4th – 5th

() ()∫=

iV

iiiiTiiiii dVGu~AGu~AM ρθθ (10)

ii

V

iiTii
f dVSu~GM

i

∫= ρθ (11)

∫ ++==
iV

iiiiiTiii
ff SSSdVSSM 332211ρ (12)

Where the 3D shape matrix is:

()[] () ()
()[] () ()

() ()
()[] () ()[]
()[] () ()[]

()[] () ()
()[] () ()

()[] () ()[]
()[] () ()[]

ij

Tij

ll

l

ll

ll

ll

ll

S

+−+−

−+−

−

−+−

−+−

+−+−

−+−+−

−−−−

+−−

+−−

−

=

032

032

0

2306

0236

00

02341

20341

110

23106

02316

001

322

322

322

322

322

322

322

322

ξξηξξ
ξξζξξ

ξηξζ
ξξζξξ

ξξηξξ
ξ

ξξξηξξ
ξξξζξξ
ηξζξ
ξξξξ

ξξηξξ
ξ

(13)

To be able to perform the calculation at the right

beam extremity (point B, Figure 2) it has been sup-

posed that it is calculated exactly at the average point

of the element in order to simplify matrices that in-

tervene in the mass matrix calculation.

u12

u11

u10

u7

u8

u9

u6

u5

u4

u1

u2

u3

X2

X1

X3

A

B

Figure 2: Beam extremities

By means of this assumption the general matrices are

simplified applying the following assumption:

11 ==
ij

ij
ij

l

x
ξ (14)

02 ==
ij

ij
ij

l

x
η (15)

03 ==
ij

ij
ij

l

x
ζ (16)

In the end, by using these assumptions, the beam is

simplified to a line due to the fact that the length of

the beam and the height and width they are not taken

into account.

It also implies that the following terms vanish in the

mass matrix formulation (see appendix B)

0=

= ∫

ij

a

ij daQ ρηη
 (17)

0=

= ∫

ij

a

ij daQ ρζζ
 (18)

() 0
2 =

= ∫

ij

a

ij daI ηρζ
 (19)

() 0
2 =

= ∫

ij

a

ij daI ζρη (20)

0=

= ∫

ij

a

ij daI ρηζηζ (21)

Following the procedure described in [3] and the

matrix in appendix B, one can verify that the inte-

grals that appear in the expression of Skl
ij
 are given

by:

ij

ij

V

T

mm

mm

dVSS

=

=

∫

000000000000

000000000000

000000000000

000000000000

000000000000

00000
3

00000
6

000000000000

000000000000

000000000000

000000000000

000000000000

00000
6

00000
3

11ρ

(22)

99

3D Flexible Multibody Thin Beams Simulation in Modelica with the Finite Element Method

The Modelica Association Modelica 2006, September 4th – 5th

() ()

() ()

ij

ij

V

T

lmmllmml

mlmmlm

lmmllmml

mlmmlm

dVSS

−−−

−

−

−

=

=

∫

105
000

210

11
0

140
000

420

13
0

000000000000

000000000000

000000000000
210

11
000

35

13
0

420

13
000

70

9
0

000000000000
140

000
420

13
0

105
000

210

11
0

000000000000

000000000000

000000000000
420

13
000

70

9
0

210

11
000

35

13
0

000000000000

22

22

22ρ

(23)

() ()

() ()

ij

ij

V

T

lmmllmm

mlmmlm

lmmllmml

mmmlm

dVSS

−

−

−−−

−

=

=

∫

000000000000

0
105

0
210

11
000

140
0

420

13
00

000000000000

0
210

11
0

35

13
000

420

13
0

70

9
00

000000000000

000000000000

000000000000

0
140

0
420

13
000

105
0

210

11
00

000000000000

0
420

13
0

70

9
000

210

11
0

55

13
00

000000000000

000000000000

22

22

33ρ

(24)

ij

ij

V

T

mlmmlm

mlmmlm

dVSS

−

−−

=

=

∫

000000000000

000000000000

000000000000

000000000000

000000000000

0
20

0
20

7
000

30
0

20

3
00

000000000000

000000000000

000000000000

000000000000

000000000000

0
30

0
20

3
000

20
0

20

7
00

31ρ

(25)

() ()

() ()

ij

ij

V

T

lmmllmml

mlmmlm

lmmllmml

mlmmlm

dVSS

−−−

−

−

−

=

=

∫

0
105

0
210

11
000

140
0

420

13
00

000000000000

000000000000

000000000000

0
210

11
0

35

13
000

420

13
0

70

9
00

000000000000

0
140

0
420

13
000

105
0

210

11
00

000000000000

000000000000

000000000000

0
420

13
0

70

9
000

210

11
0

35

13
00

000000000000

22

22

32ρ

(26)

ij

ij

V

T

mlmmlm

mlmmlm

dVSS

−

−

=

=

∫

000000000000

000000000000

000000000000

000000000000

000000000000
20

000
20

7
0

30
000

20

3
0

000000000000

000000000000

000000000000

000000000000

000000000000
30

000
20

3
0

20
000

20

7
0

21ρ

(27)

It can be seen that the mass matrix depends on ele-

ment deformation, and needs to be re-calculated for

each simulation instance.

The speed quadratic vector is a non-linear function

of the widespread system of coordinates and speeds

and includes the Coriolis effect and the effect of cen-

trifugal forces.

() ()

()

() () i

V

i
f

iiiiTi

f

i
v

iiiTi
f

i
f

iTiiiTi
v

i
f

jji
t

ii

R

i
v

dVuwuwSQ

wIGqIGwIGQ

qSwSwAQ

i

∫

 +−=

−−−=

 +−=

&

&

&

2

22

2

2

2

ρ

θθθθθθ

(28)

3.1 The element point of view

The finite element method is based upon a discretiza-

tion of the beam into N elements. It is then possible

to define the local dimensionless abscissa as ξ=x/l,
where x is the longitudinal local coordinate and l is

the element length.

For a single element, the generic equations of motion

(5) can be expanded as follows:

100

X. Murua, F. Martinez, A. Pujana, J. Basurko, J.M. Pagalday

The Modelica Association Modelica 2006, September 4th – 5th

=

=

=

=

3

2

1

12

11

10

9

8

7

6

5

4

3

2

1

3

2

1

el

el

el

el

el,f

el,f

el,f

el,f

el,f

el,f

el,f

el,f

el,f

el,f

el,f

el,f

T

el,f

el,fel

el,f

el,f

el,f

el,f

S

S

S

S

q

q

q

q

q

q

q

q

q

q

q

q

q

qS

u

u

u

u

(29)

where the subscript el is used to refer the quantities

of a single element.

Figure 2 depicts the element coordinate systems as-

sociated with the deformation degrees of freedom:

qf1,el and qf7,el are associated with axial compression,

qf2,el and qf8,el with transversal displacement, qf3,el and

qf9,el with Z axis displacement, qf4,el and qf10,el with

beam extremities rotation around the X axis, qf5,el and

qf11,el with beam extremities rotation around the Y

axis and qf6,el and qf12,el with beam extremity rotation

around the Z axis.

3.2 Finite Element Method Equation Assembly

The motion equations for the entire beam can be ob-

tained by assembling the motion equations for beam

elements as defined in the previous subsection. The

body reference system will be the local reference

system located at the root of the first element, so that

the rigid degrees of freedom, common to all the ele-

ments, will refer to such a coordinate system.

Let then m and L be the mass and length of the entire

beam, and N the number of elements used, so that

l=L/N. With X̂
r
 indicating the reference system unit

vector along the beam axis, the expression of the

generic position uj of a point of element j can be ex-

pressed as:

()[] fjeljfjeljj qBSX̂ljlqBSuu +−+=+=
r

10 ξ (30)

where u0j is the position of the root of the j
th
 element,

Sel is the shape functions matrix defined by (31), Bj is

the so-called connectivity matrix and qf is a vector

containing the deformation degrees of freedom for

the whole beam. Matrices Bj have the following

form:

() ()[] N,,j,OIOB jN,j,j K1366136 =∀= −− (31)

The connectivity matrices are used to relate vector qf,

which contains the deformation degrees of freedom

for the entire beam, to the corresponding j
th
 element,

according to the expression:

fjel,f qBq
j
= (32)

4 Modelica Implementation

The finite element model formulation has been im-

plemented using the Modelica language, creating

thus a new component, called FlexBeamFem3D

(Figure 4). The component interfaces are two stan-

dard mechanical flanges from the new MultiBody

library [4]. The choice of connector makes the com-

ponent fully compatible with the Modelica Multi-

body library, so that it is possible to directly connect

the flexible beam component to the predefined mod-

els, such as mechanical constraints (revolute joints,

prismatic joints, etc.), parts (3D rigid bodies) and

force elements (springs, dampers, forces, torques).

Figure 4: Component icon

The models also have a graphical interface, with a

visualization of simulation outcomes within the same

3D environment used in the Multibody library, pro-

viding the user with immediate visual feedback.

Mathematical modelling details are partially indi-

cated below in Modelica characteristic language:

parameter SI.Density rho=7800 "Material Volume

Density";

parameter SI.Length L=0.2 "Beam Length";

parameter SI.Height a=0.005 "Height of section";

parameter SI.Breadth b=0.02 "Breath of section";

parameter SI.ModulusOfElasticity E=210e9 "Mate-

rial Youngs modulus";

parameter SI.ShearModulus G=8.077e10 "Material

Shear modulus";

101

3D Flexible Multibody Thin Beams Simulation in Modelica with the Finite Element Method

The Modelica Association Modelica 2006, September 4th – 5th

parameter SI.SecondMomentOfArea J1=7.025e-10

"Cross sectional inertia 1";

parameter SI.SecondMomentOfArea J2=3.33333e-9

"Cross sectional inertia 2";

parameter SI.SecondMomentOfArea J3=2.08333e-

10 "Cross sectional inertia 3";

parameter Real Alpha=1e-3 "Rayleigh structural

damping proportional to mass [sec^-1]";

parameter Real Beta=5e-5 "Rayleigh structural

damping proportional to stiffness [sec]";

parameter Integer N(min=2) = 2 "Number of Ele-

ments";

Dynamic equations for the 3D flexible beam model

are as follows:

[m*identity(3), transpose(StbarCross), Sbar]*[aa -

g_0; za; ddqf] = QvR +matrix(fa + fb_a);

[StbarCross, Ithth_bar, Ithf_bar]*[aa - g_0; za;

ddqf] = QvAlpha + matrix(ta + tb_a +

cross(({L,0,0} + S1*B[N, :, :]*qf), fb_a));

[transpose(Sbar), transpose(Ithf_bar), mff]*[aa -

g_0; za; ddqf] = Qvf + Qef - matrix(Kff*qf) - ma-

trix((Alpha*mff + Beta*Kff)*dqf);

Using the degrees of freedom qf and the derivate of

degrees of freedom dqf, information can be passed

from Frame B to Frame A as indicated in the follow-

ing equations:

FrameB.R=Modelica.Mechanics.MultiBody.Frames.

absoluteRotation(FrameA.R, R_rel);

R_rel=Modelica.Mechanics.MultiBody.Frames.axes

Rotations({1,2,3},{qf[(6*N)-2],qf[(6*N)-1],qf[6*N]}

,{dqf[(6*N)-2],dqf[(6*N)-1],dqf[6*N]});

5 Simulations

The different flexible beam models have been vali-

dated by several simulation analyses performed in

the Dymola simulation environment [1] and com-

pared with a general purpose commercial FEM code

(ANSYS).

5.1 First example (Static)

As a preliminary result, a 3D simulation has been

performed applying movement to the free extremity

of a cantilever beam (Figure 5).

Figure 5:Beam 3D

Beam displacement and rotation analytical form cal-

culation follows:

L
EI

L
L

EI

IE

LM
π

π

δ ===
2

2

2

2
2

 (33)

π

π

θ 2

2

===
IE

L
L

EI

IE

LM
 (34)

Variables used in the simulation are expressed in the

following table:

Variable Value

Rho (kg/m
3
) 7800

L (m) 1

a (m) 0.02

b (m) 0.06285

E (Pa) 210e9

G (Pa) 8.077e10

J1(m
4
) 1.33242e-7

J2(m
4
) 4.138e-7

J3(m
4
) 4.19e-8

Alpha 1e-3

Beta 5e-5

N 2

Applied moment M (N.m) 2*π*E*I/L

The simulation has been performed by connecting 10

elements in series (Figure 6), to overcome the as-

sumption of small displacements in the internal de-

velopment of the element.

102

X. Murua, F. Martinez, A. Pujana, J. Basurko, J.M. Pagalday

The Modelica Association Modelica 2006, September 4th – 5th

Figure 6: Modeling in Dymola

Figure 7 shows the results obtained where the 3D

position of the beam’s extremities is plotted at the

end of the simulation. As expected, X and Y posi-

tions describe a circle since as this was verified in

the theoretical analysis. The same results are ob-

tained, irrespective of the direction of movement

applied.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35

Figure 7: Results obtained

By means of this simulation correct element re-

sponse to static flexion has been obtained.

5.2 Second example (Dynamic)

In this example (Figure 8) the dynamical operation

of a flexible pendulum articulated to one of its ends

has been analysed. The initial position of the flexible

element is horizontal (X direction) and gravity is

applied in the vertical direction (Z direction).

g

Z

X

Figure 8: Articulated pendulum

Figure 9 shows the comparison of the results ob-

tained with Dymola, ANSYS code and considering a

rigid element. The mechanical properties of the beam

are the same as in the previous example except L

being 0.2. This simulation can be performed with

one or more elements because the large displacement

of the end is mainly governed by the revolute joint,

the flexibility acting only in the longitudinal direc-

tion of the beam.

-0.25

-0.2

-0.15

-0.1

-0.05

0

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

 Rigid

 Flexible DYMOLA

 ANSYS

Figure 9: Results obtained with different programs

Between the rigid model and the flexible model there

is a lack of coordination in frequency where the rigid

element is advanced with regard to the flexible

model. The results concur with those obtained in

ANSYS.

6 Generalization and model versions

In the general and parametric 3D model created,

modifications have been performed in order to intro-

duce mass and stiffness (matrices calculated for ex-

ample using ANSYS). In this case the matrix of mass

becomes constant along the simulation as well as it

happens with the matrix of stiffness and besides

Coriolis's terms though they appear are not updated.

By means of this simplification the computational

cost decreases because the reduction in the calcula-

tion of the equations of movement. It must be

pointed out that a calculation error is made, however

this error could be fully undertaken.

103

3D Flexible Multibody Thin Beams Simulation in Modelica with the Finite Element Method

The Modelica Association Modelica 2006, September 4th – 5th

7 Conclusions

To date, there has been no evidence of a Dymola

model that can simulate flexible mechanisms in 3D

and therefore the importance of the model created, as

its correct operation has been verified, both statically

and dynamically.

This development in flexible element simulation,

based on Modelica programming language, enables

the simulation of flexible 3D mechanisms and the

integration of these model into other disciplines, for

example, control tasks.

The only drawback to the implemented model is the

large number of equations required to solve the prob-

lem, this slows down simulation and requires power-

ful simulation equipment. Although, compared to

other simulation programs, the 3D flexible model

created Dymola is about 100 times faster than the

same model simulated in ANSYS.

To overcome this limitation a simplified model has

been implemented that considers a fixed mass matrix

and a single element (no discretisation), that speeds

up simulation, and is suitable for preliminary model-

ing steps.

The developed model can be easily implemented for

any type of constant shape along its length.

Future work will include non-constant shape beams

and the development of a model based on the as-

sumed modes theory [3] considering free boundaries.

This flexible model will be used for the development

of a wearable robotics where the mechanism mass is

key.

A Structural Stiffness Matrix

() () () ()

() () () ()

() ()

() ()

() () () ()

() () () ()

() ()

() ()

−

−

−

−

−−−

−

−

−

−

−−−

−

−

=

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI
l

GJ

l

GJ
l

EI

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI
l

EA

l

EA

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI

l

EI
l

GJ

l

GJ
l

EI

l

EI

l

EI

l

EI
l

EI

l

EI

l

EI

l

EI
l

EA

l

EA

K i
ff

3

2

33

2

3

2

2

22

2

2

11

2

2

3

2

2

2

3

2

2

3

3

3

2

3

3

3

3

2

33

2

3

2

2

22

2

2

11

2

2

3

2

2

2

3

2

2

3

3

3

2

3

3

3

4
000

6
0

2
000

6
0

0
4

0
6

000
2

0
6

00

0000000000

0
6

0
12

000
6

0
12

00

6
000

12
0

6
000

12
0

0000000000

2
000

6
0

4
000

6
0

0
2

0
6

000
4

0
6

00

0000000000

0
6

0
12

000
6

0
12

00

6
000

12
0

6
000

12
0

0000000000

B Mass Matrix Components

() () () ()

() () () () ()

() ()

() ()

() ()

() () () () () () () () ()

() () () () () () () () () ()

ij

n

ij

V

T

lIlIlIlIlQlIlIlIlIlQ

lIlIlIlQlIlIlIlIlQ

lIlIlQlIlIlIlIlQ

lIlQlIlIlIlIlQ

mlQlQlQlQm

lIlIlIlIlQ

lIlIlIlQ

symmetric

lIlIlQ

lIlQ

m

dVSS

−−−−−−

−−−−

−−−−−

−−−−−

−

−−

−−

=

=

∫

15

2

15

2
0

1010123030
0

101012

15

2
0

1010123030
0

101012

0000000000
5

6

5

6

21010
0

5

6

5

6

2

5

6

21010
0

5

6

5

6

2

31212
0

226

15

2

15

2
0

101012

15

2
0

101012

0000
5

6

5

6

2

5

6

2

3

3322233222

322233222

22

22

22

33222

3222

11

ζηζζηζηζηζζηζη

ηηηζζηζηηηζζ

ηηζζηζηηηζζ

ζηζηζηζζη

ηηζ

ζηζζηζη

ηηηζζ

ηηζζ

ζη

ρ

() ()

() ()

()

() () () () ()

() () () ()

ij

ij

V

T

lm
Q

lmllm
Q

lml

I
l

Q
l

Q
l

I
l

Q
l

mml
Q

lm

lm
Q

lml

symmetricI
l

Q
l

m

dVSS

−−−

−−−

−

−

−

=

=

∫

105
0

20
0

210

11
0

140
0

30
0

420

13
0

00000000000
3

0
20

7
0

30
0

6
0

20

3
0

000000000
35

13
0

420

13
0

20

3
0

70

9
0

0000000
105

0
20

0
210

11
0

00000
3

0
20

7
0

000
35

13
0

0

2323

32332

2

23

32

22

ζζ

ηζζηζ

ζ

ζ

ηζ

ρ

() ()

() ()

()

() () () () ()

() () () ()

ij

ij

V

T

lm
Q

lmllm
Q

lm

I
l

Q
l

Q
l

I
l

Q
l

mml
Q

lm

lm
Q

lml

I
l

Q
l

symmetric
m

dVSS

−

−

−

−−

=

=

∫

000000000000
10520210

11
000

14030420

13
00

320

7
000

30620

3
00

35

13
000

420

13

20

3

70

9
00

00000000

0000000

000000
10520210

11
00

320

7
00

55

13
00

00

0

2323

32332

2

23

32

33

ηη

ζηηηη

η

η

ζη

ρ

104

X. Murua, F. Martinez, A. Pujana, J. Basurko, J.M. Pagalday

The Modelica Association Modelica 2006, September 4th – 5th

() ()

() () () ()

() () () ()

() () () () ()

() () () () ()

() ()

() () () ()

() () () ()

() () () () ()

() () () () ()

ij

ij

V

T

I
l

Q
l

Q
l

I
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

ml
Q

lmml
Q

lm

Q
l

I
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

ml
Q

lmml
Q

lm

dVSS

−−

−−−

−−−

−−−

−−−

−−−

−−

−−−

−−−

−−−

=

=

∫

00
12

0
10

0
60

0
12

0
10

0

00
12

0
10

0
60

0
12

0
10

0

000000000000
10

0
2

0
2

0
10

0
2

0
2

0

10
0

2
0

2
0

10
0

2
0

2
0

20
0

3
0

20

7
0

30
0

6
0

20

3
0

60
0

12
0

10
000

12
0

10
0

60
0

12
0

10
000

12
0

10
0

000000000000
10

0
2

0
2

0
10

0
2

0
2

0

10
0

2
0

2
0

10
0

2
0

2
0

30
0

6
0

20

3
0

20
0

3
0

20

7
0

32332

32332

2222

2222

22

33232

33232

2222

2222

22

21

ηζηηηζη

ηζζηζ

ζηζζηζ

ηηζηηηζη

ζζ

ηηζηηζη

ζηζηζ

ζηζζηζ

ηηζηηηζη

ζζ

ρ

() ()

() () () ()

() () () ()

() () () () ()

() () () () ()

() ()

() () () ()

() () () ()

() () () () ()

() () () () ()

ij

ij

V

T

I
l

Q
l

Q
l

I
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

ml
Q

lmml
Q

lm

Q
l

I
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

Q
l

I
l

Q
l

ml
Q

lmml
Q

lm

dVSS

−−

−−

−−−−−

−−−−−

−

−−

−−−

−

−

−−

=

=

∫

00
1210

000
601210

00

00
1210

000
601210

00

000000000000

0
1022

000
1022

00

0
1022

000
1022

00

0
20320

7
000

30620

3
00

0
601210

0000
1210

00

0
601210

0000
1210

00

000000000000

0
1022

000
1022

00

0
1022

000
1022

00

0
30620

3
000

20320

7
00

32332

32332

2222

2222

22

33232

23232

2222

2222

22

31

ζηηζη

ηζζζηζζ

ζηζζζηζζ

ηζηηζη

ηη

ηζηζη

ζηζζζηζ

ζηζζζηζζ

ηζηηζη

ηη

ρ

() ()

() () () () () ()

() () () ()

() ()

() () () () () ()

() () () ()

ij

ij

V

T

lm
Q

lmllm
Q

lml

Q
l

I
l

Q
l

Q
l

I
l

Q
l

ml
Q

lmml
Q

lm

lm
Q

lmllm
Q

lml

Q
l

I
l

Q
l

Q
l

I
l

Q
l

ml
Q

lmml
Q

lm

dVSS

−−−−−

−−−−

−

−

−−−−−

−

=

=

∫

0
10520210

11
000

14030420

13
00

000000000000

0
20320

7
000

30620

3
00

000000000000

0
210

11

20

7

35

13
000

420

13

20

3

70

9
00

000000000000

0
14030420

13
000

10520210

11
00

000000000000

0
30620

3
000

20320

7
00

000000000000

0
420

13

20

3

70

9
000

210

11

20

7

35

13
00

000000000000

2223

332332

22

2323

332332

22

32

ηη

ζηζζζηζζ

ηη

ηη

ζηζζζηζζ

ηη

ρ

References

[1] Dymola. Dynamic Modelling Labo-

ratory. Dynasim AB, Lund, Sweden.

[2] A. A. Shabana. Dynamics of Multi-

body Systems. Cambridge University

Press, 1998.

[3] F. Schiavo, G.Ferreti, L. Viganò.

Object-Oriented Modelling and

Simulation of Flexible Multibody

Thin Beams in Modelica with the Fi-

nite Element Method. In 4
th
 Interna-

tional Modelica Conference, Ham-

burg, March 7-8, 2005.

[4] M. Otter, H. Elmqvist, and S. E.

Mattsson. The new Modelica multi-

body library. In 3rd Modelica Con-

ference, Link¨oping, Sweden, No-

vember 3-4, 2003.

105

3D Flexible Multibody Thin Beams Simulation in Modelica with the Finite Element Method

The Modelica Association Modelica 2006, September 4th – 5th

106

X. Murua, F. Martinez, A. Pujana, J. Basurko, J.M. Pagalday

The Modelica Association Modelica 2006, September 4th – 5th

A Modelica Library for Space Flight Dynamics

Tiziano Pulecchi Francesco Casella Marco Lovera
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

The Modelica Space Flight Dynamics Library has
been developed as a unified environment to be used
throughout the design cycle of the Attitude and Orbit
Control System (AOCS) for a generic multibody, pos-
sibly flexible, spacecraft. The library architecture has
been recently redesigned, exploiting at its best Model-
ica’s reusability, flexibility and modularity features. In
this contribution the main benefits of the Space Flight
Dynamics Library are discussed with special empha-
sis posed upon flexibility and advantage of exploiting
Modelica’s nonlinear dynamic inversion capability for
preliminary assessment of disturbance torques in nom-
inal orbit and attitude.
Keywords: space flight dynamics; replaceable model;
flexibility; simulation

1 Introduction

There is an increasing need for efficient design tools in
every domain involved in spacecraft design, and par-
ticularly in the area of control oriented modelling and
simulation. Specific tools have to be developed for the
design of both the system architecture and the Attitude
and Orbit Control System (AOCS), bearing in mind
the principles of reusability, flexibility and modular-
ity. The main issue in the development of such tools
should be to try and work out a unified environment
to be used throughout the design cycle of the AOCS,
namely, the mission analysis stage, the preliminary
and detailed design and simulation phases, the gen-
eration and testing of the on-board code, the develop-
ment of the AOCS Electrical Ground Support Equip-
ment (EGSE) and the post-launch data analysis activ-
ities. A number of commercial tools are available to
support one or more of the above mentioned phases in
the development of AOCS subsystems, however none
of them seems capable of providing complete cover-
age of the whole development cycle in a sufficiently
flexible way. Moreover, the spacecraft architecture is

traditionally designed using domain specific software
packages that best solve their tasks with respect to the
different disciplines involved, e.g., flight mechanics,
propulsion, controls; as a drawback, it is quite cumber-
some to link together the different model components
and exploit their reusability in the framework of future
missions.

The Modelica Space Flight Dynamics Library pro-
vides a systematic approach to simulation of space-
craft dynamics based on modern acausal object-
oriented modelling techniques. The development of
simulation tools for satellite attitude and orbit dynam-
ics within the object-oriented paradigm has been the
subject of previous work (see [14], where an overview
of the existing tools for AOCS modeling is presented).
Surprisingly enough, however, while the use of Mod-
elica for aerospace applications has led to the develop-
ment of a library for flight dynamics (see [8]), very
little activity in the spacecraft domain has been re-
ported. Some preliminary results in the development
of a Modelica spacecraft modeling library have been
presented in [4, 11, 5]). More recently, the model com-
ponents presented in the cited references have been re-
vised in order to take advantage of the Modelica Multi-
Body library (see [9]) which turns out to be extremely
suitable to serve as a basis for the development of the
basic model components for the mechanical parts of
spacecraft models. In particular, a recent extension
of the above mentioned library (see [2, 13]) is prov-
ing specially beneficial for the simulation of spacecraft
with flexible appendages (see [12]).

In this paper the new Space Flight Dynamics Library
is described, emphasizing its flexibility and showing
the advantage of exploiting Modelica’s nonlinear dy-
namic inversion capability for the preliminary assess-
ment of disturbance torques acting upon a spacecraft in
nominal orbit and attitude. The paper is organized as
follows: first the Space Flight Dynamics Library will
be described in detail in Sections 2-3; subsequently,
the library flexibility will be exploited in Section 4
in a preliminary analysis of the external disturbance

107

A Modelica Library for Space Flight Dynamics

The Modelica Association Modelica 2006, September 4th – 5th

torques acting on a spacecraft in its nominal orbit and
attitude. Finally, in Section 5 concluding remarks will
be outlined.

2 The Space Flight Dynamics Li-
brary

Modelica turns out to be specially suited for the mod-
elling of spacecraft dynamics under many respects:

• Coordinate frames can be simply included in the
model in terms of connectors, describing kine-
matic transformations from one coordinate sys-
tem to another.

• Spacecraft dynamics can be modelled by extend-
ing suitable classes available in the MultiBody
Library.

• Specific Modelica constructs are available to deal
with the modelling of physical fields and envi-
ronmental quantities. This feature turns out to
be extremely useful in modelling the space envi-
ronment and representing the interaction between
the environment and the spacecraft. In particular,
with a suitable choice of the environment inter-
faces, models of increasing complexity for each
of the relevant environmental fields can be imple-
mented.

• Sensors and actuators can also be easily repre-
sented in the Modelica paradigm. For instance,
a component for the simulation of magnetic tor-
quers is modelled in terms of the interaction with
the geomagnetic field, while the momentum ex-
change between spacecraft and wheels is mod-
elled via a simple mechanical connector allowing
one rotational degree of freedom 1.

• Packages of data sheets for each class can be con-
structed and components easily modified within
each spacecraft model, using Modelica’s ad-
vanced features (see, e.g., [10]).

• C code can be easily linked to Modelica mod-
els, allowing the designer to reuse, for instance,
a wide range of available specific algorithms
and routines he is confident with, without going
through all the trouble of re-implementing them
in Modelica code.

1Mounting errors, which may give rise to inter-axis coupling
and vibrations, can be easily accounted for.

• Finally, as the components of the library are in-
dependent from each other, one can exploit this
flexibility in order to build a simulation model
of increasing complexity and accuracy according
to the needs associated with each phase of the
AOCS development process.

In addition, the availability of the Modelica MultiBody
Library (see [9]) leads to further advantages, since
the MultiBody components can be extensively reused.
Furthermore, recent developments to the library allow-
ing the modeling and simulation of flexible multibody
systems (see [2, 13]) make it possible to deal with the
dynamics of spacecraft with flexible appendages such
as gravity gradient booms, antennas or solar panel ar-
rays.
The Space Flight Dynamics Library encompasses all
necessary utilities to ready a reliable and quick-to-use
scenario for a generic space mission, providing a wide
choice of most commonly used models for AOCS sen-
sors, actuators and controls. The Space Flight Dynam-
ics Library’s model reusability is such that, as new
missions are conceived, the library can be used as a
base upon which readily and easily build a simulator.
This goal can be achieved simply by interconnecting
the standard Space Flight Dynamics Library objects,
possibly with new components purposely designed to
cope with specific mission requirements, regardless
of space mission scenario in terms of either mission
environment (e.g., planet Earth, Mars, solar system),
spacecraft configuration or embarked on board sys-
tems (e.g., sensors, actuators, controls).
Section 3 deals with a thorough description of the main
Space Flight Dynamics Library components.

3 Basic model components

The generic spacecraft simulator will consist of an
extended World model and one or more Spacecraft
models:

1. Extended World model: a new World model,
extending Modelica.MultiBody.World has been
defined. It provides all the functions needed for a
complete representation of the space environment
as seen by an Earth orbiting spacecraft:

• Gravitational field models;

• Geomagnetic field models;

• Atmospheric models;

• Solar radiation and eclipse models;

108

T. Pulecchi, F. Casella, M. Lovera

The Modelica Association Modelica 2006, September 4th – 5th

• Models for Sun and Moon ephemeris;

Such an extension to the basic World model
as originally provided in the MultiBody library
plays a major role in the realistic simulation of the
dynamics of a spacecraft as the linear and angular
motion of a satellite are significantly influenced
by its interaction with the space environment.

2. Spacecraft model: a completely reconfigurable
spacecraft including components:

(a) SpacecraftDynamics: this component has
been defined by extending the rigid body
model on the basis of the already available
Modelica.MultiBody.Parts.Body compo-
nent. The main modifications reside in the
selectable evaluation of the interactions be-
tween the spacecraft and the space environ-
ment and on the additional initialization op-
tion for the simulation via selection of a
specific orbit for the spacecraft. Data for
custom orbits and spacecraft inertial prop-
erties and geometry (influencing both aero-
dynamic and solar radiation behavior) are
stored in dedicated library packages. The
SpacecraftDynamics interface consists of
the standard Modelica library mechanical
connector.

(b) SensorBlock: this replaceable model con-
sists in a reconfigurable set of attitude sen-
sors to be chosen among custom Space
Flight Dynamics Library SensorBlock im-
plementations. The model replaceable fea-
ture is active on all levels, such that, for
instance, the same basic Spacecraft model
can be instantiated as having a custom star
tracker sensor (corresponding to a specified
supplier’s serial number), model (such as
ideal measure, measure corrupted by sim-
ple white noise and bias, optional time delay
and availability bit) and configuration (de-
fined by star trackers number, location and
orientation with respect to the spacecraft’s
reference frame).

The Space Flight Dynamics Library encom-
passes mathematical models of different de-
gree of complexity for star sensors, gyro-
scopes, magnetometers and GPS receivers.
The SensorBlock interface consists of a
standard Modelica library mechanical con-
nector toward model SpacecraftDynamics

and of the expandable connector (see [1])
SensorBus toward replaceable model Con-
trolBlock.

(c) ActuatorBlock: this replaceable model
consists in a reconfigurable set of attitude
control actuators to be chosen among cus-
tom Space Flight Dynamics Library Actu-
atorBlock implementations. Mathematical
models of different degree of complexity
for commonly employed actuators and ac-
tuators set have been implemented in the
Space Flight Dynamics Library, including
momentum and reaction wheels, magnetic
torquers and cold gas thrusters. The Actu-
atorBlock interface consists of a standard
Modelica library mechanical connector to-
ward model SpacecraftDynamics and of
the expandable connector ActuatorBus to-
ward replaceable model ControlBlock.
Note, in passing, that sensor and actuator
models have been developed in a control-
oriented framework, i.e., at the current level
of refinement they are not based on physical
models of the measurement process. More
advanced models can however be included
in the considered framework if needed.

(d) ControlBlock: this replaceable model im-
plements the spacecraft Attitude Control
System (ACS), including blocks supervis-
ing the basic attitude determination, atti-
tude control and control allocation func-
tions. The ControlBlock interface consists
of two expandable connectors, SensorBus
and ActatorBus, toward replaceable mod-
els SensorBlock and ActuatorBlock re-
spectively.

Note that the spacecraft can be either modeled as
a rigid body or as a multibody system, possibly
with flexible appendages (see [12] for details).

A short description of the Space Flight Dynamics Li-
brary’s World, Spacecraft and SpacecraftDynamics
models is given in the following subsections; Sensor-
Block, ActuatorBlock and ControlBlock models are
omitted for brevity.

3.1 Extended World model

The user interface for Extended World Model compo-
nent is shown in Figure 1; as can be seen from the
Figure, the user can define the initial date and time of

109

A Modelica Library for Space Flight Dynamics

The Modelica Association Modelica 2006, September 4th – 5th

Figure 1: User interface for the Extended World model.

the simulation and choose among the available mod-
els for the Earth’s gravity field (J2, J4 or the more
general JGM-3 model for the Earth’s gravitational po-
tential, see [7]), for the Earth’s magnetic field (dipole,
quadrupole and the IGRF model, see [16]), for the at-
mospheric density model and for the Sun and Moon
ephemeris tables.
As is well known, the Earth’s gravitational potential
Ug may be described by the function

Ug(r,q,l) = −µ
r
{1+

¥

å
n=2

(
Re

r
)n JnPn(cos(q))+

+
¥

å
n=2

n

å
m=1

(
Re

r
)n Pm

n (cos(q))(Cm
n cos(ml)+Sm

n sin(ml))}

where Pm
n are the Legendre polynomials

Pn(x) =
1

2nn!
dn

dxn (x2 −1)n

Pm
n (x) = (1− x2)m/2 dmPn(x)

dxm

Re is the mean equatorial Earth radius, r,q and l are
the point’s spherical coordinates and coefficients Jn,
Cm

n , Sm
n are the zonal, sectoral and tesseral coefficients.

Depending on the mission characteristics and on the
purpose of attitude control simulations, a satisfactory

approximation can be obtained by choosing the order
of the expansion in a suitable way. The Earth gravita-
tional field components (expressed in spherical coor-
dinates) are then given by

g = −ÑUg = −{
¶Ug

¶r
,
1
r

¶Ug

¶q
,

1
r sin(q)

¶Ug

¶l
}.

Similarly, the geomagnetic potential Um, is described
by the function

Um(r,q,l) =
Re

µ

¥

å
n=0

n

å
m=0

(
Re

r
)n+1 Pnm(cos(q))

(gm
n cos(ml)+hm

n sin(ml))

where gm
n and hm

n are the Gauss coefficients appropriate
to the Schmidt polynomials Pnm

Pn,0(x) = P0
n (x)

Pn,m(x) = (
2(n−m)!
(n+m)!

)1/2 Pm
n (x).

The coefficients for the geomagnetic potential adopted
in the simulation environment correspond to the
so-called International Geomagnetic Reference Field
(IGRF) model for the Earth’s magnetic field (see [16]).
The components of the geomagnetic field (expressed

110

T. Pulecchi, F. Casella, M. Lovera

The Modelica Association Modelica 2006, September 4th – 5th

in spherical coordinates) are then given by

B = −ÑUm = −{¶Um

¶r
,
1
r

¶Um

¶q
,

1
r sin(q)

¶Um

¶l
}.

Similar models for the atmospheric density and the
Sun and Moon position have been implemented, ac-
cording to [7, 15].

3.2 Spacecraft model

The Spacecraft model is structured according to the
diagram in Figure 2: the component associated with
the (perturbed) linear and angular dynamics of the
satellite (described in Figure 3) is connected to the ac-
tuators and sensors blocks via a standard Modelica me-
chanical connector, whilst the interconnection among
sensors, actuators and control blocks is realized via
suitably defined data buses. For instance, the default
choice for the replaceable model SensorBlock, com-
prising a single star tracker, gyroscope, GPS receiver
and magnetometer, is depicted in Figure 4. As can be
seen from the Figure, models for each of the on-board
sensors are included; in particular, each sensor is char-
acterized by a mechanical interface, corresponding to
the physical mounting of the instrument on the satel-
lite body (taking into account the definition of the local
sensor reference frame via a suitable change of coor-
dinates) and by a signal interface. The sensors data
bus is therefore defined by the collection of output sig-
nals coming from each of the available sensors (using
Modelica expandable connectors, see [1]).

Figure 2: Structure of the Spacecraft model.

Note that the sensor and actuator models have been
defined by taking full advantage of the object ori-
entation of the modeling language: the core defini-
tion for each sensor/actuator model is at the interface
level; mathematical models of increasing complexity
are available, ranging from ideal sensors providing

Figure 3: Layout of the SpacecraftDynamics model.

ideal, continuous-time measurements to more refined
models taking into account measurement errors and
the actual sampling rate of the sensors.

Figure 4: Default choice for replaceable model Sen-
sorBlock, comprising a single star tracker, gyroscope,
GPS receiver and magnetometer.

Let us stress the point that the Space Flight Dynam-
ics Library Spacecraft model is completely customiz-
able for what concerns actuators, sensors and controls,
which can be selected among standard library mod-
els via dedicated popup menus from the model Space-
craft graphical user interface (see Figure 5). The pos-
sible customization are virtually countless: Limiting
the discussion only to possible sensors customization,
the present Space Flight Dynamics Library implemen-
tations allows for choosing among all possible combi-
nations arising from:

• 3 star tracker models ;

• 2 star tracker configurations ;

• 2 GPS models;

• 1 magnetometers models;

111

A Modelica Library for Space Flight Dynamics

The Modelica Association Modelica 2006, September 4th – 5th

• 2 gyroscope models;

• 4 sensors block instances.

Figure 6 provides an idea of the customization made
possible by the Space Flight Dynamics Library for
what attains the SensorBlock only.
More freedom yet is available within the Spacecraft-
Dynamics model for what attains the interaction of
the spacecraft with the space environment as defined
in the extended World model, via the options for acti-
vation/deactivation of magnetic residual dipole, aero-
dynamic and solar radiation disturbance forces and
torques.
The Spacecraft model extreme flexibility was
achieved by setting Dymola provided annotation op-
tion choicesAllMatching to true for all the replaceable
models. In such a way, a model is a candidate for re-
declaration of a given replaceable model if and only if
it extends a suitable base interface thisModelFamily-
Interface. If a new model candidate is designed, Dy-
mola will automatically update the candidate model
list with the new entry, provided it is an extension of
the proper interface. Finally, the choicesAllMatching
annotation adoption prevents the user from unsuitable
redeclarations.

3.3 SpacecraftDynamics model

This new component uses the Model-
ica.MultiBody.Parts.Body model to account for
the interaction between the spacecraft and the en-
vironment. In particular, the following disturbance
forces and torques can be selectively included in the
spacecraft model:

• Gravity gradient torques;

• Magnetic torques, arising from the presence of a
non zero spacecraft’s residual magnetic dipole;

• Aerodynamic forces and torques, produced by the
interaction with the planet’s atmosphere;

• Solar radiation pressure originated disturbance
forces and torques.

Specifically, the latter contributions to the disturbance
forces and torques requires the definition of the inter-
action between the spacecraft geometry, defined as an
assembly of planar and possibly cylindrical surfaces,
and the average solar radiation pressure F. When the
spacecraft is fully illuminated, the force acting upon

a single exposed surface is given by the momentum
exchange law

d qsc

d t
= p�

(1AU)2

‖R‖2

#sur f

å
i=1

Ai cos(qi)·

[(1− ei)(−R̂) + 2ei cos(qi)(−next,i)]

where qsc is the spacecraft’s momentum, p� =
4.56e−6 Jm−2 is the mean solar radiation pressure at 1
Astronomic Unit (AU), R is the relative position vec-
tor from the spacecraft center of mass to the Sun, Ai,
ei and next,i are the single surface area, reflectivity co-
efficient and external surface unit vector, respectively.
Finally, qi = acos(R̂ ·next,i).
When a body interposes between the spacecraft and
the Sun, the former is partially or totally eclipsed, and
the force reduces accordingly by a factor2

n(rsun,rs/c) = 1−
(

aa2 +bb2 −acsina
pb2

)
where

a = arcsin

(
bsinb

a

)
, b = arccos

(
c2 +b2 −a2

2bc

)
a, b are the Sun and occulting body apparent radii re-
spectively, and c is the apparent distance between the
geometrical centers of Sun and occulting body.
Thus, the overall force acting on the spacecraft is

d qsc

d t
= n · p�

(1AU)2

‖R‖2

#sur f

å
i=1

Ai cos(qi)·

[(1− ei)(−R̂) + 2ei cos(qi)(−next,i)]

while the associated torque is computed accordingly,
once the center of pressure of each and every surface
composing the spacecraft geometry is defined.
The layout of the SpacecraftDynamics model is de-
picted in Figure 3. As can be seen from the Fig-
ure, the core of the component is the Body compo-
nent of the Modelica MultiBody library, which de-
scribes the linear and angular motion of a rigid body.
The component interface is constituted by a mechan-
ical connector, to which mathematical models for the
forces and torques arising from the interaction with the
space environment are attached. Finally, a function for
the computation of classical orbit parameters from the
cartesian representation of the spacecraft position and
velocity is included in the component model.

2The shadow function n(rsun,rs/c) is derived under the as-
sumption of occulting body infinitely far from the spacecraft

112

T. Pulecchi, F. Casella, M. Lovera

The Modelica Association Modelica 2006, September 4th – 5th

Figure 5: Spacecraft graphical user interface.

Figure 6: Selection of star tracker instance for SensorBlock replaceable model.

113

A Modelica Library for Space Flight Dynamics

The Modelica Association Modelica 2006, September 4th – 5th

The spacecraft data (i.e., inertial properties, geome-
try, surface reflectivity, material, etc.) can be easily
retrieved from appropriate spacecraft records. More-
over, to cope with classic space mission requirements,
two initialization options are allowed:

• standard Modelica.Mechanics.MultiBody.Body
initialization;

• a new initialization based on current simulation
Universal Time (set within the extended World
model), nominal orbit (specified by six orbital pa-
rameters, retrieved from appropriate records), an-
gular rate and Modelica Orientation object rela-
tive to the orbital reference frame.

4 A case study

The Spacecraft Dynamics Library has been already
used in a number of spacecraft modelling and sim-
ulation problems (see, e.g., [6] and the references
therein). In this paper, the focus will be on the ap-
plication of the library in the AOCS preliminary de-
sign stage, i.e., when the spacecraft architecture is not
yet completely defined and different options are be-
ing evaluated, depending on the specific mission pro-
file. At this stage, it is indeed convenient to main-
tain for the spacecraft a higher level structure (i.e.,
one where only requirements are specified, not specific
equipments), to evaluate its interaction with the space
environment for different mission profiles and to be
concerned only afterwards about the choice of specific
equipment to be embarked. One of the main tasks in
this stage is to evaluate the external disturbance forces
and torques acting on the spacecraft, depending on the
mission profile. This task can be performed in many
different ways: the simplest approach would be to rely
on simple worst case formulas such as the ones given
in [3]; on the other hand, one could think of running
a closed-loop simulation using a simple attitude con-
trol algorithm to maintain the satellite near its nomi-
nal operating conditions (e.g., Earth pointing attitude).
Clearly, the former approach will introduce a signifi-
cant conservatism in the analysis, while the latter re-
quires a preliminary design of the attitude control law,
which may be time-consuming.
A better way of dealing with this task can be devised
by taking advantage of the acausal nature of Modelica
models: Dymola’s symbolic dynamic inversion capa-
bility will be exploited for the preliminary assessment
of the disturbance torques acting upon the spacecraft
in its nominal orbit and attitude.

Taking advantage of the Space Flight Dynamics Li-
brary features, it is an easy task to derive a customiza-
tion of the base Spacecraft model which can be used
to perform this preliminary analysis: it is sufficient
to assemble a new spacecraft model with no Control-
Block nor ActuatorBlock, to define an unknown con-
trol torque to be applied as input torque to the space-
craft and assign the desired spacecraft’s angular rate
time-history. Dymola will then take care of solving
the resulting system of nonlinear equations to derive
the control torques time history necessary to keep the
spacecraft in its nominal attitude.
As an example, Figure 7 shows the computed distur-
bance torques experienced by an Earth-pointing satel-
lite aligned with its orbital reference frame. The con-
sidered satellite is assumed to operate on a near polar
orbit (i = 86.9◦ inclination), eccentricity e = 0, alti-
tude of 450 Km and a corresponding orbital period of
5614.8 seconds. The satellite inertial properties are:

• Satellite mass m = 500 kg

• Satellite inertia matrix [kgm2]

I =

 30 2 −18
2 1080 −0.1

−18 −0.1 1070

A default cubic geometry was assumed for the satel-
lite, comprising six surfaces, each with 1m2 surface
area, reflectivity coefficient e = 0.02 and center of
pressure located at the surface geometric center.
For simulation purpose, aerodynamic drag, solar ra-
diation pressure and a residual magnetic dipole of
1Am2 upon each spacecraft’s body axis were selected
as disturbance torques, while default choices were se-
lected for geomagnetic and gravity fields (i.e., mag-
netic dipole and J2 respectively), Sun ephemeris and
atmosphere model (i.e., Harris-Priester). The simula-
tion was initialized at GMT 12 : 00, March 21, 2007.
Note that the solar radiation disturbance torque experi-
ences a sudden drop to zero when the Earth interposes
between the spacecraft and the Sun, and takes back a
nonzero value as soon as the spacecraft gets full Sun
illumination.

5 Concluding remarks

In this paper the main issues related to the modelling
and simulation of spacecraft dynamics have been de-
scribed, the results obtained so far in developing Mod-
elica tools for spacecraft simulation have been pre-

114

T. Pulecchi, F. Casella, M. Lovera

The Modelica Association Modelica 2006, September 4th – 5th

Figure 7: Disturbance torques experienced by the satellite in its nominal orbit and attitude.

sented and a case study demonstrating Modelica’s use-
fulness and flexibility as a design tool has been dis-
cussed.

References

[1] Modelica - a unified object-oriented language
for physical systems modelling. Language
specification. Technical report, Modelica As-
sociation, 2002.

[2] G. Ferretti, F. Schiavo, and L. Viganò. Object-
Oriented Modelling and Simulation of Flexible
Multibody Thin Beams in Modelica with the Fi-
nite Element Method. In 4th Modelica Confer-
ence, Hamburg-Harburg, Germany, March 7-8,
2005.

[3] W.J. Larson, and J.R. Wertz, editors. Space mis-
sion analysis and design. Kluwer Academic
Publisher, 1992.

[4] M. Lovera. Object-oriented modelling of space-
craft attitude and orbit dynamics. In 54th Inter-
national Astronautical Congress, Bremen, Ger-
many, 2003.

[5] M. Lovera. Control-oriented modelling and
simulation of spacecraft attitude and orbit dy-
namics. Journal of Mathematical and Com-
puter Modelling of Dynamical Systems, Spe-
cial issue on Modular Physical Modelling,
12(1):73–88, 2006.

[6] M. Lovera and T. Pulecchi. Object-oriented
modelling for spacecraft dynamics: a case
study. In IEEE International Symposium on
Computer-Aided Control System Design, Mu-
nich, Germany, 2006.

[7] O. Montenbruck and E. Gill. Satellite orbits:
models, methods, applications. Springer, 2000.

[8] D. Moorman and G. Looye. The Modelica flight
dynamics library. In Proceedings of the 2nd In-
ternational Modelica Conference, Oberpfaffen-
hofen, Germany, 2002.

[9] M. Otter, H. Elmqvist, and S. E. Mattsson. The
new Modelica multibody library. In Proceed-
ings of the 3nd International Modelica Confer-
ence, Linköping, Sweden, 2003.

[10] M. Otter and H. Olsson. New features in Mod-
elica 2.0. In Proceedings of the 2nd Interna-

115

A Modelica Library for Space Flight Dynamics

The Modelica Association Modelica 2006, September 4th – 5th

tional Modelica Conference, Oberpfaffenhofen,
Germany, 2002.

[11] T. Pulecchi and M. Lovera. Object-oriented
modelling of the dynamics of a satellite
equipped with single gimbal control moment
gyros. In Proceedings of the 4th International
Modelica Conference, Hamburg, Germany, vol-
ume 1, pages 35–44, 2005.

[12] F. Schiavo and M. Lovera. Modelling, simula-
tion and control of spacecraft with flexible ap-
pendages. In Proc. of the 5th International Sym-
posium on Mathematical Modelling, Vienna,
Austria, 2006.

[13] F. Schiavo, L. Viganò, and G. Ferretti. Modular
modelling of flexible beams for multibody sys-
tems. Multibody Systems Dynamics, 12(1):73–
88, 2006.

[14] A. Turner. An open-source, extensible space-
craft simulation and modeling environment
framework. Master’s thesis, Virginia Polytech-
nic Institute and State University, 2003.

[15] D. Vallado Foundamentals of astrodynamics
and applications. Microcosm Press/Kluwer
Academic Press, 2001.

[16] J. Wertz. Spacecraft attitude determination and
control. D. Reidel Publishing Company, 1978.

116

T. Pulecchi, F. Casella, M. Lovera

 Session 2a

The Modelica Association Modelica 2006, September 4th – 5th 117

Session 2a

Thermodynamic Systems for Power Plant Applications 2

Session 2a

The Modelica Association Modelica 2006, September 4th – 5th 118

The Modelica Association Modelica 2006, September 4th – 5th

Simulation of Components of a Thermal Power Plant

René Schimon Dragan Simic Anton Haumer Christian Kral Markus Plainer
Arsenal Research

Gie�nggasse 2, 1210 Vienna, Austria
phone +43-50550-6347, fax +43-50550-6595, e-mail: dragan.simic@arsenal.ac.at

Abstract

In this paper different models for simulating compo-
nents of thermal power plants and other thermal or
thermodynamic processes are presented. The different
simulation results were performed withDymola which
is based on Modelica. The models were realized with
time domain differential equations and algebraic equa-
tions. For all components the �uid was modeled by
using the Modelica.Media library which is part of the
Modelica standard library.
The heat transfer for the heat exchanger component
was modeld by calculating the heat transfer coef�cient
in dependency on the �ow velocity of the medium in
the pipes.

1 Introduction

Arsenal Research currently works on the develope-
ment of a simulation library for thermal and thermody-
namic processes. Elementary problems like heat trans-
fer and �uid dynamics will be processed. To a large
extent the Modelica_Fluid library already covers a lot
of important models, which are used to develop parts
of thermal power plants. The new library will com-
plete the Modelica_Fluid library. Some of the pre-
sented models are based on components of the Mod-
elica.Fluid library. For some special technical prob-
lems theModelica_Fluid library was modi�ed and ex-
tended.

2 Extended models to be developed

Arsenal Research is working on speci�c problems re-
lated with heat transfer and �uid dynamics. The de-
velopment of the following components is currently
initiated:

� Centrifugal pump

� An ideal pump based on physical parame-
ters

� A pump with losses based on physical para-
meter

� Simple pipe comprising pressure losses

� Heat exchanger including pressure losses, ther-
mal convection, thermal conduction

� Turbine modeled with a characteristic curve

3 Components

3.1 Fluid �ow machines

In a thermodynamic processes or thermal power plant
�uids and different gases have to be transported
through pipes. Pipes cause pressure losses. To gen-
erate a constant mass �ow, pumps are needed. Yet, in
some cases stationary density differences give rise to
a constant mass �ow without having a pump, like in a
natural circulation boiler. For assistance or to start a
�uid �ow, pumps are the most important components
in thermal processes. Pumps are �uid �ow machines.
Mechanical shaft energy is transformed into kinetic
and potential �ow energy. The impeller which is di-
rectly attached on the shaft, accelerates the �uid el-
ements. Because of the diffuser effect in the shovel
channels of the impeller wheel, the operating �uid
leaves the impeller with increased pressure. Pumps
represent a link between pressure increase and �ow
velocity or the mass �ow. This context leads to the
characteristic of a pump. Each pump typ has its typ-
ical characteristic in dependency on its geometry and
rotation speed.

3.1.1 Ideal centrifugal �uid �ow machines

An ideal pump is a �uid �ow machines with an in�-
nite number of shovels. The converted energy in the

119

Simulation of Components of a Thermal Power Plant

The Modelica Association Modelica 2006, September 4th – 5th

Figure 1: Characteristic of an ideal water pump

impeller wheel of the water pump is the kinetic and
potential energy of the operating �uid. Therefore the
main equation of the water pump represents the pro-
portion between mechanical energy of the input shaft
with respect to the impeller wheel of the water pump
and the speci�c energy of the operating �uid [1].

�m �w= 2 �p �b2 �r � tan(b2) � (r22 �w2�Y¥) (1)

In this equation r2 is the outer radius of the impeller
wheel of the water pump, b2 is the outer width of the
impeller wheel, r is the density of the operating �uid
and b2 is the outlet angel of the shovel of the impeller
wheel. Furthrmore, �m represents the mass �ow of the
operating �uid in the water pump andY¥ represents the
speci�c energy of the impeller wheel for an in�nite
number of impeller shovels. The ideal pump model
was implemented Modelica using Dymola as simula-
tion tool. Figure 1 shows the linear characteristic of
the ideal water pump. Pumps as a special �uid �ow
machines is detailed processed in [2].

3.1.2 Centrifugal Pump

In realistic pumps, friction, �uid impacts and other
�uid dynamic effects cause losses in the water pump.
These losses can be split into:

� Decrease of the speci�c energy

� Hydraulic losses in shovel channels

� Impact losses

� Friction losses of the impeller wheel

Figure 2: Characteristic of the cetrifugal water pump
with losses

A perviously developed model of an ideal pump [3]
was used to design a water pump with losses. The
new model now uses the Modelica.Media library to
model the �uid. Figure 2 shows the characteristic of
this model.

3.2 Initialization

In real thermal power plants, some components, like
the turbine, have to be brought up to operational con-
ditions by a well de�ned starting procedure. Reasons
for this starting procedure can be load limits of certain
components, cavitation of operating �uids or restric-
tion due to the process.

In computer simulations, certain start values de�ne the
initial state of the simulation. Therefore, a simulation
usually can be started from any state. From the par-
ticular starting point, the system should then reach a
steady state condition. The initialization of a complex
model becomes more dif�cult when using the Model-
ica.Media library.

The Modelica.Media library has certain operational
limits. Outside these limits an error occurs. For ex-
ample, the start-up procedure of a real pump is very
complex. At the suction side of the pump the pressure
decreases during the start-up procedure. Without con-
trolling the process of starting up a simulation, like in
a real system, an error may occur. This, however, may
lead to a complex controlling due to the huge number
of physical quantities to be controlled.

120

R. Schimon, D. Simic, A. Haumer, C. Kral, M. Plainer

The Modelica Association Modelica 2006, September 4th – 5th

3.3 Pipe as an important part of Heat Ex-

changers

The pipe is one of the most elementary components.
A lot of thermal power plant components are based on
simple pipe models. One of these important compo-
nents is the heat exchanger.
In a real pipe, the pressure drop of a �uid �owing
through the pipe, decreases due to the wall roughness
of the surfaces. The pressure drop also depends on the
�ow velocity and on the roughness of the inner sur-
face of the pipe. The cross-section of the pipe also
in�uences the pressure losses. For circular pipes the
pressure drop can be calculated according to:

Dp= l � L
D
� r � v2
2

(2)

The pressure drop Dp is a function of a coef�cient of
friction, l, the length of the pipe, L, the characteristic
length, D, the density, r, and the velocity, v. The co-
ef�cient of friction, l, depends on the Reynolds (Re)
number. The Re number is de�ned by (3). The Re
number de�nes the type of �ow. The �ow can be tur-
bulent, laminar or in the transient area.

Re=
v �D

n
(3)

The pressure drop substantially depends on the �ow
type. For the laminar area applies:

l=
64
Re

(4)

For the turbulent area basically applies:

1p
l
=�2 � log(2:51

Re �
p

l
+

k
3:71 �D) (5)

In this equation k is the roughness of the inner pipe
surface. Figure 3 represents l versus the Re number
for different �ow types.
The Modelica_Fluid library contains a lot of different
pipe models with different levels of abstractions. Arse-
nal Research develops extended models based on the
components of the Modelica_Fluid library. Simulta-
neously, Arsenal Research developed simpli�ed mod-
els for easy handling and modeling of test cases, incor-
porating less parameters than the comprehensive mod-
els. Modelica_Fluid and the extended and the simpli-
�ed models are using the same basic equations, with
respect to e.g. friction models, Reynolds equation, etc.

Figure 3: Coef�cient of friction versus different �ow
types

Figure 4 shows the pressure drop versus Re number.
The discontinuity indicates the transition from lami-
nar (at low Re numbers) to turbulent �uid �ow (at high
Re numbers).

Figure 4: Prssuredrop in pipes versus �ow velocity

3.4 Heat Exchanger

Heat Exchangers are very important for nearly every
thermal process. In heat exchangers usually two in-
teracting �uid circuits are involved. The temperatures
of both �uids are approaching. Yet a certain tempera-
ture difference is required to maintain the energy �ow
from the higher temperature �uid to the lower temper-
ature �uid. Figure 7 shows a scheme of a pipe heat
exchanger.

3.4.1 Heat propagation in Fluids

For modeling a heat exchanger it is necessary to un-
derstand how heat propagation in �uids works. Heat

121

Simulation of Components of a Thermal Power Plant

The Modelica Association Modelica 2006, September 4th – 5th

propagation is described with partial differential equa-
tions in one dimension [4] . In standing �uids heat is
transported by diffusion. The diffusivity a depends on
the operating �uid. The thermal conduction equation
for one dimension is shown in (6). In this equation q
is an additional heat source, T is the temperature and
x is the location. The diffusivity a is a �uid property,
which is a function of the heat conduction l, the den-
sity r and the speci�c heat capacity c, according to (7)

¶T
¶t
= a � ¶2T

¶x2
+q (6)

a=
l
c �r (7)

In �owing �uids the heat is also transported with the
�owing medium, which depends on the �uid velocity.
This leads to a remodeling of the heat propagation (6).
Properties in a hydrodynamic �ow depend on time and
location. The temperature is the important property
in this case. So the temperature depends on the time
and the place in the pipe. The total differential of the
temperature with respect to the time and the place has
to be calculated according to (8). To substitute this
context into (6) it is necessary to have an expression
[5] for:

¶T
¶t

So function (8) has to be divided by dt.

dT =
¶T
¶t
�dt+ ¶T

¶x
�dx (8)

dT
dt
=

¶T
¶t
+ v � ¶T

¶x
(9)

After summarizing equation (9) and (6) we receive an
equation for the heat transport in axial direction:

¶T
¶t
+ v � ¶T

¶x
�a � ¶2T

¶x2
= q (10)

3.4.2 Heat Transfer caused by Convection

To design a heat exchanger model, different physical
effects have to be considered. It is necessary to know
the quantity of heat �ow which is transported from a

Figure 5: Nu number versus increasing �ow velocity

�uid in the pipe to the outside surface. The heat trans-
fer between the �uid and the pipe wall has to be mod-
eled. This heat transfer happens by means of convec-
tion. The heat transfer coef�cient describes the heat
transfer between �uid and pipe wall, and is de�ned by
the Nusselt (Nu) number according to (11). The Nu
number is, however, a function of the Re number and
of the medium properties. The Re number describes
the type of �ow (laminar, turbulent) and therefore, also
the Nu Number depends on the type of �ow.

Nu=
a �L

l
(11)

To determine out the quantity of heat, �owing between
the �uid and the pipe wall, the Nusselt-Number has to
be calculated. To transfer high quantities of heat �ow
high Re numbers are necessary. Figure 5 shows the Nu
number versus the Re number.
The heat transfer coef�cient a increases with increas-
ing Re number. A salient turbulent �ow is important to
have a high quantity of heat transfer. In turbulent areas
the heat transfer increases linear with the Re number
[6].

3.4.3 Heat Transfer caused by Diffusion

As in shown in (6), the diffusivity is responsible for the
heat propagation in �uids. The Peclet (Pe) number is
the proportion between convective heat transport and
heat transport through conduction:

Pe=
d � v
a
= Re �Pr (12)

122

R. Schimon, D. Simic, A. Haumer, C. Kral, M. Plainer

The Modelica Association Modelica 2006, September 4th – 5th

The Peclet-Number determines whether the diffusion
is substantial or can be neglected.

3.4.4 Model of a Pipe

To design a detailed model of a heat exchanger, the
model should consider all the above described physi-
cal behaviors. Different types of heat exchangers lead
to different results. Every different types of heat ex-
changes needs different equations to describe the phys-
ical coherence.

� Parallel �ow heat exchangers

� Counter �ow heat exchangers

� Cross �ow heat exchangers

� Plate heat exchangers

Each type of heat exchanger has a different ef�ciency
because of their different heat transfer behavior. In
Modelica continuos heat transfer is modeled by heat
transfer between n in�nite small pipes. Where n is
the number of elements. To get a model of a heat ex-
changer, an in�nite small pipe segment could be the
main model. A simply unlagged pipe always has a
heat transfer with the environment. Figure 6 shows
a model of an in�nite small pipe segment. The com-
ponent pipe, models the pressure drop in this in�-
nite small segment. The pressure drop is caused by
the friction between the �uid and the inner wall of
the pipe. The additional connector is a real vector of
the size 5. This connector transmits the pressure p,
speci�c enthalpy h, mass�ow m_�ow, segment length
L and the characteristic length d to the component
heat transfer. The characteristic length is for
a circular cross-section the diameter. The component
heat transfer needs the parameter to calculate
the Nu number, which de�nes the heat transfer coef-
�cient a for an in�nite small area. To get the whole
heat transfer through a pipe surface, a has to be mul-
tiplied with the pipe surface A according to (14). The
model heat transfer transmits Gx to the compo-
nent convection. Now the energy �ow Qx between
�uid and the pipe wall in radial direction caused by
convection can be calculated by:

Qx = Gx �DT (13)

Gx = a �A (14)

Figure 6: Model of an in�nite small pipe segment

The component thermal conduction simulates
the heat conduction through the wall of the pipe. The
red line which is drawn in in the component pipe
in Figure 6, indicates the heat transfer in axial di-
rection caused by diffusion. The in�uence on heat
propagation caused by diffusion is negligible small.
High Pe numbers show that for usual technical appli-
cations the diffusion can be neglected. To minimize
the CPU-Time, diffusion was not implemented in the
heat exchanger model. At the outer port of thermal
conductance an additional heat source could be
simulated, considering e.g. solar radiation or a cool-
ing environment.

3.4.5 Model of a Heat Exchanger

In a heat exchanger, a second �uid constitutes an ad-
ditional heat source. Figure 7 shows the scheme of
a parallel heat exchanger. The second fluid A, cir-
cum�ows the pipe which contains the fluid B. Heat
�ow interchanges between both �uids. The heat �ows
from the �uid with higher temperature to the �uid with
lower temperature. In a parallel heat exchanger the
�uids �ow in the same direction. At the inlet the tem-
perature gradient is on its highest level and decreases
towards the �ow outlet. The temperatures of both �u-
ids are approaching. Figure 7 shows that heat �ow
is transported from the hot fluid A to the second
fluid B. The pipe has a mass which also has to be
heated up, and therefore, the heat capacity of the pipe
has to be considered. The ef�ciency of a heat ex-
changer is at its maximum, if the heat �ow between
both �uids is as high as possible. For this reason it is
important that the pipe is a good heat conductor. The

123

Simulation of Components of a Thermal Power Plant

The Modelica Association Modelica 2006, September 4th – 5th

Figure 7: Scheme of a parallel tube heat exchanger

wall of the pipe conducts heat also in axial direction.
This has to be respected in the heat exchanger model,
because for some types of heat exchangers, this effect
is very important. Figure 7 shows a scheme of a paral-
lel pipe heat exchanger and Figure 8 shows the imple-
mentation in a Modelica model.
Figure 8 shows the model of an in�nite small element
of a �nitely long parallel tube bundle heat exchanger.
The model volume is directly taken out of theModel-
ica_Fluid library. It was equipped with an additional
connector. This connector transmits some geometri-
cal parameter of the pipe to the volume, so that the
volume of the pipe segment can be calculated. The ad-
ditional components, conduction and capacity,
model the pipe with heat conduction in axial and ra-
dial direction. For a parallel heat exchanger these
components do not have a signi�cant effect. The sec-
ond heat transfer component simulates the heat
�ow, which is transmitted form the outer �uid to the
pipe. In the heat exchanger model the number of ele-
ments and the length of the whole pipe bundle has to
be speci�ed.
The model of one segment is connected n times one
after another to model a whole heat exchanger. Figure
9 shows the temperature versus the length of the heat
exchanger. This is an result taken out of a simulation
with only 10 element. The model contains over 2000
algebraic and differential equation.

4 Conclusion

Simulations of components of thermal power plants or
of other thermal processes are very complex. Espe-
cially the consideration of the complex media of the

Figure 8: Model of a segment of a parallel heat ex-
changer

Figure 9: Temperature distribution inside the heat ex-
changer

124

R. Schimon, D. Simic, A. Haumer, C. Kral, M. Plainer

The Modelica Association Modelica 2006, September 4th – 5th

Modelica.Media library leads to very detailed models
and precise results. Nevertheless, the Modelica.Media
library allows for a high precision of results. For some
applications, however, it makes sense to model some
components with a more simpli�ed level of abstrac-
tion. Therefore it is necessary to carefully decide on
the detail of abstraction for each model.

Abbreviations

CPU central processing unit

References

[1] J. F. Gülich, Kreiselpumpen. Heidelberger Platz 3,
14197 Berlin: Springer Verlag Berlin Heidelberg
New York 2004, 2004.

[2] D. Simic, C. Kral, and H. Lacher, �Optimization
of a cooling circuit with a parameterized water
pump model,� 5th International Modelica Confer-
ence 2006, 2006.

[3] D. Simic, C. Kral, and F. Pirker, �Simulation of the
cooling circuit with an electrically operated water
pump,� IEEE Vehicle Power and Propulsion Con-
ference, VPPC, 2005.

[4] H. Baehr and K. Stephan, Waerme- und Stoffue-
bertragung, vol. 5. Au�age. Springer, 2006.

[5] G. Merker and C. Eiglmeier, Fluid- und Wärme-
transport � Wärmeübertragung. Stuttgart,
Leipzig: B.G. Teubner, 1999.

[6] H. O. jr., Prandtl - Führer durch die Stroemu-
ngslehre Grundlagen und Phaenomene, vol. 11.
Au�age. Vieweg, 2002.

125

Simulation of Components of a Thermal Power Plant

The Modelica Association Modelica 2006, September 4th – 5th

126

R. Schimon, D. Simic, A. Haumer, C. Kral, M. Plainer

The Modelica Association Modelica 2006, September 4th – 5th

Pressurized Water Reactor Modelling with Modelica
Annick Souyri Daniel Bouskela

EDF/R&D
6 quai Watier, F-78401 Chatou Cedex, France
annick.souyri@edf.fr daniel.bouskela@edf.fr

Bruno Pentori Nordine Kerkar
EDF/SEPTEN

12-14 avenue Dutriévoz, 69628 Villeurbanne, France
bruno.pentori@edf.fr nordine.kerkar@edf.fr

Abstract

In order to optimize and validate the design and the
operation of its nuclear power plants facilities, EDF
(Electricité de France) uses a proprietary tool called
LEDA to perform static and dynamic simulation at
the system level. EDF wishes to replace LEDA by
state-of-the-art off-the-shelf tools, mainly to reduce
maintenance cost while keeping up with the latest
trend in modeling and simulation technology.
To validate the feasibility of replacing LEDA by
Modelica based tools, several benchmarks models
have been chosen, that represent the variety of engi-
neering studies made at EDF. The objective of this
work is to show that these tools are fit to dynamic
modeling and simulation of a PWR plant. To that
end, a reference LEDA model of such plant has been
successfully translated into Modelica and simulated
using Dymola. The results of the Dymola simulation
experiments are compared to those obtained with
LEDA.
This paper describes the structure of the Modelica
model, and the modeling and the numerical difficul-
ties encountered during the translation and simula-
tion process.

1 Introduction

For more than 20 years, EDF has been using model-
ing and simulation at the system level for the sizing,
design verification and validation, and the operation
of its nuclear and conventional thermal power plants.
To that end, EDF has developed and maintained
since the early 80’s a modular code called LEDA.
LEDA is used for static (plant sizing) and dynamic

studies (modeling and simulation of the normal or
incidental plant transients). It is an efficient tool, that
has a complete model library and can solve direct
and inverse problems. But, because of its now ageing
architecture, it cannot keep up with the latest trend in
modeling and simulation technology.
So, to improve the efficiency of its simulation tools
while reducing their cost, EDF is studying the feasi-
bility of using state-of-the-art readily available tools
instead of LEDA code.
The replacement tools should at least have the same
capabilities as LEDA, i.e. have an open component
library, be able to perform static and dynamic stud-
ies, compute steady states and solve inverse prob-
lems. They also should not induce an excessive de-
pendency upon the tool providers.
Modelica based tools offer such characteristics. That
is why they are considered as good candidates to re-
place LEDA.
In order to evaluate the feasibility to replace LEDA
by Modelica based tools, benchmark cases have been
selected, which cover the variety of studies made at
EDF. The first case to be studied was the quasi-2D
modeling of a steam generator [1]. The next indus-
trial case in the nuclear field to be studied, and ob-
jective of this work, is the dynamic modeling of a
1300 MW PWR power plant (P4).
The P4 LEDA model is a reference model used to
study the behavior of the plant wrt. the power grid
solicitations. In particular, it is useful for verifying
the design of the control system against important
transients, such as the house load operation.
This paper shows how the P4 LEDA model was
translated into Modelica and tested with Dymola.

127

Pressurized Water Reactor Modelling with Modelica

The Modelica Association Modelica 2006, September 4th – 5th

2 Description of the P4 model

The EDF nuclear plants belong to the PWR (Pressur-
ized Water Reactor) type. For such type of nuclear
plants, water acts both as the neutron moderator for
the nuclear reaction, and as the heat transport fluid.
Nuclear reaction occurs in fuel rods which are in-
serted into the vessel that contains water coming
from the primary loop. The primary water is heated
in the reactor core by the energy created from the
nuclear reaction, while being maintained at high
pressure in order to stay in the liquid phase. Hot wa-
ter leaving the reactor vessel exchanges its heat with
water coming from another circuit called the secon-
dary loop. This heat exchange occurs through the
steam generator, where primary water (in liquid
state) and secondary water (in boiling state) are sepa-
rated. The primary water is thus cooled and goes
back to the nuclear reactor, while the secondary wa-
ter heats up and becomes steam flowing to the tur-
bine that drives the alternator to produce electricity.
Steam leaving the turbine passes then through a con-
denser to go back to the steam generator as liquid
feedwater.
The following circuits and components are included
in the model: the primary loop and the pressurizer,
point neutronic kinetics, the steam generator, the va-
pour line from the steam generator to the turbine
admission valve, the steam generator feed water line.
The main control systems are also taken into account
in the model: the mean primary temperature control,
nuclear power control, pressurizer pressure and level
control, steam generator water level control, secon-
dary pressure control, secondary power control, tur-
bine power control.
A Modelica library of 0D and 1D thermal hydraulics
components has been developed, based on the origi-
nal equations of the equivalent Fortran LEDA model
components. These equations are the basic mass,
momentum and energy balance equations, completed
with closure equations derived from empirical corre-
lations valid for the operating domain under consid-
eration. Steam generator and vapour lines are de-
scribed by 1D models. Empirical correlations (heat
transfer, pressure losses), adapted to the physical
range of operation of PWR, have also been translated
into Modelica. The Modelica components have even
been improved when necessary: more stable numeri-
cal scheme for 1D thermal hydraulics, inertial terms
added, more adequate correlations for heat trans-
fer, ...

2.1 EDF Thermofluid Library

A thermofluid Modelica library is being developed at
EDF. The objective is to provide the physical and
technological model components needed for steady-
state and dynamic simulation of nuclear and thermal
power plants under normal and incidental operating
conditions.
The library components must be able to describe sin-
gle and two-phase flow, with heat transfer when
needed, deal with zero and reverse flow, compressi-
ble and incompressible flow for water/steam, and
smoke networks for thermal power plants.
The library uses a finite volume approach, based on
the staggered grid scheme for space discretization,
and the upwind scheme for the handling of flow re-
versal [2]. Both schemes are well suited for convec-
tion, which is the predominant energy transport law
within the network. Discretization is performed
along the main flow direction only (1D modelling).
The basic model components are divided into two
groups: nodes and edges. Nodes represent mixing
volumes such as tanks, boilers, splitters and mergers,
etc. They implement the mass and energy balance
equations. Edges represent flow resistant elements
such as valves, simple pressure loss pipes, etc. They
implement the momentum balance equations. The
network is built by connecting edges to nodes in or-
der to obtain a complete set of mass, energy and
momentum equations with their closure equations,
and automatically fulfil the numerical scheme
requirements. Complex library components such as
heat exchangers, evaporator pipes or steam generator
are also built by assembling edge and node elements.
A more complete description of the modeling ap-
proach chosen by EDF for the thermofluid library is
presented in ref. [1].
It is also important to note that EDF has chosen not
to use the Modelica inheritance mechanism, in order
to keep the readability of the model: the complete set
of equations can be found directly in the component
model itself, instead of being scattered throughout
the library when they are partially derived from su-
per-classes.

2.2 Components of the P4 model

In order to build the P4 model within the physical
limits described earlier, the following components
have been developed:

- fluid flow in pipes (primary and secondary
water loop),

- pressurizer (to maintain primary water as
liquid),

128

A. Souyri, D. Bouskela, B. Pentori, N. Kerkar

The Modelica Association Modelica 2006, September 4th – 5th

- turbine,
- valve,
- pump and motor (primary loop),
- steam generator (secondary water loop), rep-

resented by a riser connected to an upper
part (the dome),

- point neutronic kinetics (modelling nuclear
reaction and resulting temperature).

As one of the main purposes of the model is to vali-
date the response of the plant against the grid solici-
tations, the main control sub-systems of the plant
have been also modelled. They have been tested
separately in open loop, then connected to the P4
process model as shown in Figure 1.

Figure 1: EDF 1300 MW Pressurised Water Reactor

Modelica Model (P4)

2.3 Physics of the model

Fluid flow in pipes
A generic component has been developed. It can be
used for different parts of the plant, either for the
primary or the secondary loop. This model describes
the behavior of a single phase fluid flow in one or
several parallel conduits, where heat exchange can
occur between the fluid and the internal metallic pipe
wall, and between the external pipe wall and the out-
side environment. It is well adapted for the represen-
tation of connection circuits between the different
equipments of the plant. Two-phase flow is only
valid in the case of low vapor fraction, for no two-
phase flow correlation has been implemented yet.
The model is based on mass, momentum and energy
conservation equations, as 1-dimensionnal, partial
differential equations. Discretization is performed
along the main flow direction. The momentum con-
servation equation includes compressibility terms,

while fluid inertia and acceleration terms can be ne-
glected as an option. Radial heat transfer in the pipe
metallic wall is not discretized (single radial cell),
and longitudinal conduction of heat is neglected in
the fluid flow and in the wall. As mentioned earlier,
like other components of the EDF Thermofluid li-
brary, a finite volume approach is used, based on the
staggered grid scheme for space disretization, to en-
sure a better stability of the numerical scheme. Two
types of cells are defined: “edges”, which solve mo-
mentum equations, and “nodes”, which solve mass
and energy equations for the fluid, with heat transfer
conduction equations in the metallic pipe wall.
The Dittus-Boelter correlation is used for the heat
transfer coefficient between the fluid and the wall.

The pressurizer
The role of the pressurizer is to maintain the primary
water pressure at a fixed level, in order to avoid va-
porization within the primary loop. This is done by
ensuring that the liquid and vapour states are always
present in the pressurizer, so the pressure inside the
pressurizer (and hence inside the primary loop) can
be controlled by acting on the water temperature in
the pressurizer. To do so, the equilibrium between
water and steam is maintained in the pressurizer at
the saturation temperature corresponding to the pres-
sure setpoint by heating or cooling the water in the
pressurizer. Heating is achieved by the electric heat-
ers immersed in water, and cooling is achieved by
condensing the steam by aspersion of water extracted
from the primary loop.
So, there are two separate regions in the pressurizer:
a liquid region and a vapor region. The physical
model is based on a non-equilibrium formulation of
the fluid balance equations for each region. The
mathematical model is based on the mass and energy
balance equations for the liquid and the vapor, plus a
heat balance equation at the pressurizer wall, taking
into account the heat exchange between the wall and
the liquid, and between the wall and the vapor. Two
closure equations are used for the evaporation and
the condensation flow rates at the interface between
the liquid and the vapor regions. The evaporation
flow rate is related to the connected enthalpies (liq-
uid and liquid and vapor at saturation conditions).
The condensation flow rate is related to the con-
nected enthalpies (vapor and liquid and vapor at
saturation), to the heat exchanges wall/vapor and
wall/liquid, and to the conditions of aspersion (flow
rate and enthalpy). These two closure equations also
use empirical coefficients, related to the bubble ris-
ing time in the liquid and the droplet falling time in

129

Pressurized Water Reactor Modelling with Modelica

The Modelica Association Modelica 2006, September 4th – 5th

the vapor. Water and steam properties are computed
from the IAPWS’97 formulations.

The turbine
The model is based on the Stodola law, which relates
the flow rate through the turbine to the vapor condi-
tions at the turbine inlet and outlet.

The valves
The model can represent the different types of valves
to be found in the PWR plant. It calculates the flow
rate through the valve as a function of the upstream
and downstream pressure, the upstream enthalpy and
the geometrical characteristics of the valve itself. It
can represent a single phase (liquid or vapor) or two-
phase flow. Special attention was given to the verifi-
cation of the continuity between the different flow
regimes. To that end, a non dimensional parameter
analysis was used.

Pump and motor
The centrifugal pump model is based on the charac-
teristic curves of the primary loop pumps in PWR
type plants. No mass accumulation inside the pump
is taken into account. Metal heat capacity and heat
exchange with the outside are neglected. The
mathematical model is based on the equation of
variation of internal energy of the system, taking into
account the mechanical power dissipation that heats
the water flowing through the pump. Algebraic equa-
tions are also used. The first one is the relation be-
tween the rotational kinetics energy of the pump and
the shaft speed, and the second is the energy balance
of the fluid between the inlet and the outlet of the
pump. The pump model is powered by an electric
motor model.

The steam generator (SG)
The steam generator is a key component for the op-
eration and the safety of the plant, because it is re-
sponsible for the cooling of the reactor.
The primary water flows into U-tubes and yields its
heat to the secondary water. The secondary water,
circulating outside the U-tubes, is liquid at the inlet
of the SG, then flows down the outer part of the SG
and starts to boil when reaching the bottom centre
part of the SG, until the top of the boiling section.
There, the ratio between the total flow rate and steam
flow rate (circulation rate) reaches a value of 4 to 5
at nominal power. This part of the SG is called the
riser, where the flow is mainly two-phase (a mixture
of water and steam). Moreover, due to the non ho-

mogeneity of heat exchange inside the riser, two re-
gions must be considered. When secondary water is
flowing outside the first half part of U-tubes with hot
primary water flowing in, the region is called “hot
leg”. When flowing outside the other half part of U-
tubes with cooler primary water flowing in, the re-
gions is called “cold leg”.
The water and steam mixture passes then through
separators where the two phases are separated in the
upper part of the SG. The liquid part goes back to the
SG feedwater, and the vapour part goes to the tur-
bine. This part of the SG is called the dome.
The SG model has two different parts: the riser and
the dome. Dedicated components have been devel-
oped because of the complexity of the flow, and the
specificity of the geometrical characteristics of this
type of heat exchanger.
The SG riser
The basic equations for this model are the same as
the ones in the fluid flow model in pipes component
described earlier. Options have been added to meet
the specific needs of the riser:

- possibility to take into account two types of
heat exchange for one cell of flow (one for
the “hot leg” region, one for the “cold leg
region”),

- implementation of a heat transfer correlation
adapted to two-phase boiling flow for heat
transfer coefficient (Thom correlation [3]).

The SG dome
As there are two separate regions in the SG dome
(water and vapor), the basic equations for this com-
ponent are the same as the ones modelling the pres-
surizer described earlier. The basic equations are the
same for each phase. Evaporation and condensation
flow rates are used as closure laws. Two equations
have been added to calculate the flow rate entering
the dome (pressure drop due to the separators be-
tween the riser and the dome), and the pressure at the
entrance of the SG (the altitude of the entrance is
lower than the dome, so there is a pressure drop due
to gravity).

Neutronic kinetics
The model calculates the neutronic power generated
in the fuel, as a function of the total reactivity of the
core due to the coolant density effect, the fuel Dop-
pler effect and the effect of boron concentration. It is
a point reactor kinetics balance equation that de-
scribes the evolution of a neutron population, includ-
ing the effect of precursors concentration leading to
delayed neutron sources.

130

A. Souyri, D. Bouskela, B. Pentori, N. Kerkar

The Modelica Association Modelica 2006, September 4th – 5th

3 Simulation

3.1 Validation of the model

The reference benchmark test for this model is a
house load operation. It is a high amplitude transient,
that occurs when the plant is suddenly disconnected
from the normal energy discharge network. This
transient is used to check both the global operation
of the reactor with the control system in operation,
and the physics taken into account in the model.
The transient starts with neutronic and thermal hy-
draulic parameters set at values corresponding to the
full power operating conditions of the plant. This
means that before starting the transient, a stable re-
gime must be reached at nominal conditions. To do
so, the initial state for the model is calculated by
(1) setting all the time derivatives to zero (simulation
must start from steady state) (2) performing inverse
calculations in order to adjust the parameter values to
start the simulation from the nominal conditions.
The transient scenario is the following:

- At t = 0, the plant is disconnected from the
grid by opening manually the electric circuit
breaker. The turbine control system then
closes the Turbine Admission Valve in about
1 minute. This leads to a vapor pressure rise,
and consequently the opening of the bypass
turbine condenser group valves.

- During the first minute, the nuclear power
decreases rapidly, because of the insertion of
the control rods in the core. During this
phase, the pressure, water level and tempera-
ture of the primary loop show sudden rises
due to the momentary deficit of the secon-
dary load, then the thermal power balance
between the primary and secondary loops is
restored through the steam generator.

- After about 1 minute, the temperature con-
trol system leads to a stabilization, then a
partial extraction of the temperature control
rods. This slows down the decreasing rate of
nuclear power, which stabilizes at about
30% of nominal power at the end of the tran-
sient. This value is reached in about 10 min-
utes, which is the time needed for the control
rods to hit their setpoint.

3.2 Results of dynamic simulation

In order to cover the whole transient, the simulation
time has been set at 2000 seconds.
The model has 7000 unknowns and 320 states.

The computing time is 600 seconds with a fixed time
step solver, about 3 times faster than real time. Cal-
culations were performed on a Pentium 4, 2.4 Ghz,
with 512 Mo of CPU memory.
In order to reach this computing time, adjustments of
phenomenological time parameters describing the
actuators dynamics have been necessary. Also, nu-
merical difficulties have been encountered due to the
computing of the control rods insertion. Rods are
inserted step by step. It is a discontinuous process
controlled with hysteresis that trigger frequent
threshold crossings. The number of resulting event
detections to be computed turned out to be very
large, leading to unacceptable computing time with
the variable time step solver DASSL. This is why
implicit fixed time step solver had to be used, in or-
der to decrease the computing time of state event
detection to acceptable level.
A previous validation of the model was made with
the LEDA code against on-site experiments and tran-
sient recordings. Since the physical modelling is very
close to the one implemented in the LEDA model,
validation of the equivalent Modelica model was
performed on the basis of the results obtained with
LEDA. The following figures show the evolution of
the main variables of the model versus time (in sec-
onds); dotted lines are for LEDA simulation results
and continuous lines for Modelica simulation results.
Figures 2 and 3 show the position of the control rods
in the core. The two groups are inserted first, then
the temperature control group is extracted again
when the nuclear power has sufficiently decreased,
trying to compensate for the primary loop mean tem-
perature decrease (see also Figure 4 and 6).

Figure 2: Position of Temperature control rods

131

Pressurized Water Reactor Modelling with Modelica

The Modelica Association Modelica 2006, September 4th – 5th

Figure 3: Position of Power control rods

Figure 4: Nuclear Power

Figure 5 shows the evolution of the position of the
bypass turbine condenser group valves, that open at
the beginning of the transient, just after the closing
of the turbine valve.

Figure 5: Position of by pass turbine condensers

group valves
As previously written, the primary loop pressure and
temperature exhibit a sharp rise at the start of the
transient, due to the deficit of secondary load. Fig-
ure 6 shows the primary loop mean temperature

peak. However, if the overall dynamic evolution is
correct, there is a noticeable difference between the
maximum temperature calculated with LEDA and
the one given by the Modelica model.

Figure 6: Primary loop mean temperature

The SG level is an important variable of the secon-
dary loop, which is taken into account in the control
and safety systems of the plant. The shrink and swell
phenomenon is a variation of the water level in a
two-phase fluid container, that occurs after a sudden
change in vapor pressure or flow rate entering the
container. This phenomenon is encountered in the
SG, and must therefore be described by the model.
As shown in Figure 7, the first shrink of water level
in the SG is simulated, followed by a swelling of the
water level before stabilization.

Figure 7: Water level in the Steam Generator

These results show that the dynamic response of the
plant process and control system modelled with
Modelica is quite satisfactory. However, a more
complete validation of the model is needed, with a
better (optimised) adjustment of the model parame-
ters.
There are noticeable differences between the Mode-
lica and the LEDA model. The LEDA model has a
1D neutronic model that takes into account the non

132

A. Souyri, D. Bouskela, B. Pentori, N. Kerkar

The Modelica Association Modelica 2006, September 4th – 5th

homogeneity of nuclear power in the core, whereas
the Modelica model has a simple point neutronic
model. Figure 2 and 3 also show differences between
the control rod positions, which may be due to dif-
ferences in the control rod calibrations.
These modelling approach differences could explain
the discrepancies observed in the simulation results
from the two models.

4 Conclusions

A full model of a PWR 1300 MWe plant has been
translated from LEDA to Modelica. It is a large dy-
namic model, that exhibits numerical difficulties due
to the large number of states, and the step-by-step
discontinuous operation of the control rods that lead
to frequent state events.
Computing time has been reduced to an acceptable
level by using an implicit fixed time step solver in-
stead of the variable time step solver DASSL.
It would probably be possible to reduce computing
time even more by a thorough analysis of the model
equations, but due to the large number of equations,
this is a difficult task. So further development of
Modelica based tools should address the methodol-
ogy issue of modelling large dynamic systems by
e.g. giving to the user the possibility to perform in-
cremental model development and analysis.
However, this study shows that it is possible to per-
form dynamic simulations of a PWR plant with
Modelica. The next step will be to test the coupling
of such a Modelica model with an existing non-
Modelica code (e.g. neutronics code).

References

[1] Avenas C. et al, “Quasi-2D Steam
Generator Modelling with Mode-
lica”, ISC’2004, Malaga, Spain.

[2] Patankar S.V., “Numerical Heat
Transfer and Fluid Flow”, Hemi-
sphere Publishing Corporation,
1980.

[3] Thom J.R.S., Walker W.M., Fallon
T.A., Reisting G.F.S., “Boiling in
subcooled water during flow up
heated tubes or annuli”, Proc. IME
(London), vol. 180, pp 226-246,
1955-56.

133

Pressurized Water Reactor Modelling with Modelica

The Modelica Association Modelica 2006, September 4th – 5th

134

A. Souyri, D. Bouskela, B. Pentori, N. Kerkar

The Modelica Association Modelica 2006, September 4th – 5th

Simulation of the Start-Up Procedure of a Parabolic Trough
Collector Field with Direct Solar Steam Generation

Tobias Hirsch Markus Eck
German Aerospace Center (DLR)

Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
tobias.hirsch@dlr.de, markus.eck@dlr.de

Abstract

Solar thermal power plants are one of the most inter-
esting options for renewable electricity production.
For a plant based on parabolic trough collectors, the
start-up procedure of the solar field in the morning
has to be well defined in order to start electricity
production as soon as possible. In this paper, the
Modelica language is used to describe the thermo-
hydraulic components of the collector field. A con-
trol system for the plant start-up is developed based
on the Modelica StateGraph library. With this simu-
lation model a number of studies are performed to
estimate the time consumption of the start-up proce-
dure.
Keywords: parabolic trough; solar; control

1 Introduction

Among the wide range of renewable energy tech-
nologies for electricity production, solar thermal
power plants are one of the economically most inter-
esting options. Direct solar irradiation is concen-
trated into a focal point or focal line by curved mir-
rors. Parabolic trough collectors use the high tem-
peratures to heat up a fluid in absorber tubes ar-
ranged in the focal line. The use of an organic oil as
a heat transfer fluid is state of the art. Benefits are
expected by directly evaporating and superheating
water in the absorber tubes (direct solar steam gen-
eration, DISS) [1]. For the implementation of a first
plant, the aspect of start-up and shut-down has to be
solved. While the power block itself might operate
through the night by using a thermal energy storage
or an auxiliary fossil boiler, the solar field cools
down at night.
As long as the solar field has not reached its operat-
ing point in terms of pressure and temperature, the
steam turbine can not be started. Table 1 illustrates
the impact of the start-up procedure duration on the
levelized costs of electricity. If the procedure can be

shortened by 1 hour a net gain of 7.9 % will be ob-
tained.
This paper presents simulation studies covering the
topic of solar field start-up procedures for parabolic
trough fields with direct steam generation. Especially
the two-phase flow conditions inside the absorber
tubes necessitate the analysis with the help of de-
tailed numerical simulations. Having a simulation
tool at hand, different start-up strategies can be
tested and evaluated to come to an optimal solution.
The Modelica language is used for the study since
combination of hydraulic, solar and control compo-
nents can easily be achieved. Some central aspects of
the model and the results of the numerical simulation
will be presented in the following.

2 General structure of the model

To cover the central aspects of the simulation task,
the model is split into two parts,

- the plant layer and
- the control layer.

In the plant layer all hardware components like
pipes, absorber tubes, tanks and junctions are repre-
sented. The control layer incorporates all elements of
the control system, i.e. controllers, parameter defini-
tions, set-point tables and the process sequence con-
trol. The control layer is defined as
model StartUp_Controller_Var1
 …
end StartUp_Controller_Var1;

Table 1: Impact of plant start-up time on the costs of
electricity generation.

Start-up time 0 min 30 min 60 min
Relative costs 100.0 % 103.5 % 107.9 %

135

Simulation of the Start-Up Procedure of a Parabolic Trough Collector Field with Direct Solar Steam Generation

The Modelica Association Modelica 2006, September 4th – 5th

An instance of this model named Control is cre-
ated in the plant layer.
model plant_layer_design_01
 StartUp_Controller_Var1 Control;
end plant_layer_design_01;

The exchange of data between the two layers is en-
abled by a data bus which is defined as a connector
element.
connector Bus
 Real Signal_Real[n_Signals_Real];
 parameter String[:] Names_Real =
 fill("n.a.",n_Signals_Real);
 parameter Integer n_Signals_Real =
 size(Names_Real,1);
end Bus;

The array Signal_Real hosts the data, while the
parameter Names_Real allows the specification of
names for the single data channels. An instance of
the connector class is defined as an inner variable in
the plant layer and as an outer variable in the control
layer. In Dymola, the size of the array and the de-
scriptions can easily be defined via the graphical user
interface. For connecting real signals to the bus, a
port is defined as:
model BusPort_Real_In

 outer DissDyn.Signal.Bus Bus;
 Modelica.Blocks.Interfaces.
 RealInput u;
 parameter Integer SignalNumber
 (min=1, max=Bus.n_Signals_Real);

equation
 u=Bus.Signal_Real[SignalNumber];
end BusPort_Real_In;
The parameter SignalNumber identifies the bus
channel that should be connected to the signal
plugged to input u. To graphically distinguish be-
tween ports, that assign a signal to a bus variable and
ports that readout a bus variable, two port definitions
Real_In 1 and Real_Out 1 are used.
In parallel to the real bus variables, Integer and Boo-
lean variables are included in the bus in the same
manner. The graphical annotation of the signal num-
ber is helpful for the setting-up and checking of the
model.

3 Plant layer

The central element of the plant layer is the hydrau-
lic circuit composed of buffer tank, feedwater
header, absorber tubes and live steam header. Fig-
ure 1 illustrates the arrangement of the components
for the reference configuration of a 5 MWel solar
field [3]. From the seven parallel rows of the plant
layout, only one is modeled in the simulation to-
gether with mass flow multipliers at the inlets and
outlets. Between the evaporation and superheating
section a phase separator is arranged to allow recir-
culation operation. The water separated from the
steam is transported by means of a drainage line to
the buffer tank from where it is pumped back to the
inlet of the field. During normal operation, the con-
nection from live steam header outlet to the buffer

pre-heating and evaporation

x7

:7 x7

dr
ai

na
ge

 li
ne

fe
ed

 w
at

er
 h

ea
de

r

liv
e s

te
am

 h
ea

de
r

feed
water

auxiliary
boiler

cooling

buffer
tank

steam injection

to the power block

buffer overflow

superheating

phase
separator

Figure 1: diagram of the plant layer

136

T. Hirsch, M. Eck

The Modelica Association Modelica 2006, September 4th – 5th

tank is closed so that the superheated steam directly
flows to the power block. During the start-up phase
this connecting line is opened and the drainage line
closed. This allows recirculation of water over the
whole system (global recirculation). The recirculated
water is mixed with fresh feed water and, if neces-
sary, with hot water produced by an auxiliary boiler.
Another input line for cold water is added to cool the
recirculation pump and thus to avoid cavitation in
this device. The buffer tank is designed to hold water
and steam at saturation conditions. There is one drain
for the water at the bottom and one for steam at the
top of the tank. Table 2 gives the geometrical pa-
rameters for the components used in this study.
The components models are taken from the DissDyn
library developed at DLR [2]. For all pipe compo-
nents, a one-dimensional discretization is used with
the state variables pressure, specific enthalpy and
wall temperature in each control volume. As bound-
ary conditions, mass flow and specific enthalpy have
to be provided at the inlet and pressure at the outlet.
For the plant configuration, this means that a time
dependent pressure boundary condition is required at
the outlet of the live steam header. In the first part of
the start-up procedure the flow from the field is sent
to the power block. In the later stage of global recir-
culation, the directional control valve is switched to
lead the flow into the buffer tank. For the first case, a
constant pressure can be used as a boundary condi-
tion. For the second case, the boundary condition is
directly coupled to the pressure in the buffer tank. A
special component is designed to switch the bound-
ary condition from a constant value to the pressure in
the tank by means of a ramp. For the recirculation
pump it is assumed that the power always fits to the
pressure lift over the pump.
From the buffer tank steam can be extracted to the
power block. If the buffer pressure falls below a
given limit, steam from the field outlet can be in-

jected for stabilization. To keep the buffer liquid
level within the allowed limits, water can be taken
off into the buffer overflow line which leads to the
power block or to the inlet of the drainage line.
All valves shown in the plant diagram are imple-
mented as mass flow definitions. This approach
avoids the high effort of using valve characteristics
and the corresponding controllers.

4 Control layer

The start-up procedure is treated as a directed se-
quence of processes which themselves consist of a
sequence of sub-processes. To model this structure,
the Modelica StateGraph library is applied where
each state element represents the corresponding
process or sub-process. A state can either be active
or inactive. A state element and its successor in the
chain are linked by a transition. In case the state is
active and its successor is inactive, the transition is
enabled. This means, that the transition will fire as
soon as a Boolean condition becomes true. After this
event, the successor is active and the state has fallen
back to inactive. Providing the first state with the
active attribute this attribute will be passed through
the whole sequence of states, and indicates which
process in the system is running at each moment.
The transitions between the states are linked to Boo-
lean criteria described by system variables and
switching conditions. A possible transition might be
that a certain temperature or pressure is reached in
the system. Figure 2 shows a screenshot of the con-
trol layer with the 9 main processes passed through
during the simulation from top to bottom. Some of
the main processes are divided into sub-processes by
means of a parallel element. At this element, the
path, and with it the active attribute, diverges into
two branches where one of them exists of just a sin-
gle state and the other is composed of a sequence of
states. The transition that follows the parallel ele-
ment, becomes enabled not before the final states in
each branch both become active. This structure is
chosen, since some of the processes require a num-
ber of minor steps that have to be passed before the
process itself is finished. For analysis of the simula-
tion results it is useful to define a subprocess identi-
fier that represents the actual system state in terms of
a numerical value

][].[iweightactiveistateS
i

×= ∑ ,

with the weight being an array with monotonically
increasing values.

Table 2: Geometrical parameters of the plant com-
ponents, length l, inner tube diameter di, outer tube
diameter da, number of elements for spatial discre-
tization n.
 l di da n
 [m] [mm] [mm] [-]
feedwater header 210 60 70 12
evaporator 812 55 70 61
superheater 200 55 70 17
live steam header 210 100 120 12
drainage line 350 100 110 10
buffer tank 10.2 1000 1050 1

137

Simulation of the Start-Up Procedure of a Parabolic Trough Collector Field with Direct Solar Steam Generation

The Modelica Association Modelica 2006, September 4th – 5th

While the described structure helps to define the ac-
tual state and its chronological sequence, the input
signals for the plant are generated in a number of
control systems. The following elements are used to
react on a change in the system state:

- On/Off switch that is triggered by two input
signals “switch to on” and “switch to off”

- Switch that chooses between two real inputs
depending on the status of the Boolean input
signal

- Set-point table that selects the output value
from a set of Boolean expressions and their
dedicated real values

- Real expressions incorporating Boolean ex-
pressions that checks if one of the assigned
states is active.

These components are completed by control ele-
ments that do not react on the system state itself but
on characteristic variables of the systems:

- Hysteresis and min/max elements that check
if real input signals extend given limits

- Proportional-integral controllers
- Algebraic expressions depending on a num-

ber of input variables
Without going into detail on the individual control
loops table 3 summarizes the main control activities
and the type of control applied for this task.

5 Simulation results

The developed start-up strategy will be described
together with the simulation results. Nevertheless,
some aspects like the boundary conditions should be
treated beforehand.

5.1 Boundary conditions

It is assumed that from the shut-down procedure of
the last evening warm water is stored in the feed wa-
ter tank (6 bar, 154°C, 20 m3) and in the buffer tank
(60 bar, 275°C, 6.4 m3). This water can be used to
pre-heat the solar field. An auxiliary boiler is avail-
able that generates water or steam at different pres-
sure levels. In the morning, the temperature in the
field has fallen to 30°C. The whole volume in the
field, except the buffer tank, is full of water.

5.2 Simulation of the start-up procedure

Figure 3 shows the results of the start-up simulation.
At time t=0 the collectors are focused. Up to this
point, the field is pre-heated. The collectors are fo

Figure 2: Screenshot of the control layer composed
of state, transition and parallel elements
from the StateGraph library.

Table 3: Main control tasks and types of control
element used for them

feed water mass flow PI-controller

algebraic expression
on/off switch
set-point table

feed water temperature algebraic expression
set-point table

recirculation mass flow set-point table
buffer pressure PI-controller
buffer overflow hysteresis element
recirculation cooling algebraic expression
auxiliary power algebraic expression
collector focusing on/off switch
separator drainage on/off switch

138

T. Hirsch, M. Eck

The Modelica Association Modelica 2006, September 4th – 5th

Figure 3: Start-up procedure in terms of important system variables.

139

Simulation of the Start-Up Procedure of a Parabolic Trough Collector Field with Direct Solar Steam Generation

The Modelica Association Modelica 2006, September 4th – 5th

cused at a solar altitude of 10° (at time t=0 min). Up
to an altitude of 20° (at time t=45 min) shading be-
tween collectors occurs. The direct solar irradiation
signal is corrected by these two effects that reduce
the effective solar input on the collectors. The impact
of the shading is illustrated in figure 4.
Pre-heating the field with warm water from the
feed water tank
As a first step, warm water from the feed water tank
is send into the field (t=-42 min). Form the tempera-
ture signal it can be seen that the pre-heating does
not reach the end of the field when the feed water
tank is completely emptied (at t=-27 min). The pres-
sure is remained on a low level since evaporation in
the field should start as early as possible. The water
pushed out from the field is directed to the power
block.
Pre-heating the field with hot water from the
buffer tank
The water from the buffer tank is mixed with addi-
tional cold water to bring the temperature below the
saturation temperature in the field. This is necessary
to avoid evaporation in the feed water header which
would otherwise prevent a controlled distribution of
the water on the parallel channels. The flow into the
field is fixed at 10.5 kg/s from which about 4.5 kg/s
originate from the buffer tank. At t=-17 min the
buffer tank falls below its minimum level but the
temperature at the field outlet is still low. Redirect-
ing the flow from the field outlet into the buffer tank
would lead to a pressure decrease in the tank. For
this reason, the pre-heating of the field is continued
with water from the auxiliary boiler (named backup
boiler in the figure) until the field outlet temperature
reaches 150°C. This condition becomes true at
t=-3 min.
Global recirculation without solar input
The connection between field outlet and buffer tank
is opened and recirculation over the buffer tank is
started. The pressure signals from buffer tank and
field inlet are now linked. Since water of 150°C is
mixed with the water of 165°C in the buffer tank, a
slight temperature drop and, in the consequence,
pressure drop in the buffer occurs.
Global recirculation with solar input
After 3 min of waiting time, the collectors are fo-
cused and solar heat input into the system starts. No
steam is extracted from the system so the pressure in
the field continuously rises. When the first steam is
produced in the absorber tubes, large amounts of wa-
ter are displaced and send to the buffer tank. Since
outflow of the tank is nearly constant, the liquid level
rises and finally triggers additional water extraction

from the tank. The maximum water temperature at
the field inlet is set to a value of 200°C that corre-
sponds to the nominal operating conditions. From a
tank pressure of 16 bar on, the recirculated water
exceeds this temperature limit. For maintaining the
desired temperature, cold feed water is mixed with
the hot water from the buffer tank. The mass flow of
recirculated water is reduced to maintain a constant
total flow. This effect can be clearly seen from the
feed water and recirculation water signals in figure 4.
Steam extraction to the power block
Having reached the nominal operation pressure
of 70 bar, saturated steam is extracted from the
buffer tank to keep the pressure constant. The auto-
matic feed water control is activated although its
output does not yet reach the value provided by the
automatic cooling of the inlet water.
Switching from global to local recirculation
As soon as the drainage line is pre-heated to a tem-
perature of 250°C and the steam extraction from the
buffer tank reaches 3.5 kg/s, the separator drainage is
opened and water from the drainage line is send to
the buffer tank. The inlet of the superheating section
falls dry and the field outlet temperature rises. At a
steam temperature of 350°C, the connection from the
field outlet to the buffer tank is closed and the steam
is directly sent to the power block. For the operation
of the drainage system, it is now important to main-
tain the pressure in the buffer tank constant. Parallel
to the steam extraction valve, a steam injection is
included to prevent the pressure from falling below
the limit.
End of the start-up procedure
When the steam temperature reaches 400°C the start-
up procedure is considered as completed and plant

 time [min]

Figure 4: Impact of shading (- -) between two paral-
lel collector rows on the effective direct irradiation
compared to a stand-alone collector (---).

140

T. Hirsch, M. Eck

The Modelica Association Modelica 2006, September 4th – 5th

control can switch to nominal operation mode. This
point is reached 44 min after focusing the collectors.

5.3 Solar-only start-up

If hot water for pre-heating the field is not available
in the morning, the field has to be started in solar-
only mode. Figure 5 shows the simulation results. In
addition, no auxiliary boiler is used in this configura-
tion. The start-up time from focusing the collectors
is 55 min that means 11 min longer than with pre-
heating. On the first glance, this seams to be not
much. From the pressure increase it can be seen that
the initial time lag at 7 bar pressure is 20 min which
reduces to a value of 13 min during the following
process. Since the process in solar only mode takes
place later, the solar input is already on a higher
level and more heat is provided into the system. Hav-
ing reached the 70 bar, it takes 45 s in the solar-only
mode until the steam production meets 3.5 kg/s and
the switching to local recirculation is started. In con-
trast to that in the pre-heating version, the same pro-
cedure takes 252 s, since heat input into the system is
significantly less.

5.4 Start-up at low irradiation

A reduced level of solar irradiation can e.g. be
caused by haze in the atmosphere. To estimate the
impact on the start-up procedure simulations are per-
formed with a modified parameter in the solar irra-
diation model that represents a turbid instead of a
clear sky atmosphere. From figure 6 it can be seen
that the start-up time is increased by 12 min. The
procedure itself stays similar to the original configu-
ration.

6 Conclusions

The developed Modelica simulation model has
proven its capability to simulate complex fluid-
dynamic processes like the ones taking place during
the start-up of a parabolic trough solar power plant.
The interdisciplinary approach of the Modelica lan-
guage is used to combine the thermo-hydraulic com-

ponents with a control system. Simulation runs show
that a start-up time of about 55 min is necessary to
reach nominal operation conditions. The long dura-
tion is mainly attributed to the low solar input after
sunrise which results from the shading between two
parallel collector rows. The start-up can be acceler-
ated by 13 min when pre-heating the field with water
stored in the feed water tank and in the buffer tank
from the last evenings shut-down. The developed
control concept is stable even if a reduce level of
solar irradiation is assumed. Based on the cost esti-
mate given in the introduction, the reduction
by 13 min would lead to 2% lower electricity costs.
Although this number is not high further potential is
expected by improving the start-up strategy.

Acknowledgements

The authors would like to thank the German Ministry
for the Environment, Nature Conservation and Nu-
clear Safety for the financial support given to the
SOLDI project under contract No. 16UM0024.

References

[1] Eck M., Zarza E., Eickhoff M., Rheinländer
J., Valenzuela L. Applied research concern-
ing the direct steam generation in parabolic
troughs. Solar Energy, Vol. 74, 2003,
pp. 341-351

[2] Hirsch T., Eck M., Steinmann W.-D. Simula-
tion of transient two-phase flow in para-
bolic trough collectors using Modelica. In:
Proceedings of the 4th Int. Modelica Confer-
ence, Hamburg, Germany, 7.-8. March 2005,
pp. 403-412.

[3] Zarza E., González L., Rojas M.E., Caballero
J., Rueda F.: Conceptual design of a 5 MWe
Direct Steam Generation System. In: Pro-
ceedings of the 12th Solar Paces Interna-
tional Symposium, Oaxaca, Mexico, 2004.

141

Simulation of the Start-Up Procedure of a Parabolic Trough Collector Field with Direct Solar Steam Generation

The Modelica Association Modelica 2006, September 4th – 5th

Figure 5: Start-up procedure with pre-heating of the field (---) and solar only start-up procedure (- -)

142

T. Hirsch, M. Eck

The Modelica Association Modelica 2006, September 4th – 5th

Figure 6: Start-up procedure with clear (---) and turbid (- -) atmosphere.

143

Simulation of the Start-Up Procedure of a Parabolic Trough Collector Field with Direct Solar Steam Generation

The Modelica Association Modelica 2006, September 4th – 5th

144

T. Hirsch, M. Eck

 Session 2b

The Modelica Association Modelica 2006, September 4th – 5th 145

Session 2b

Automotive Applications 2

Session 2b

The Modelica Association Modelica 2006, September 4th – 5th 146

The Modelica Association Modelica 2006, September 4th – 5th

Modeling the Dynamics of Vehicle Fuel Systems
John J. Batteh Patrick J. Kenny

Ford Motor Company, Research and Advanced Engineering
{jbatteh, pkenny}@ford.com

Abstract

This paper describes the development and ap-
plication of a multi-domain, physical model in Mod-
elica for the simulation of vehicle fuel systems. The
fuel system model includes components from the
electrical, mechanical, and hydraulic domains to rep-
resent the physical components in the vehicle fuel
system. A brief overview of the modeling back-
ground and formulation is provided. Following a
discussion of the model calibration and refinement
effort, sample simulations are shown with the full
system model for various transient tests. Additional
applications and usage scenarios of the fuel system
model are briefly discussed.
Keywords: hydraulics; mechanics; powertrain

1 Introduction

Drivability, emissions, and fuel economy, par-
ticularly during transient conditions, are the main
drivers for the design requirements cascaded to vehi-
cle subsystems. As gasoline prices become more
volatile, vehicle fuel economy has become an in-
creasingly important customer attribute. Fuel econ-
omy contributes strongly to customer satisfaction
and perceived quality relative to the competition.
Achieving fuel economy targets while also meeting
increasingly-stringent emissions regulations [1]
poses a significant engineering challenge to auto
manufacturers. While aggregate fuel economy is a
function of many factors, such as engine fuel con-
sumption, vehicle weight, and the fuel control strat-
egy, the basic components of the vehicle fuel system
are fundamental pieces in the overall fuel economy
picture.

In an effort to improve vehicle fuel economy,
there is an increased focus on the design and behav-
ior of the vehicle fuel system components. While the
overall design of the fuel system must meet certain
steady-state requirements for fueling capacity, etc.,
transient operation is key for acceptable fueling sys-
tem dynamic performance, emissions, and fuel econ-

omy. In particular, the majority of real world driving
is transient as are the drive cycles on which fuel
economy and emissions are measured.

(a) EPA Metro

(b) EPA Highway

(c) US06

Figure 1. Common US drive cycles

Figure 1 shows the highly transient nature of
three common US drive cycles: EPA Metro, EPA
Highway, and US06. The EPA tests are used for
emissions certification while the US06 is used to

147

Modeling the Dynamics of Vehicle Fuel Systems

The Modelica Association Modelica 2006, September 4th – 5th

represent a more aggressive driving style with higher
speeds. Similar transient characteristics are found in
the regulatory New European Drive Cycle (NEDC)
and Japanese drive cycles. The speed traces for
these and other drive cycles can be obtained from
[2].

While customer and regulatory drive cycles
point to the importance of transient performance,
balancing steady-state and transient design consid-
erations at the fuel system level is a nontrivial task.
Cascaded requirements from the system and subsys-
tem level lead to the design of the individual compo-
nents, such as motors, pumps, and valves, but often
the only mechanism to test the transient response of
the system is late in the product development cycle
when prototype hardware is available. These physi-
cal prototypes are expensive and may have long lead
times to produce. Information obtained from physi-
cal testing may be obtained too late in the design
cycle to allow an opportunity for design changes or
iterative improvement. Rather than rely on the test-
ing of physical prototypes, it is clearly desirable to
develop multi-domain physical models to simulate
the transient response of the system upstream in the
design process where design changes are most easily
accommodated.

This paper describes the development and ap-
plication of a multi-domain physical model for a ve-
hicle fuel system. Following some background in-
formation on this modeling effort, an overview of the
physical components from the electrical, mechanical,
and hydraulic domains is given. The processes for
calibrating the component models from bench data
and some model sensitivity results are shown. Fur-
thermore, application and validation of the calibrated
model are described including some model im-
provements to better match the dynamic response of
the experimental data. Following the simulation re-
sults, some potential usage scenarios of the fuel sys-
tem model are presented.

2 Fuel System Modeling

Modeling the dynamics of a vehicle fuel system
requires physical models that span multiple domains.
Figure 2 shows a generic schematic of a vehicle fuel
system [3]. The fundamental components of the sys-
tem are the fuel tank, fuel motor and pump, fuel
lines, injector, various orifices such as a fuel filter,
and associated regulation valves. A basic, lumped
representation of these components requires ele-
ments in the mechanical, electrical, and hydraulic
domains. This section provides some background

information regarding this modeling effort and gives
an overview of the component models that comprise
a typical vehicle fuel system. The background in-
formation provides additional anecdotal evidence of
the benefits of component-based physical modeling.

Figure 2. Schematic of a vehicle fuel system [3]

2.1 Background

At its most basic level, modeling involves the
mathematical description of the physical behavior.
However, great care must be taken in the abstraction
of the physical system into its mathematic represen-
tation as relevant physical insight can be lost. While
Modelica has the advantage of component-based
physical models, other approaches that require direct
generation of the underlying mathematical equations
for use in equation-based solvers can be problematic.
To underscore this point, an example relevant to fuel
system modeling is presented.

The in-tank fuel pump, shown in the upper left
hand side of Figure 2, is a fundamental component of
the vehicle fuel system. The fuel pump is typically
an integrated motor and pump assembly. The as-
sembly is often characterized by steady-state data
consisting of the voltage input to the motor, current
in the motor, pressure difference across the fuel
pump, pump speed, and pump flow rate. A common
approach when using steady-state data to formulate a
transient model is to establish a regression equation
with unknown coefficients, fit the coefficients with
the data, and then establish a semi-empirical tran-
sient form of the regression equation using applica-
ble conservation laws. This technique when applied
to the motor yields a semi-empirical formulation for

148

J.J. Batteh, P.J. Kenny

The Modelica Association Modelica 2006, September 4th – 5th

Kirchhoff's current law (with some non-standard
units):

 RPMaIaaV
dt
dIL o 21 −−−= (1)

where L is the motor inductance, V is the applied
voltage to the motor, I is the current in the motor,
and RPM is the motor shaft speed. A semi-empirical
conservation of angular momentum for the motor
shaft yields the following equation:

RPM
QdPc

RPM
VIc

RPMcRPMcIcc
dt

dRPMJ o

54

2
321

−

++++=
 (2)

where J is the shaft inertia, Q is the volumetric flow
through the pump, and dP is the pressure difference
across the pump. Those familiar with the modeling
of DC motors will recognize some of the terms in the
two equations above: the c1 term represents the
torque input from the motor, the c5 term is the work
done on the fluid, and the c2, c3, and c4 terms are
meant to account for losses in the system. While it is
certainly possible to generate values for the a and c
coefficients from the pump steady-state data, this
approach has severe flaws and can result in unstable
behavior. For example, this approach can result in
inconsistent formulations since the power supplied
by the electrical system is related to the torque input
to the shaft (i.e. a2 and c1 are not independent). Fur-
thermore, losses in the motor represented by the c4
term should be related to the voltage drop across the
motor (i.e. the a2 term) not the voltage input to the
system. Using the steady-state regression coeffi-
cients based on the formulation above, the transient
equations implemented in SIMULINK [4] proved
unstable for obvious reasons. Unfortunately, these
types of modeling inconsistencies are extremely easy
to overlook when formulating the underlying system
conservation equations directly rather than modeling
the physical behavior of the individual components.

Given the issues with generating a consistent,
stable model for the entire system, a more fundamen-
tal, component-based approach was started using
Modelica. This approach, while still using regres-
sions to describe some physical behavior, ultimately
proved more robust by sharply focusing the model-
ing on the physical behavior of the individual com-
ponents. An overview of the Modelica models is
given in the sections that follow.

2.2 Fuel Pump Assembly

The model for the fuel pump assembly is shown
in Figure 3. It consists of a model of the electric mo-

tor with components from Modelica Standard
Electrical library and the fuel pump connected
by a shaft. The dynamics of this model are similar to
those given by Eqs, (1-2) but with a consistent for-
mulation. The regression coefficients generated for
Eq. (1) above were used to specify the parameters for
the electrical system.

Figure 3. Modelica model of fuel pump assembly

A simple, efficiency-based formulation is used

for modeling the pump to account for the various
losses such as friction, leakage, etc.:

shaft

fluid
pump τ

τ
η = (3)

where τshaft is the pump shaft torque and τfluid is the
torque imparted to the fluid. At steady-state, the
shaft torque is equal to the motor torque. Substitut-
ing the definitions for the shaft torque and the torque
imparted on the fluid yields the following equation
for the steady-state efficiency:

IV

QdP

m
pump =η (4)

where Vm is the steady-state voltage drop across the
emf device and can be calculated from the electrical
system model by applying the voltage and shaft
speed from the steady-state data. In keeping with the
component-based approach, the pump efficiency is
regressed from the steady-state data based on the
pump operating conditions. A sample functional
form for the efficiency equation is as follows:

(5) 2
4

2
32

2
1 RPMdQdQddPddopump ++++=η

Note that this equation is semi-empirical and could
be posed with different or additional terms based on
the pump operating conditions and available data.

The results from a regression to the pump data
are shown in Figure 4 and agree quite well with the
experimental data. The R2 value of the regression

149

Modeling the Dynamics of Vehicle Fuel Systems

The Modelica Association Modelica 2006, September 4th – 5th

can be increased semi-arbitrarily by including addi-
tional terms in the regression equation. The flowrate
through the pump was also regressed from the
steady-state experimental data using the following
functional form:
 (6) dPbRPMbbQ o 21 ++=
The sample pump efficiency map in Figure 5 shows
that the efficiency is stable (i.e. between 0 and
100%) along the pump operating line shown in blue.
Note that while negative efficiencies from Eq. (5) are
shown in Figure 5, these regions do not intersect the
pump operating line; thus, the pump would never
encounter negative efficiencies during simulations.
The stability of this formulation was confirmed over
the entire pump operating range (i.e. RPM and dP).

y = 0.9588x + 0.9221
R2 = 0.9518

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Pump Efficiency (data) [%]

Pu
m

p
Ef

fic
ie

nc
y

(re
gr

es
si

on
) [

%
]

Figure 4. Sample regression for pump efficiency

Figure 5. Sample pump efficiency map

2.3 Hydraulics

A BasicHydraulics library was developed
consisting of accumulators, orifices, pumps, reser-
voirs, and various valves and flow devices for use in

hydraulics modeling. This library is targeted for
casual Modelica users and thus intentionally did not
employ advanced Modelica concepts such as the
MediumModel. It employs a standard hydraulic
formulation similar to the Modelica HyLib library
[5] but is targeted at novice users. Given previous
work in hydraulics modeling [6], it should be possi-
ble to develop a library of this scope from the forth-
coming Modelica Fluid library [7]. A few of the
more interesting components in the vehicle fuel sys-
tem will be highlighted.

Figure 6 shows an excerpt of the code from the
accumulator model including the effects of aeration
in the liquid. In lieu of the MediumModel a pa-
rameter record is used for the fluid properties.
The model includes the standard conservation equa-
tion:

 ∑= Q
dt
dPV

β
 (7)

where the effective β is calculated from the liquid
compressibility and the mole fraction of gas in the
liquid, ygas. Adjustments to these parameters can also
be used to account for flexibility in the lines and af-
fect the overall system stiffness as will be shown in
subsequent sections.

Figure 6. Code excerpt from the accumulator model

The vehicle fuel system commonly contains

valves used for pressure regulation. Figure 7 shows
the model used for the valves. This model combines
elements from the hydraulic and mechanical domains
and consists of a pintle mass between two stops. The
pintle experiences a force from the hydraulic pres-
sure and opposing preload and spring forces. The
dynamic pintle position is used for the variable flow
area calculation in the orifice. The mechanical com-
ponents used in the valve are from the Modelica
Translational library.

150

J.J. Batteh, P.J. Kenny

The Modelica Association Modelica 2006, September 4th – 5th

Figure 7. Valve model

A simple model is used for the vehicle fuel in-

jector. The model, shown in Figure 8, contains a
table similar to that in the vehicle control system.
Given the commanded pulse width and pressure dif-
ference across the injector, the fuel injection mass is
calculated and converted into a volumetric flowrate
based on the engine speed. Consequently, the dy-
namic pressure upstream of the injector is extremely
important as it has a direct impact on the quantity of
fuel injected.

(a) Icon (a) Diagram
Figure 8. Injector model

2.4 Vehicle Fuel System

Figure 9 shows the vehicle fuel system model.
The system model contains the fuel pump assembly
shown in Figure 3 in conjunction with hydraulic
components for the various lumped volumes in the
system, fuel tank, fuel filter, injector, and valves.
The single injector model accounts for the cycle-
averaged fueling to the entire engine rather than in-
dividual pulses for the injector in each cylinder. This
formulation is consistent with the overall model for-
mulation and number of lumped volumes considered;
the pulsed flow formulation might be required in
other applications requiring higher fidelity represen-
tations of pressure pulsations in the system (i.e. fuel
rail dynamics).

The primary inputs to the model are those pro-
vided by the control system, namely the voltage in-
put to the electrical system, the engine speed, and the
desired amount of fuel to be injected as determined
by the fuel pulse width from the engine controller.

Figure 9. Vehicle fuel system model

3 Results

Prior to the simulation of the fuel system model
in Figure 9, the relevant physical system parameters
must be provided. These parameters include vol-
umes of the various accumulators; flow areas and
discharge coefficients of the various orifices; pintle
mass, maximum travel, preload force, and spring
constant in the various valves; and bulk properties of
the fuel including fuel density and an estimate of the
mole fraction of air dissolved in the fuel. While
many of these parameters can be obtained from de-
tailed system specifications, some of the parameters
require calibration from experimental data. The fol-
lowing section gives an overview of the calibration
process for a few selected component models. The
simulation results in the following sections were ob-
tained using Dymola [8].

3.1 Model Calibration

Another area where component-based modeling
has a distinct advantage over equation-based system
models is in model calibration and validation. Ef-
forts to calibrate model behavior at the system level
typically prove frustrating and often lead to unphysi-
cal calibrations due to multiple calibration knobs and
dynamic interactions between components. Compo-
nent-based physical modeling is ideally suited for
calibration on the component or sub-model since
unique, isolated test models can be easily constructed
to replicate experimental bench tests.

Due to the timing of the vehicle fuel system
model development effort, the only data that was
available for model calibration resulted from a bench
test of the entire fuel system. Careful extraction of

151

Modeling the Dynamics of Vehicle Fuel Systems

The Modelica Association Modelica 2006, September 4th – 5th

the relevant experimental data and construction of
unique test models allowed both the steady-state and
transient calibration of vital fuel system components.

 While the regression provided in Eq. (6) pro-
vides good overall agreement with the pump data
provided, there can be small differences that arise in
steady-state values due to point-by-point regression
accuracy and prototype hardware variation. To dial
in the steady-state pump flow calculation at a given
operating condition, the test model in Figure 10 was
constructed. This model prescribes the pump speed
and pressure difference from experimental data and
allows for precise calibration of a flow multiplier to
match the steady-state experimental data. A small
adjustment in the flowrate gives the results shown
Figure 11 where good steady-state agreement is
achieved on each side of the transient test. It should
be emphasized that this test was used to calibrate
steady-state behavior, and thus the transient differ-
ences between the model and the data should be ig-
nored.

Figure 10. Pump flow calibration model

Figure 11. Pump flow calibration (steady-state) results

Figure 12 shows a model used for steady-state
calibration of the flow in a valve as shown in Figure
7. In this case, the valve flowrate is not directly
measured so the flow characteristics of the valve are
calibrated such that the steady-state pressure up-

stream of the valve matches the experimental data
given the flowrate upstream of the volume and the
pressure downstream of the valve. Again, slight
tweaks to the valve parameters, namely the pre-load
force and the flow area, yield significant improve-
ments in the steady-state behavior shown in Figure
13.

Figure 12. Valve calibration model

Model
P

re
ss

ur
e

[p
si

g]

Original

Exp. data

P
re

ss
ur

e
[p

si
g]

Calibrated
Model

Fl
ow

ra
te

 [m
3 /s

]

Exp. data Time [s]

Figure 13. Valve flow calibration (steady-state) results

Original
3.2 Model Sensitivity

Given the initial calibration of the components,
the system in Figure 9 was simulated to understand
the fuel system model sensitivities to estimated pa-
rameters. One key parameter in hydraulics model-
ing is the effective compressibility β in Eq. (7). This
parameter accounts for the compressibility of the
fluid, lines, and gas dissolved in the liquid. Figure
14 shows the effect of changing the system com-
pressibility via the amount of air dissolved in the
fuel. Decreasing the amount of air dissolved in the
fuel results in a faster pressure response in the vol-
ume. It is not surprising that this value, which is dif-
ficult to estimate and often used as a model calibra-
tion factor, has a profound impact on the system
stiffness as shown in the rate of pressure rise up-
stream of the injector.

Fl
ow

ra
te

 [m
3 /s

]

Model
Exp. data

Calibrated

Time [s]

152

J.J. Batteh, P.J. Kenny

The Modelica Association Modelica 2006, September 4th – 5th

Exp. data Exp. data

P
re

ss
ur

e
[p

si
g]

Decreasing ygas

P
re

ss
ur

e
[p

si
g]

Model

 Time [s]

Figure 14. Sensitivity to effective compressibility

Figure 15 shows the effect of changing the size

of the lumped volume upstream of the injector. As
expected, reducing the size of the volume also in-
creases the rate of pressure rise but, in this simula-
tion, does not affect the response as significantly as
changing the amount of dissolved gas in the liquid.
It should be noted that system volumes are not typi-
cally considered adjustable parameters as the values
are available from system/component design specifi-
cations. However, the sensitivity was explored here
as there was considerable uncertainty in the differ-
ences between the experimental setup and the vehi-
cle configuration from which the system data was
obtained.

Figure 15. Sensitivity to volume size

3.3 Revised Model and Simulations

Following the sub-model calibration adjust-
ments, the calibrated model was used in transient
simulations. Figure 16 shows an overall comparison
between the experimental data and the simulation for
the pressure upstream of the injector. While the
model captures the steady-state behavior reasonably
well, there are certainly some differences in the tran-
sient details, namely the rate of pressure rise and the
oscillatory response following the transient.

 Time [s]

Figure 16. Transient simulations

Given the results from the model sensitivity
study and these initial transient tests, the vehicle fuel
system model was modified slightly to more accu-
rately represent the dynamic response exhibited in
the experimental data. Figure 17 shows the modified
model as compared to the original in Figure 9. Note
the region highlighted in the box. The initial model
formulation considered a single, lumped volume in
front of the injector. Since this volume represents
the portion of the fuel system from the pump to the
injector, it was rather large. Thus, the simulated re-
sponse represented a filtered value of the actual dy-
namic response. The revised model shown in Figure
17 replaces the single large volume with two smaller
volumes and models the fluid inertia between the
volumes to account for the underbody fuel lines.
Figure 18 shows the improved model results.
Though further improvement is possible, the revised
model clearly does a better job of capturing the de-
tailed dynamic response of the fuel system.

P
re

ss
ur

e
[p

si
g]

Exp. data
Decreasing

volume

Time [s]

Figure 17. Fuel system model with inertia

153

Modeling the Dynamics of Vehicle Fuel Systems

The Modelica Association Modelica 2006, September 4th – 5th

7.0 7.5 8.0 8.5
46

48

50

52

54

56

58

60

62

64
_ p g [p g] p g_ g []

Figure 18. Improved model results

3.4 Drive Cycle

Having estab model does a rea-
sona

Simulations

lished that the
ble job of simulating the dynamic response of

the vehicle fuel system subject to simple transient
inputs, the model in Figure 17 was used to simulate
drive cycle dynamics over a common US emissions
cycle. Figure 19 shows the vehicle speed during the
drive cycle (the first 1400s of the cycle shown in
Figure 1a). The dynamic inputs to the fuel system
model were provided by VPACS, a Ford-proprietary
tool that models the vehicle and control system
([9],[10]). The simulations ran faster than real time
though real time simulation was not a stated re-
quirement for the system model.

Figure 19. Vehicle speed during drive cycle

igure 20 shows the pressure upstream of the
injec

Depending on the implementation of the fuel control

F
tor and the engine fuel flowrate during the simu-

lation. The dynamics are a result of the transient
operating conditions (i.e. vehicle speed, engine oper-
ating conditions, desired fueling from the engine
controller, etc.) combined with the dynamics of the
fuel system. In these sample simulations, the pres-
sure upstream of the injector is nominally maintained
at a constant value, but some excursions can be seen.

system, these excursions can lead to differences be-
tween the desired and actual fueling to the engine
and potentially degraded fuel economy, drivability,
and emissions.

 Exp. data

Model

Time [s]

 [p
si

g]

P
re

ss
ur

e

Figure 20. Drive cycle simulation results

3.5

While this paper describes the initial model de-
velopment for a multi-domain physical model of the
vehi

4 Conclusions

This paper details the formulation, develop-
ment, calibration, and simulation of a multi-domain
physical model for a vehicle fuel system. Simulation

Model Usage Scenarios

cle fuel system, this model capability can be
used in various applications. As an extension of the
model sensitivity analysis described previously, the
model can be used in conjunction with the Neste-
dAnalysisToolkit [11] or the "Design Optimization"
feature in Dymola [8] for structured system robust-
ness analyses. In addition, the model can be com-
bined with detailed models of the liquid fuel behav-
ior ([12],[13]) and cycle simulation dynamics ([14]-
[16]) in the engine to understand the impact of the
injection dynamics on engine operation, drivability,
and emissions. While the complex dynamics consid-
ered in such comprehensive engine models may not
be suitable for simulation of entire drive cycles, the
combined fuel system and engine model can be use-
ful for in detailed analysis of selected transient
events. In particular, the engine cranking and cold
start behaviors which are extremely important for
emissions compliance can be simulated while includ-
ing the dynamics of the fuel system.

154

J.J. Batteh, P.J. Kenny

The Modelica Association Modelica 2006, September 4th – 5th

of the calibrated mode
experimental data. A sam

l shows good agreement with
ple simulation of the

mod

s would like to thank Larry Buch for his
upfront formulation work, system parameter identifi-
cation, and ongoing support of this work, and Mi-

le discussions regarding
p assembly.

ons,
http://www.dieselnet.com/standards/us/light.

el over a vehicle drive cycle is included to illus-
trate possible application usage. Several potential
applications of this model are discussed including
integration with other detailed models of the power-
train system. In addition to the modeling details, this
work provides additional anecdotal evidence of the
benefits of component-based physical modeling as
compared to equation-based system modeling ap-
proaches.

Acknowledgements

The author

chael Tiller for his valuab
the proper modeling of the fuel pum

References

[1] US light-duty vehicle emissions regulati

html
s test cycle description/speed traces,

http://www.dieselnet.com/standards/cycles/
[2] Emission

[3] http://www.autozone.com

Simulink. The Mathworks, Natick, MA
USA.

[4] ,

 using Modelica

s, pp. 33-40,
p20

[5] Beater, P., 2000, "Modeling and Digital

Simulation of Hydraulic Systems in Design
and Engineering Education
and HyLib", Modelica Workshop 2000 Pro-
ceeding
http://www.modelica.org/events/worksho
00/proceedings/Beater.pdf
Tiller, M., 2005, "Development of a Simpli-
fied Transmission Hydraulics Library based
on Modelica.Fluid", Proceedings of the 4th
International Modelica Conference, pp. 237-
273,

[6]

http://www.modelica.org/events/Conference2
005/online_proceedings/Session3/Session3b4
.pdf
Elmqvist, H., Tummescheit, H., and Otter,
M., 2
Thermo-Fluid Systems", Proceedings of the
3

[7]
003, "Object-Oriented Modeling of

86,
odelica.org/events/Conference2

rd International Modelica Conference, p.
269-2
http://www.m
003/papers/h40_Elmqvist_fluid.pdf

[8] Dymola. Dynasim AB, Lund, Sweden,
http://www.dynasim.com.
DeLosh, R.G., Brewer, K.J., Buch, L.H.
Ferguson,T.F.W., and Tobler, W.E., 198
"Dynamic
with Electronic Engine Control", SAE-
810447, Society of Automotive Engi

[9] ,
1,

 Computer Simulation of a Vehicle

neers.
 , "A

[11]
t-

[10] Strayer, B.A. and Trinker, F.H., 2005
Predictive Model for Feedgas Hydrocarbon
Emissions: An Extension to Warm Engine
Maps", SAE-2005-01-3862, Society of
Automotive Engineers.
Batteh, J.J., Tiller, M. and Goodman, A.,
2005, "Monte Carlo Simulations for Evalua
ing Engine NVH Robustness", Proceedings
of the 4th International Modelica Conference,
p. 385-392,
http://www.modelica.org/events/Conference2
005/online_proceedings/Session5/Session5a1
.pdf

[12] Puchalsky, C., Megli, T., Tiller, M., Trask,
N., Wang, Y., and Curtis, E., 2002, "Mode-
lica Applications for Camless Engine Model
Development", 2nd International Modelica
Conference Proceedings, p. 77-86,
http://www.modelica.org/events/Conference2
002/papers/p11_Puchalsky.pdf

[13] Batteh, J.J. and Curtis, E.W., 2003, “Model-
ing Transient Fuel Effects with Variable Cam
Timing”, SAE 2003-01-3126, Society of
Automotive Engineers.
Newman, C., Batteh, J., and Tiller, M., 2002,
"Spark-Ignited-Engine Cycle Simulation in
Modelica", 2nd International Modelica Con-

[14]

ference Proceedings, pp. 133-142,
http://modelica.org/Conference2002/papers/p
17_Newman.pdf
Batteh, J., Tiller, M., and[15] Newman, C., 2003,

"Simulation of Engine Systems in Modelica",
3rd International Modelica Conference Pro-
ceedings, pp. 139-148,
http://www.modelica.org/events/Conference2
003/papers/h34_Batteh.pdf
Bowles, P. and B[16] atteh, J., 2003, "A Tran-

sient, Multi-Cylinder Engine Model Using
Modelica", SAE-2003-01-3127, Society of
Automotive Engineers.

155

Modeling the Dynamics of Vehicle Fuel Systems

http://www.dieselnet.com/standards/us/light.html
http://www.modelica.org/events/workshop2000/proceedings/Beater.pdf
http://www.modelica.org/events/workshop2000/proceedings/Beater.pdf
http://www.modelica.org/events/Conference2005/online_proceedings/Session3/Session3b4.pdf
http://www.modelica.org/events/Conference2005/online_proceedings/Session3/Session3b4.pdf
http://www.modelica.org/events/Conference2005/online_proceedings/Session3/Session3b4.pdf
http://www.modelica.org/events/Conference2003/papers/h40_Elmqvist_fluid.pdf
http://www.modelica.org/events/Conference2005/online_proceedings/Session5/Session5a1.pdf
http://www.modelica.org/events/Conference2005/online_proceedings/Session5/Session5a1.pdf
http://www.modelica.org/events/Conference2005/online_proceedings/Session5/Session5a1.pdf
http://www.modelica.org/events/Conference2005/online_proceedings/Session5/Session5a1.pdf
http://www.modelica.org/events/Conference2005/online_proceedings/Session5/Session5a1.pdf
http://www.modelica.org/events/Conference2005/online_proceedings/Session5/Session5a1.pdf
http://www.modelica.org/events/Conference2005/online_proceedings/Session5/Session5a1.pdf
http://modelica.org/Conference2002/papers/p17_Newman.pdf
http://modelica.org/Conference2002/papers/p17_Newman.pdf

The Modelica Association Modelica 2006, September 4th – 5th

156

J.J. Batteh, P.J. Kenny

The Modelica Association Modelica 2006, September 4th – 5th

Motorcycle Dynamics Library in Modelica

Filippo Donida, Gianni Ferretti, Sergio M. Savaresi, Francesco Schiavo, Mara Tanelli
Politecnico di Milano, Italy

Piazza Leonardo da Vinci 32, 20133 Milano

Abstract

This paper presents a Modelica library developed for
the dynamic simulation of a motorcycle, developed
within the Dymola environment (see [1], [2], [3])
and tailored to test and validation of active control
systems for motorcycle dynamics. As a matter of
fact, as a complete analytical model for two-wheeled
vehicles is not directly available due to the complexity
of their dynamic behavior, a reliable model should
be based on multibody modeling tools endowed with
automated symbolic manipulation capabilities. In this
work we illustrate the modular approach to motorcycle
modeling and discuss the tire-road interaction model,
which is the crucial part of the simulator. Moreover,
we propose a virtual driver model which allows to
perform all possible maneuvers.

Keywords: Automotive Systems, Motorcycle Dynam-
ics, Multibody Modeling, Dynamic Simulation.

1 Introduction and Motivation

In this work we present a library for the dynamic sim-
ulation of a two-wheeled vehicle developed in Mod-
elica, within the Dymola environment. This library is
tailored to be employed for test and validation of ac-
tive control systems for motorcycle dynamics.
The design of a control oriented simulator for two-
wheeled vehicles is a very challenging task, as a com-
plete analytical model is not directly available due to
its complexity and its high sensitivity to parameters’
variations. Accordingly, a reliable model should be
based on multibody modeling tools endowed with au-
tomated symbolic manipulation capabilities (see e.g.,
[4], [5], [6]).
As a matter of fact, in two-wheeled vehicle one has
to handle strong dynamic coupling between the rigid
bodies (front and rear frames, front and rear wheels)
and the elastic joints (fork and front and rear sus-
pensions), which make it difficult to devise appropri-

ate reduced model for control purposes (see e.g., [7],
[8], [9]). The effort of analyzing well-defined driving
conditions on a complete dynamic simulation model
seems to be the key for a comprehensive control de-
sign for motorcycles. Such approach is well confirmed
in the available literature (see e.g., [7], [8], [9]).
In this work, we illustrate the modular approach to
motorcycle modeling and present the library architec-
ture discussing all the different packages. In particular,
the core of the library lies in the tire-road interaction
model, which manages the interaction between tires
and road and has a major impact on both ride and han-
dling properties of motorcycles (see e.g., [10]).
Moreover, we propose a virtual driver model which al-
lows to track a predefined trajectory and keep a target
speed during different maneuvers.
The paper is organized as follows. Section 2 gives an
overview of the overall library architecture, while Sec-
tion 3 and Section 4 describe in detail the wheel-road
interaction model and the chassis and suspension mod-
els, respectively. Section 5 discusses the employed
aerodynamic model, whereas in Section 6 the road sur-
face model is discussed. Section 7 introduces the im-
plemented Virtual Driver model and its functionalities.
Finally, in Section 8 some simulation results are pre-
sented to assess the validity of the proposed simulation
model.

2 Motorcycle Dynamics Library
Overview

The development of this library is based
on the Modelica Multibody library. The
MotorcycleDynamics is a library package
for Dymola, developed in Modelica 2.2, which
offers all the capabilities needed to perform vir-
tual prototyping for a two-wheeled vehicle. The
package shares basically the same structure of the
VehicleDynamics library, see [11], and it is
structured in a tree-based fashion. The root contains
the standard motorcycle model and nine sub-packages

157

Motorcycle Dynamics Library in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

Figure 1: The complete simulation model block diagram.

• Motorcycle: is the eleven degrees of freedom
motorcycle model with all the default compo-
nents (e.g., wheels, suspensions, and so on). Fig-
ure 1 shows a the complete block diagram of the
motorcycle;

• the package Chassis: it contains the chassis
standard structure and the corresponding geomet-
rical data. It is possible to define new Chassis
models and to customize the existing ones;

• the package Suspension: it contains the ba-
sic spring-damper model, Base_Suspension,
the front suspension (which also include the front
fork and the handlebars) and the rear suspension;

• the package Rear_Swinging_Arm: it defines
the rear swinging arm, which, again, is fully para-
metrized and customizable;

• the package Wheel: it contains all the wheel
geometrical data, the Wheel Road Interaction
model, the friction model, the tire relaxation
model and the interface model between the wheel
and the road surface. Specifically, two different
friction models are available to the user. The first
is based on a linear approximation of the friction
forces and it is reliable at low slip, while the sec-
ond relies on the Pacejka formula and it’s highly
nonlinear;

• the package Braking_Systems: it includes
the braking system model and an Anti-lock Brak-
ing System ABS control;

• the package Driver: it offers different drivers
models and capabilities which allow to perform
all the different maneuvers;

• the package Environments: it models the
road surface and handles also its animation ren-
dering;

• the package Aerodynamics: it models the lift
and drag aerodynamics forces;

• the package Example: it contains some exam-
ples which allow the user to explore the library
capabilities.

In the following Sections we will describe in detail the
structure of each package so as to highlight its pecu-
liarities.

3 Wheel-Road Interaction

The core of the Motorcycle Dynamics library lies in
tire modeling and in defining the interaction between
tires and road, which has a major impact on both ride
and handling properties of motorcycles (see e.g., [10]).
In fact, the tire allows contact between the rigid part
of the wheel (the hub) and the road surface, and it is
the means for ensuring adherence to the road and for
transferring to the ground longitudinal (i.e., traction
and braking) and lateral friction forces, which guar-
antee steerability.
From the conceptual point of view, the
Wheel_road_Interaction model (which is

158

F. Donida, G. Ferretti, S.M. Savaresi, F. Schiavo, M. Tanelli

The Modelica Association Modelica 2006, September 4th – 5th

Figure 2: Wheel reference frames: hub (green),
wheel (yellow), P (red) and POC
(blue).

part of the package Wheel) computes the forces
arising at the contact between tire and road and the
connection with the wheel holds explicitly through
a mechanical connector. In order to compute these
forces, it is fundamental to define the correct wheel
reference frames. Namely, as it is shown in Figure 2,
four reference frames are needed:

• hub : is the frame integral to the rigid part of the
wheel, that is the hub reference frame;

• wheel: is the frame to describe the forward mo-
tion of the wheel;

• P: is the frame of the ideal contact point between
wheel and ground, when no motion is applied to
the wheel;

• POC: is the frame of the real contact point be-
tween wheel and ground, when the wheel is mov-
ing.

The said forces are in turn computed according to a
description of the road, defined in the road model,
which will be presented in Section 6. The connec-
tion between Wheel_road_Interaction model
and Road model (which is part of the package
Environments) is therefore performed implicitly,
through the inner/outer statement, generally used
to describe force fields. In this way, the description of
the road can be made available to all wheels and vehi-
cles in the scene.
The hub frame is attached to the wheel hub, it rotates
with the wheel around the axis yh and it is the frame
associated to the connector trough which the wheel is
attached to its rotational joint. The wheel frame is at-
tached to the wheel center, with unit vector yw coin-
ciding with yh, while xw is the unit vector associated
with the wheel velocity direction - obtained as the in-
tersection between the plane orthogonal to yw and the

road tangent plane at the ideal contact point. The unit
vector zw completes the frame

yw = yh xw =
yw×n
|yw×n|

zw = xw×yw .

The ideal contact point frame has the origin laying on
the road plane, along the direction identified by zw,
the unit vector zi is the road normal unit vector n, xi

coincides with xw and yi simply completes the frame

zi = n xi = xw yi = zi×xi .

The location ri of the origin of the ideal contact frame
is computed as:

ri = rh−Dzzw,

with rh being the location of the origin of the hub
frame and with Dz being the distance between the hub
origin and the road plane in the zw direction. The ideal
and real contact frames are aligned with each other and
differ only in the origin position; the location rr of the
real contact frame is displaced from ri (see e.g., [6],
[12]) by the so-called tire trail. Hence

rr = ri +Rr

 dx

dy

0

 ,

where Rr is the rotation matrix from the real contact
frame to the absolute frame. In turn, the displacements
dx, dy and dz have been computed1 as in [6]:

dx = fwR sgn(vx),
dy = (Dz−R)sin(j),
dz = (Dz−R)cos(j),

where R is the wheel radius, vx is the forward wheel
ground contact point velocity and fw is the rolling fric-
tion coefficient [6], which can be computed as:

fw = A+
B
p

+
C
p

v2
x ,

where p is the tire pressure and vx the wheel forward
velocity, i.e., vx

vy

vz

 = RT
r vr = RT

r
drr

dt
,

1The sgn(x) function has been smoothed by replacement with
the function sgn(x)≈ 2

p arctan(kx), with k ≈ 1010.

159

Motorcycle Dynamics Library in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

and A, B, C are suitable non-negative parameters.
The wheel roll angle j is given by

j =−arctan
zT

wyr

zT
wzr

.

The forces arising from the tire-road interaction can
be decomposed into a vertical force Fz, a longitudinal
force Fx and a lateral force Fy. The normal force Fz

can be computed as:

Fz =−
(

Keldz +Del
ddz

dt

)
zr

with Kel and Del being the tire elastic and damping
constants which describe the tire elasticity properties.

As for the longitudinal and lateral forces descrip-

Figure 3: Plot of the longitudinal force Fx as a function
of the wheel slip computed with the nonlinear Pace-
jka formula (solid line) and its linear approximation
(dashed-dotted line).

tion, two different models can be employed, according
to the specific needs, namely a linear approximation
model or a nonlinear model based on the Pacejka for-
mula presented in [10].
The user can select either the linear or the Pacejka
model, according to the current maneuver and to the
analysis purpose of the simulator (see Figure 3 for
a comparison between the longitudinal force Fx as a
function of the wheel slip computed with the nonlin-
ear Pacejka formula and its linear approximation). The
longitudinal force Fx, is either a traction force Ft - dur-
ing acceleration - or a braking force Fb. In the linear
model, both traction and braking forces are computed
as functions of the longitudinal wheel slip l (see Fig-
ure 3), as

Fx = µ0
xlxr, (1)

where

µ0
x =

¶|Fx|
¶l

∣∣∣
l=0

and

l =

R

 0
1
0

T

RT
r wr − vx

/vx.

Finally, the lateral force Fy is computed as a linear
function of the tire side-slip angle (see e.g., [12]), i.e.,
the angle between the rotational equivalent wheel ve-
locity wR and the wheel-ground contact point velocity
vx and of the roll angle. Namely

Fy =
(
kaa− kjj

)
Fz =

(
Kaa−Kjj

)
yr, (2)

where a is the tire side-slip angle and j is the roll an-
gle. In Equation (2),

Ka :=
¶|Fy|
¶a

∣∣∣
a=0,j=0

Kj :=
¶|Fy|
¶j

∣∣∣
a=0,j=0

,

are the cornering and camber stiffness, respectively.
In the Pacejka model, instead, both longitudinal and
lateral forces are highly nonlinear functions, namely

Fx = Fx(Fz,l,a,j), (3)

Fy = Fy(Fz,l,a,j). (4)

The Pacejka formulas for Fx and Fy are based on a
semi–empirical model, and the analytical expressions
of the forces depend on a huge number of parame-
ters estimated from data. This model has been im-
plemented according to the results proposed in [10],
where extensive tests on different tires have been car-
ried out so as to estimate the needed parameters via
numerical optimization.
Moreover, the wheel-road interaction model has to
take into account the tire relaxation dynamics, which
describes the tire deformation due to elasticity proper-
ties of the tire material. This phenomenon is modeled
computing the real longitudinal and lateral forces as

Ḟxreal =
1

t(t)
(Fx−Fxreal) (5)

Ḟyreal =
1

t(t)
(Fy−Fyreal) , (6)

where Fx and Fy are as in (1) and (2) if the linear force
model is selected, or as in (3) if the Pacejka model
is employed. The filter time-varying time constant is
t(t) = s0l/vx, where s0l is the tire-relaxation length,
usually set equal to half of the tire circumference, and
vx is the wheel-ground contact point velocity.
Finally, these interaction forces have to be balanced by
the forces Fh (and torques ttth) at the hub frame, thus

0 = Fh +Fxreal +Fz +Fyreal

0 = ttth +(rr − rh)× (Fxreal +Fz +Fxreal) .

160

F. Donida, G. Ferretti, S.M. Savaresi, F. Schiavo, M. Tanelli

The Modelica Association Modelica 2006, September 4th – 5th

4 Chassis and Suspensions Modeling

In order to develop a reliable simulator, the geome-
try of the motorbike has to be carefully defined. As
a matter of fact, very small changes in the center of
gravity position may substantially alter the dynamic
vehicle behavior. Moreover, we designed the library
to be highly reusable and customizable.

Figure 4: Motorcycle and driver geometry and center
of gravity position.

To this end, each subpackage contains a record data
structure (see also Figure 1) to store and define all geo-
metric data, e.g., masses, inertias and physical parame-
ters for each component. For example, Figure 4 shows
the chassis and driver geometric data which are stored
in the Base_Dimension_MassPosition_Data
record. The Suspension package contains the ba-
sic damper model Base Suspension, the front
suspension Front Suspension (which comprises
the front fork, the handlebars and their hard
stops Steer Stopper) and the rear suspension
Rear Suspension.
Both front and rear suspension employ the same
mono-directional double spring-damper model

Fs = ks(x− x0)
Fd = cd ẋ

Fsusp =−Fs−Fc−PreLoad,

where

• ks is the spring elastic constant and (x−x0) is the
spring compression/deflection;

• Fs is the spring elastic force and it is a function of
the spring compression/deflection;

• cd is the damping coefficient;

• Fd is the damper force and it is a function of the
compression/deflection velocity ẋ;

• PreLoad is a constant parameter which depends
on the spring tuning and allows to change the sta-
tic load distribution of the motorbike.

5 Aerodynamics

Two are the main aerodynamic forces which need to be
taken into account in vehicle modeling, and are shown
in Figure 5

• the Drag Force which is directed along the longi-
tudinal axis;

• the Lift Force which is directed along the vertical
axis.

Figure 5: Lift and Drag Aerodynamic forces.

These forces are applied in a specified point called
pressure center which is generally shifted forward
with respect to the chassis center of gravity (see [6]).
The drag force affects the maximum speed and accel-
eration values and it is proportional to the square of the
forward speed. It is computed as

Fd =
1
2

r Cx A v2, (7)

where r is the air density, Cx is the drag coefficient,
A is the section of the motorbike area in the forward
direction and v is the vehicle forward velocity.
The lift force (also proportional to the square of the
forward speed) reduces the vertical load on the front
and rear tire. It is computed as

Fl =
1
2

r Cl A v2, (8)

where Cl is the lift coefficient and all the other para-
meters have the same meaning as in (7).

161

Motorcycle Dynamics Library in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

6 Road Surface Model and Render-

ing

The road model is part of the Environments pack-
age and it has been developed on the basis of the road
model given in the VehicleDynamics library [11].
However, we extended that model by adding the z co-

Figure 6: Screenshot of the motorbike and of a road
model.

ordinate. Specifically, the z coordinate may vary as
a function of the (x,y) position, unlike in the model
available in the Dymola library, where the z coordi-
nate can be set by the user but has to remain fixed for
the whole simulation.
The road characteristics, accessible through the Road
model, are the following:

• the vector n, perpendicular to the surface tangent
to the road at the tire-road contact point;

• the quote of the contact point z;

• the friction coefficient µ, which allows to model
different road conditions (e.g., dry and wet as-
phalt, icy road and so on).

Hence, the road model is essentially defined by a sur-
face of equation f (x,y,z) = 0, from which the relevant
normal unit vector can be computed as n = Ñ f /|Ñ f |,
and by the road surface characteristics (described via
the friction coefficient µ). The computation of the
surface gradient has been automatically performed
through the statement partialderivative(),
described in [13].
As for the rendering, it is possible to visualize the road
in the Dymola 3D animator via a dxf file created with
an ad hoc Matlab routine and the open source software
QuikGrid. Figure 6 and Figure 7 shows examples of
road surfaces created with this procedure.

Figure 7: Example of a saddle-like road surface with
the normal unit vector and height.

7 Virtual Driver

For the effective simulation of two-wheeled vehicles
it is necessary to develop a virtual driver model.
To this end, we complemented our library with a
Driver package, which encloses all the control sys-
tems needed to perform a desired maneuver.
To this end, the motorcycle model is complemented
with two control loops which take care, on one hand,
of keeping a constant target speed throughout a speci-
fied maneuver and, on the other, of stabilizing the mo-
torbike and following a predefined trajectory.
The closed loop speed control has been implemented
as a Proportional-Integral control of the form

R(s) =
kPs+ kI

s
,

where the proportional and integral gain can be tuned
so to model different drivers’ behaviors. This con-
troller takes as input the current forward vehicle ve-
locity and outputs the appropriate traction or brak-
ing torque needed to follow the target speed set-point
value.
The first task in order to model a virtual driver is to
be able of following a desired roll angle profile, which
allows to follow a road with turns. Accordingly, the
proposed controller computes the steering torque to be
applied as a function of the roll angle error, defined as

ej(t) = j(t)−jo(t),

where the value of the set-point roll angle jo is com-
puted, at any given time instant, as

jo(t) =
v(t)2C(t)

g
,

where v(t) is the vehicle forward velocity, C(t) is
the instantaneous curvature of the trajectory and g is
the gravitational acceleration. Hence, the set-point

162

F. Donida, G. Ferretti, S.M. Savaresi, F. Schiavo, M. Tanelli

The Modelica Association Modelica 2006, September 4th – 5th

roll profile is obtained as the concatenation of the in-
stantaneous roll equilibrium values, computed assum-
ing steady-turning conditions [6]. The roll-angle con-
troller has the form

ts(t) = k0j̈(t)+ k1j̇(t)+ k2ej(t), (9)

where ts is the steering torque to be applied in order
to track the predefined roll. The presence of the first
and second derivatives of the roll angle come from the
observation that a real driver tunes his response not
only based on current roll angle, but also according to
the rolling velocity and acceleration.
If we consider, coherently with the steady turning as-
sumption mentioned above, the set-point jo(t) to be
constant, then we can rewrite (9) as

ts(t) = k0ë(t)+ k1ė(t)+ k2e(t),

so that the transfer function of the roll controller can
be expressed in the more familiar form

Rj(s) =
k0 + k1s+ k2s2

(1+ sT1)(1+ sT2)
, (10)

where, again, the time constants T1 and T2 can be tuned
to obtain faster or slower tracking performance. Such
roll controller is then complemented with two more
terms, accounting for the direction and position errors,
which have to be taken into account in order to track
not only a roll profile, but also a desired trajectory, e.g.,
to drive the bike on a race track. Accordingly, the final
expression for the tracking controller (see also [14])
has the form

ts(t) = k0j̈(t)+k1j̇(t)+k2ej(t)+k3DP(t)+k4DY(t),

where DP(t) represents the position error, while DY(t)
the direction error. These are computed discretizing
the desired trajectory and evaluating the discrepancy
between the current position and the closest trajectory
point. Such point, though, is chosen according to a
look-ahead rationale, i.e., as the closest point com-
puted over an error prevision time interval. It is worth
noting that this trick is actually performed by human
riders, which tend to adjust the vehicle direction look-
ing forward on the road and not based on the current
vehicle position. In our controller, we inserted the tra-
jectory tracking performance requirement by comput-
ing the overall desired roll profile considering also the
position and direction errors DP(t) and DY(t). Such
new set-point jo(t) is then fed as input to the con-
troller (10).

Figure 8: Steering torque input from the driver (top),
steering torque applied by the stabilizer (middle), roll
rate (bottom, solid) and roll angle (bottom, dashed).

The second possible driver model allows the simulator
user to input the desired trajectory as through a joy-
stick, that is to provide as input to the simulator a steer-
ing torque profile to be followed. According to the
given profile, then, a control loop has been designed
which stabilizes the motorbike to a steady state tilt an-
gle with zero roll velocity. As far as the stabilizer de-
sign is concerned, in fact, the user input steering torque
is treated as a measurable disturbance, and the stabi-
lizer provides as output the steering torque needed to
achieve a steady state behavior of the roll angle. The
performance of such controller are shown in Figure 8,
where the user input is a sequence of three steering
torque steps. As it can be seen, the stabilizer provides
as output the correct steering torque which allows the
motorbike to follow the profile entered by the user. As
a consequence, the roll angle and the roll rate experi-
ence a transient after each step input before stabilizing
to a steady state value.

8 Simulation Results

We now show some simulation result which assess the
validity of the MotorcycleDynamics library. First
of all, to validate the trajectory tracking performance
a simulation experiment is presented where the motor-
cycle is commanded to run a circular trajectory, with a
radius of 12.5 m at a target speed of 8 m/s. The results
obtained with the Dymola 3D-Animator are shown in
Figure 9(a), where the solid line depicts the trajec-
tory of the rear hub frame origin, while the simulated
trajectory of front wheel, rear wheel and chassis are
shown in Figure 9(b). Note in particular the large in-

163

Motorcycle Dynamics Library in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

� � � �

(a)

(b)

Figure 9: Simulated trajectory visualized via the Dy-
mola 3D-Animator (top)and plot of the simulated tra-
jectory of Front Wheel, Rear Wheel and Chassis (bot-
tom).

clination of the motorcycle (Figure 9(a)b), needed to
run a trajectory with such a high curvature. To bet-
ter understand the virtual driver behavior, Figure 10(a)
shows, via the 3D animator, the four phases during a
curve. Namely, the curve is entered with a counter-
steering, which makes the vehicle tilt correctly, then
there is a steering phase which takes to the steady state
cornering. Finally, the curve is exited and the vehicle
is back to zero tilt angle. Figure 10(b) shows, in the
same maneuver a plot of the steering angle, steering
torque and roll angle. We also show in Figure 11(a) a
screenshot of the 3D animator when a dangerous brak-
ing maneuver (panic brake) on a curve is performed
and the subsequent fall of the motorbike. Figure 11(b)
shows the correct behavior of the simulated roll angle
and front wheel sideslip angle which correctly diverge
when the bike falls. Finally, we command the motor-
bike to follow an eight trajectory on a hilly road, mod-
eled via a hyperbolic paraboloid of the form

z =
(x

20

)2
+

(y
30

)2
+0.55. (11)

Figure 12 shows the various phases of the maneuver
and the simulated trajectory.

(a)

(b)

Figure 10: Screenshot of a turning maneuver (top) and
plot of the steering angle, steering torque and roll an-
gle in the same maneuver (bottom).

9 Concluding Remarks

This work presented the development of the
MotorcycleDynamics library for Dymola,
developed in Modelica 2.2, which offers all the
capabilities needed to perform virtual prototyping
for a two-wheeled vehicle. The overall architecture
of the library has been thoroughly discussed, and its
functionalities have been highlighted via simulation
experiments.
A controller for target speed and trajectory tracking,
based on a virtual driver model has been presented
and simulation results assessed its validity.
Future work will be devoted to validate the motor-
cycle model with experimental data and to exploit
the library capabilities for active control system
prototyping.
Moreover, we plan to extend the driver model so to
insert the driver lean angle as an additional degree of
freedom in the motorcycle model, in order to model
the driver as active, capturing his real behavior and its
effects on the overall vehicle dynamics.

164

F. Donida, G. Ferretti, S.M. Savaresi, F. Schiavo, M. Tanelli

The Modelica Association Modelica 2006, September 4th – 5th

(a)

(b)

Figure 11: Animation of a motorcycle fall during a
braking maneuver on a curve (top) and corresponding
roll angle and front wheel sideslip angle (bottom).

References

[1] M. Tiller, Introduction to Physical Modeling with
Modelica. Kluwer, 2001.

[2] M. Otter, H. Elmqvist, and S. Mattsson, “The
new modelica multibody library,” in Proc. 3rd
International Modelica Conference, Linköping,
Sweden, November 3-4, 2003, pp. 311–330.

[3] S. Mattsson, H. Elmqvist, and M. Otter, “Phys-
ical System Modeling with Modelica,” Control
Engineering Practice, vol. 6, pp. 501–510, 1998.

[4] R. Sharp, “The stability and control of motor-
cycles,” Journal of Mechanical Engineering Sci-
ence, vol. 13, pp. 316–329, 1971.

[5] V. Cossalter and R. Lot, “A motorcycle multi-
body model for real time simulations based on
the natural coordinates approach,” Vehicle Sys-
tem Dynamics: International Journal of Vehicle
Mechanics and Mobility, vol. 37, pp. 423–447,
2002.

[6] V. Cossalter, Motorcycle Dynamics. Milwaukee,
USA: Race Dynamics, 2002.

[7] D. J. N. Limebeer, R. S. Sharp, and S. Evangelou,
“The stability of motorcycles under acceleration
and braking,” Proc. I. Mech. E., Part C, Journal
of Mechanical Engineering Science, vol. 215, pp.
1095–1109, 2001.

[8] V. Cossalter, R. Lot, and F. Maggio, “On the
Stability of Motorcycle during Braking,” in SAE
Small Engine Technology Conference & Exhibi-
tion, Graz, Austria, September 2004, 2004, sAE
Paper number: 2004-32-0018 / 20044305.

[9] G. Ferretti, S. Savaresi, F. Schiavo, and
M. Tanelli, “Modelling and simulation of motor-
cycle dynamics for Active Control Systems Pro-
totyping,” in Proceedings of the 5th MATHMOD
Conference, Vienna, Austria, 2006.

[10] R. S. Sharp, S. Evangelou, and D. J. N. Lime-
beer, “Advances in the modelling of motorcycle
dynamics,” Multibody System Dynamics, vol. 12,
pp. 251–283, 2004.

[11] J. Andreasson, “Vehicle dynamics library,” in
Proceedings of the 3rd International Modelica
Conference, Linköping, Sweden, 2003.

[12] H. Pacejka, Tyre and Vehicle Dynamics. Oxford:
Buttherworth Heinemann, 2002.

[13] H. Olsson, H. Tummescheit, and H. Elmqvist,
“Using automatic differentiation for partial
derivatives of functions in modelica,” in
Proc. 4th International Modelica Conference,
Hamburg-Harburg, Germany, March 7-84, 2005,
pp. 105–112.

[14] L. Marescotti, “Modellazione del sistema pilota-
veicolo a due ruote in ambiente integrato Matlab-
Adams,” Master’s thesis, Universitá di Pisa,
2003.

165

Motorcycle Dynamics Library in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

Figure 12: Screenshot of an eight maneuver and of the simulated trajectory.

166

F. Donida, G. Ferretti, S.M. Savaresi, F. Schiavo, M. Tanelli

The Modelica Association Modelica 2006, September 4th-5th,2006

Development and Verification of a Series Car Modelica/Dymola
Multi-Body Model to Investigate Vehicle Dynamics Systems

Christian Knobel∗ Gabriel Janin‡ Andrew Woodruff§

∗BMW Group Research and Technology, Munich, Germany, christian.knobel@bmw.de
‡École Nationale Supérieure de Techniques Avancées, Paris, France, gabriel.janin@ensta.org

§Modelon AB, Lund, Sweden, andrew.woodruff@modelon.se

Abstract

The development and the verification of a Multi-
body model of a series production vehicle in Mod-
elica/Dymola is presented. The model is used to in-
vestigate and to compare any possible configuration of
actuators to control vehicle dynamics with a general
control approach based on model inversion and a non-
linear online optimization.
Keywords: Multi-body Vehicle Model, Vehicle Dynam-
ics, Model Verification, Model Validation, Active Vehi-
cle Dynamics Systems, Tire Model, Suspension Kine-
matics, Suspension Compliance

1 Introduction

Systems for control of Vehicle Dynamics went to se-
ries production for the first time in 1978 with the limi-
tation of brake pressure to avoid locking the wheels to
ensure cornering under all braking conditions. Brak-
ing individual wheels (independently from the drivers
commands) to stabilize the vehicle at the driving limit
went to series production in 1995. In the last few
years, control systems for vehicle dynamics with ad-
ditional actuators to control steering, drive torque dis-
tribution and wheel load distribution have entered the
market.
All of these systems acting on the force allocation
from the center of gravity (CG) to the four tire con-
tact patches (TCP) and on the force transfer at the
TCPs. This strong interdependence between these
systems1 is the reason why independent operation
of more than one of them is only possible with
a loss of potential to prevent critical interferences.
In [2] (cf. also [3], [4], [5], [6] and [7]) a gen-
eral approach was introduced to investigate the ref-

1cf. [1] for an overview and a detailed classification of systems
for vehicle motion control.

erence behavior (best possible allocation and transfer
of forces acting on the vehicle) for any configuration
of actuators controlling vehicle dynamics including all
steering angles δ =

[
δ1 δ2 δ3 δ4

]T , brake/drive

torques M =
[
M1 M2 M3 M4

]T , wheel loads

Fz =
[
Fz1 Fz2 Fz3 Fz4

]T and even camber angles

γ =
[
γ1 γ2 γ3 γ4

]T . The comparison of the ref-
erence operation of different configurations may sup-
port decisions in the future development of vehicle dy-
namics. The investigation of the reference behavior
also supports controller development and the dynamic
specification of the actuators, or makes it possible to
investigate the potential loss if the applied actuators
have less dynamics compared to the ideal required dy-
namics. The reconfigurable behavior of the general
approach allows further investigation of the impact of
actuator failures on vehicle dynamics for reliability in-
vestigations.

δ3

γ3
M3

Fz3

β ψ&v

CG

1

2

4

3

Figure 1: Planar vehicle model with influencing vari-
ables and vehicle motion y

Because the approach presented in [2] is based on
model inversion of a plane vehicle model with the
plane motion y =

[
ψ̇ β v

]T described by the yaw
rate ψ̇, the body slip angle β and the velocity v (cf.
Figure 1), a verified multi-body model is needed as ve-

167

Development and Verification of a Series Car Modelica/Dymola Multi-body Model to Investigate Vehicle Dynamics
Systems

The Modelica Association Modelica 2006, September 4th-5th,2006

hicle model to ensure that the control approach works
also with all effects neglected during the controller
design. Using the verified Modelica/Dymola Multi-
body vehicle model presented in this paper as a vehi-
cle model for the control approach allows investigation
and comparison of all possible configurations of avail-
able actuators quickly and easily.
The possibility to model multi-body suspension as-
semblies, controllers, hydraulic and mechatronic ac-
tuators in one and the same environment was the rea-
son to choose Dymola as the modeling and simulation
tool. Development and verification of the model was
done bottom-up. Multi-body front and rear suspen-
sion, tires, steering system, power train and the body
were modeled and then verified separately with test
rig results as shown in Section 2. Creating the multi-
body vehicle model by connecting those subsystems
together is presented in Section 3 as well as the verifi-
cation process of the full vehicle through objective test
maneuvers with a series car equipped with additional
measurement technology. Finally, an application ex-
ample is presented in Section 4.

2 Development and Verification of
Subsystems

Using the Multi-Body Library [8] and the Vehicle Dy-
namics Library [9], tire, suspension, body and envi-
ronment for the multi-body model were constructed.
Simple models for the steering and the power train
system are developed only for the verification of the
multi-body vehicle model with a conventional series
production vehicle.

2.1 Tire

Pacejka’s Magic Formula [10] is used to model the
plane transfer behavior of the tire, which calculates
first the pure forces

F ′
xoi = Dsin(C arctan(Bκ−E(Bκ− arctanBκ)))

F ′
yoi = Dsin(C arctan(Bα−E(Bα− arctanBα)))

(1)

i ∈ {1 . . .4} designated with ′ to indicate the represen-
tation with the wheel coordinate system out of the in-
puts longitudinal slip κ, tire side slip angle α, wheel
load Fz and camber angle γ. Secondly,

F ′
xi = F ′

xoi cos(C arctan(Bα−E(Bα− arctanBα)))
F ′

yi = F ′
yoi cos(C arctan(Bκ−E(Bκ− arctanBκ)))

(2)

the interdependence between the longitudinal and lat-
eral tire forces is considered where the peak parame-
ter D(Fz,γ), the shape parameter C, the stiffness pa-
rameter B(Fz,γ) and the curvature parameter E(Fz,γ)
are different for (1), (2) and for longitudinal and lat-
eral directions, respectively. For the identification of
these parameters, an error minimization is used to fit
the model result to the test rig results of the tire used
(cf. Figure 2 and Figure 3). Because braking (negative
longitudinal tire forces) is more important for vehicle
dynamics control than accelerating (positive longitu-
dinal tire forces), different weighting factors are used
to get a better correlation of the negative longitudinal
tire forces.

−30 −20 −10 0 10 20 30
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

κ [%]

F x [N
]

Tire Test Rig
Model Simulation

Figure 2: Longitudinal force Fx over longitudinal slip
κ for different wheel loads Fz

−8000 −7000 −6000 −5000 −4000 −3000 −2000 −1000 0
0

1000

2000

3000

4000

5000

6000

7000

F
x
 [N]

 F
y

[N
]

F
z
 = 6340N α = −1°

F
z
 = 6340N α = −9°

F
z
 = 4565N α = −9°

F
z
 = 4896N α = −1°

Figure 3: Lateral force Fy over longitudinal force Fx

(longitudinal slip κ sweeps at different tire side slip an-
gles α and wheel loads Fz) known as a Krempel Graph

168

C. Knobel, G. Janin, A. Woodruff

The Modelica Association Modelica 2006, September 4th-5th,2006

2.2 Suspension

For the front and rear suspension, ADAMS models
could be used as source to model the McPherson
front suspension (cf. Figure 4) and the semi-trailing

Rear Link

Front Link

Steering Link

ARB link

Spring

Strut
(damper)

ARB

Upright

X Y

Z

Figure 4: McPherson front suspension design

arm rear suspension design (cf. Figure 5) in Model-
ica/Dymola.

Upper Link

Lower Link

ARB link

Spring

Damper

ARB

Trailing Arm

X Y

Z

Figure 5: Semi-trailing arm rear suspension design

The default models for those suspension designs in the
Vehicle Dynamics Library [9] could not be used with-
out customizing and modifying the design, the joint
location and the kinematic relationships to match the
behavior of the source models in ADAMS.
The McPherson front suspension used independent
lower rods instead of the conventional control arm in
[9]. The rear suspension used a trailing arm design
with two guiding links, and the body spring and anti-
roll subsystems were attached to the upper guiding link
(cf. [11]). Non-linear bump stops were added on the
damper’s tube of the front and rear suspension.
The hard points for all joint locations of the model
need to be adjusted to agree with the ADAMS source
model.

The kinematics of the suspension models are verified
using a vertical travel sweep test rig which needs to be
modeled in Modelica/Dymola as well. Camber and toe
changes are plotted to verify the kinematic behavior of
the suspension models with the source model and the
real suspension of the used series vehicle (cf. Figure
6).

-5 -4 -3 -2 -1 0 1 2 3
-100

-80

-60

-40

-20

0

20

40

60

80

100

γ (°)

S
us

pe
ns

io
n

Tr
av

el
 (m

m
)

Dymola Model
Source Model
Test Rig Left
Test Rig Right

-5 -4 -3 -2 -1 0 1 2 3

γ (°)

-40 -30 -20 -10 0 10 20 30
-100

-80

-60

-40

-20

0

20

40

60

80

100

δt (min)

S
us

pe
ns

io
n

Tr
av

el
 (m

m
)

-40 -30 -20 -10 0 10 20 30
δt (min)

Figure 6: Kinematic analysis: camber in degrees and
toe in angular minutes for front (left) and rear suspen-
sion (right)

Simulation of the rigid suspension model (without any
bushings) was impossible and caused singularity er-
rors. After the implementation of bushings, simula-
tion of the multi-body front and rear suspensions was
possible. However, a pure investigation of the rigid
kinematics was only possible using very stiff bush-
ings, which is the reason for the differences between
the source model and the Modelica/Dymola model in
Figure 6.
The kinematics of the real suspension could only be
verified with bushings, which is again the main reason
for the differences between the model results and the
real test rig results shown in Figure 6.

2.3 Further Subsystems of the Vehicle

After modeling the tires and suspensions, adding body,
power train and steering system models, as well as the
vehicle’s environment, is necessary to the complete
multi-body vehicle model.
The vehicle’s body is considered to be rigid and its
mass is distributed as follows: one summarized sprung

169

Development and Verification of a Series Car Modelica/Dymola Multi-body Model to Investigate Vehicle Dynamics
Systems

The Modelica Association Modelica 2006, September 4th-5th,2006

mass, including the driver, one passenger and fuel is
in the body whereas the unsprung mass of the wheels
including brake caliper and rotor and their links is dis-
tributed to the four wheels. The vehicle’s inertias at
the CG are identified on a pendulum test rig.
The complexity and accuracy of the power train
and steering models are rather low because they are
only used to get reasonable connections between the
driver’s inputs and the brake/drive torques M and the
wheel steer angles δ. The former uses a speed con-
troller and a differential gear to distribute the torques
to the four wheels similar to the series production vehi-
cle. The latter consists a rack-and-pinion steering sys-
tem including a rotational spring in the steering shaft.
The study of a full-vehicle model requires the model-
ing of its environment. The equations of motion can
only be solved by having a complete description of
physical system. Therefore, the interaction between
the vehicle and the world must be taken into account.
It consists the interactions between vehicle and driver,
vehicle and air, and tire and road. The road is modeled
by a flat surface with with a road friction coefficient
µ. The aerodynamic drag force Faero

x =−1
2 Aρcxv2 ap-

plied at the center of gravity simplifies the interaction
between air and vehicle. These environments are from
the Vehicle Dynamics Library [9]. Only driver models
need to be built up to be able to simulate the objective
test maneuvers for the verification in Section 3.
The active control actuators are modeled by ideal rev-
olute joints inserted at the rigid connection between
the suspension and wheel subsystems. This meant the
wheels could be manipulated directly and without al-
tering the suspension geometry. Passive systems are
represented by constant values as inputs for the ideal
actuators.

3 Development and Verification of
the Multi-body Vehicle Model

Connecting the subsystems from Section 2 creates the
multi-body vehicle model.
Important steps are the definition, design and imple-
mentation of the model. A more important step is
to check if the model matches real vehicle behav-
ior. Therefore, the vehicle and the model behavior
are compared with objective test maneuvers such as
steady state cornering (steady state behavior), steering
steps (dynamic behavior in the time domain) and sine-
sweeps (dynamic behavior in the frequency domain).
Body side slip angle β and velocity v are measured
using an optical Correvit sensor, roll ϕ and pitch θ

Figure 7: Chassis representation of the multi-body ve-
hicle model

0 1 2 3 4 5 6 7 8 9
40

60

80

100

120

140

160

180

a
y
 [m/s2]

δ sw
 [°

]

Model Simulation
Test Maneuver

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

a
y
 [m/s2]

dψ
/d

t [
°/

s]

0 1 2 3 4 5 6 7 8 9
−3

−2

−1

0

1

2

3

a
y
 [m/s2]

 β
 [°

]

0 1 2 3 4 5 6 7 8 9
−5

−4

−3

−2

−1

0

a
y
 [m/s2]

φ
[°

]

Figure 8: Steady state cornering, r=40m, dry road µ=1

are measured indirectly by suspension travel sensors
at all four wheels, and all translational accelerations
ax,ay,az as well as the rotational rates ψ̇, ϕ̇, θ̇ are mea-
sured by a sensor cluster located at the CG. The steer-
ing wheel angle δsw and the steering wheel torque Msw

are measured using an instrumented steering wheel.

The results of the verification without any fitting of
uncertain parameters like stiffness of the bushings, or
friction coefficient µ of the road are presented in Figure
8 and Figure 9.

The main reason for the higher yaw rate generated by
the model in both maneuvers is the uncertain road fric-
tion coefficient µ. The higher roll in both maneuvers
is caused by different stiffnesses of the body springs
used in the model and the real vehicle.

170

C. Knobel, G. Janin, A. Woodruff

The Modelica Association Modelica 2006, September 4th-5th,2006

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5

0

5

10

15

20

25

30

35

40

45

t [s]

δ sw
 [°

]

Model Simulation
Test Maneuver

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−2

0

2

4

6

8

10

12

14

16

18

t [s]
dψ

/d
t [

°/
s]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

−0.5

0

0.5

t [s]

β
[°

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

t [s]

φ
[°

]

Figure 9: Step steer, v=70 km/h, dry road µ=1

4 Application of the Model

Exchanging the conventional steering and power train
system of the verified vehicle model and using the
ideal actuators as described in 2.3 leads to a generic
configuration for vehicle dynamics control. All steer-
ing angles δ, drive/brake torques M , wheel loads Fz

and camber angles γ (cf. Figure 1) could be used pas-
sively or actively controlled by the general allocation
approach presented in [2]. A non-linear online op-
timization calculates the arbitrary parameters for the
under determined inverses of the over-actuated2 plane
motion vehicle model (cf. 1). The number of the arbi-
trary parameters depends on the available actuators for
the influencing variables. These arbitrary parameters
are always used by the non-linear online optimization
to minimize the maximum adhesion potential utiliza-
tion

η
2
i =

(
Fxi

Fxi max

)2

+
(

Fyi

Fyi max

)2

(3)

(0 ≤ ηi ≤ 1) of the four tires i ∈ {1 . . .4} is approx-
imated by an elliptic relation. The forces Fxi max and
Fyi max depend on the wheel load Fzi and the camber an-
gles γi. The control commands out of these optimiza-
tion are used as inputs for the multi-body vehicle (cf.
Figure 10). Inputs for the optimization are the torque
and forces u =

[
MzCG FxCG FyCG

]T acting on the
center of gravity. The allocation of these forces to the
TCPs and the force transfer in the TCPs are optimized

2cf. [12] for definition and examples

Dynamic Inversion Static Inversion

y

Fz

Controller
yd Force

Allocation
udHMI-

controller

Msw

sw

y
yy xb xg

Figure 10: Control loop with the multi-body vehicle
model

with the optimization objective

min max ηi (4)

This setup facilitates investigation into the reference
behavior (best possible allocation and transfer of
forces acting on the vehicle) of the vehicle dynamics
for every configuration of available actuators influenc-
ing vehicle dynamics for the verified multi-body vehi-
cle model.
Changing the number of available actuation during a
driving maneuver allows investigation into the impact
of actuator failures on vehicle dynamics, which may
support reliability investigations of active vehicle dy-
namics systems.
Such an investigation is presented as an exemplary ap-
plication of the presented multi-body vehicle model
(cf. Figure 11, Figure 12 and Figure 13). The front
right steering actuator of a vehicle (equipped with four
steering actuators, four drive torque actuators and four
actuators to control the wheel load distribution) fails.
The failure occurs after one second of driving an open
loop single lane change at a constant speed v=70 km/h
(cf. Figure 13). All actuators and actuator dynam-
ics are limited for the optimization (4) to values of ac-
tual available actuators. The actuator fails in the worst
case situation at maximum steering angle of δ = 1.8
degrees and is assumed to be self-locked after the fail-
ure occurred. To compensate this fixed steering er-
ror, the vehicle exhibits the same amount of body slip
angle as can be seen in Figure 13. Steering back to
straight driving again the failure wheel becomes the
outer wheel (with respect to the center of the corner)
with more wheel load. Therefore, the optimization re-
duces the wheel load at this wheel as much as possi-
ble. However, the steering angles and drive torques
at the other wheels are much higher compared to the
usual driving condition without failure (right side of
Figures 11, 12 and 13). The maneuver presented is
close to the physical driving limit since two tires have
already reached their maximum possible adhesion po-
tential utilization (cf. Figure 12). The lateral acceler-

171

Development and Verification of a Series Car Modelica/Dymola Multi-body Model to Investigate Vehicle Dynamics
Systems

The Modelica Association Modelica 2006, September 4th-5th,2006

ation ay is reaching 4 m/s2 at the minimum and max-
imum of the yaw rate ψ̇. This performance meets the
actual specification of flat run-flat tires.

0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

δ
[d

eg
]

Wheel 1
Wheel 2
Wheel 3
Wheel 4

0 1 2 3

0 1 2 3
−500

0

500

M
 [N

m
]

0 1 2 3

0 1 2 3

2000

4000

6000

8000

t [s]

F z [N
]

0 1 2 3t [s]

Figure 11: Influencing variables of vehicle with steer-
ing actuator failure (left) and usual working vehicle
(right)

5 Conclusion and Outlook

The development and the verification of a multi-body
model of a series production vehicle is presented. This
vehicle model was used to investigate and compare
any possible configuration of actuators to control ve-
hicle dynamics. In this context, Modelica/Dymola has
proven to be a practical environment for future devel-
opment of vehicle models including mechatronic and
hydraulic actuators, multi-body suspensions and con-
trollers. To develop, verify and use Modelica/Dymola
models in an efficient way, however, interfaces to
CAD systems to import CAD model data and inter-
faces to real time environments are desirable. Es-
pecially for this project, a library for non-linear op-
timization was missed, which was the reason why

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

t [s]

η
[−

]

Wheel 1
Wheel 2
Wheel 3
Wheel 4

0 0.5 1 1.5 2 2.5 3 3.5
t [s]

Figure 12: Adhesion potential utilization of failure
(left) and usual vehicle (right)

0 1 2 3
−15

−10

−5

0

5

10

15

t [s]

dψ
/d

t [
de

g/
s]

Failure
Usual

0 1 2 3
−2

−1

0

t [s]

β
[d

eg
]

0 1 2 3
50

80

t [s]

v
[k

m
/h

]

Figure 13: Plane vehicle motion of the vehicle with
steering actuator failure (-) and usual working vehicle
(:)

this part of the presented control approach was real-
ized in MATLAB/Simulink. The presented Model-
ica/Dymola multi-body model was implemented into
MATLAB/Simulink using the Simulink Interface of
Dymola.
The outlook of the presented project is to improve the
matching of the model by using an error minimization.
Parameters for the error minimization are probably the
uncertain stiffness of the bushings and the road friction
coefficient µ.
The presented example of steering actuator failure
could be improved by adding a strategy of actively
controlled camber (assuming the availability of such
a system) for steering actuator failures which counter-
acts the failure force generated by the tire side slip an-
gle αi of the failure wheel.

References

[1] J. Andreasson, C. Knobel, and T. Bünte. On
Road Vehicle Motion Control - striving towards
synergy. In Proc. of 8th International Symposium
on Advanced Vehicle Control AVEC, 2006.

[2] C. Knobel, A. Pruckner, and T. Bünte. Opti-
mized Control Allocation - A General Approach
to Control and to Investigate the Motion of Over-

172

C. Knobel, G. Janin, A. Woodruff

The Modelica Association Modelica 2006, September 4th-5th,2006

actuated Vehicles. Submitted paper for 4th IFAC
Symposium on Mechatronic Systems, 09 2006.

[3] Y. Hattori, K. Koibuchi, and T. Yokoyama. Force
and Moment Control with Nonlinear Optimum
Distribution for Vehicle Dynamics. In Proc. of
6th International Symposium on Advanced Vehi-
cle Control AVEC, 2002.

[4] E. Ono, Y. Hattori, Y. Muragishi, and
K. Koibuchi. Vehicle Dynamics Control
Based on Tire Grip Margin. In Proc. of 7th
International Symposium on Advanced Vehicle
Control AVEC, 2004.

[5] R. Orend. Steuerung der Fahrzeugbewegung mit
minimaler Kraftschlussausnutzung an allen vier
Rädern. In Proc. of Steuerung und Regelung von
Fahrzeugen und Motoren - Autoreg. VDI, 2004.

[6] J. Andreasson and T. Bünte. Global Chassis Con-
trol Based on Inverse Vehicle Dynamics Mod-
els. Presented at XIX IAVSD World Congress,
10 2005.

[7] T. Bünte and J. Andreasson. Integrierte Fahrw-
erkregelung mit minimierter Kraftschlussaus-
nutzung auf der Basis dynamischer Inversion. In
Proc. of Steuerung und Regelung von Fahrzeu-
gen und Motoren - Autoreg, Wiesloch, 2006.

[8] M. Otter, H. Elmqvist, and S. E. Mattsson. The
New Modelica MultiBody Library. In Proc. of
the 3. International Modelica Conference, pages
311–330, 2003.

[9] J. Andreasson. Vehicle dynamics library. In
Proc. of the 3rd International Modelica Confer-
ence. Modelica Association, 2003.

[10] H. B. Pacejka. Tyre and Vehicle Dynamics.
Butterworth-Heinemann, Oxford, 2002.

[11] A. Woodruff. Camber Prevention Methods
using a Modelica/Dymola Multi-body Vehicle
Model. Master’s thesis, Mechanical and Materi-
als Engineering Department, Queen’s University,
Kingston, ON, Canada, 2006.

[12] M. Valášek. Design and Control of Under-
Actuated and Over-Actuated Mechanical Sys-
tems - Challenges of Mechanics and Mechatron-
ics. Vehicle System Dynamics, 40:37–50, 2003.

173

Development and Verification of a Series Car Modelica/Dymola Multi-body Model to Investigate Vehicle Dynamics
Systems

The Modelica Association Modelica 2006, September 4th-5th,2006

174

C. Knobel, G. Janin, A. Woodruff

 Session 2c

The Modelica Association Modelica 2006, September 4th – 5th 175

Session 2c

Language, Tools and Algorithms 2

Session 2c

The Modelica Association Modelica 2006, September 4th – 5th 176

The Modelica Association Modelica 2006, September 4th – 5th

Modeling and simulation of differential equations in Scicos

Masoud Najafi Ramine Nikoukhah
INRIA-Rocquencourt, Domaine de Voluceau,

78153, Le Chesnay Cedex France

Abstract

Block diagram method is an old approach for the mod-
eling and simulation of differential equations. Model-
ing and simulation of some kind of differential equa-
tions such as differential-algebraic equations (DAE) is
cumbersome, difficult, or even impossible with this
approach. Scicos which is a modeling and simula-
tion software based on Block diagram approach has re-
cently been developed to simulate Modelica programs.
In this paper, it will be explained the way different
classes of DAE can easily be specified in Modelica and
simulated in Scicos.
Keywords: hybrid differential equations; numerical
solver; simulation; Modelica; Scicos

1 Introduction

Scilab1 is a free, and open-source software for sci-
entific calculation. Scicos2 is a toolbox of Scilab
and provides an environment for modeling and sim-
ulation of dynamical systems [6, 4]. For many ap-
plications, the Scilab/Scicos environment provides an
open-source alternative to Matlab/Simulink and Ma-
trixX [14, 15]. Scicos includes a graphical editor for
constructing models by interconnecting blocks, repre-
senting predefined or user defined functions, a com-
piler, a simulator, and code generation facilities. A
Scicos block diagram is composed of blocks and con-
nection links. A block corresponds to an operation and
by interconnecting blocks through links, we can con-
struct a model, or an algorithm.
The Scicos blocks represent elementary systems that
can be used as model building blocks. They can have
several inputs and outputs, continuous-time states,
discrete-time states, zero-crossing functions, etc. Sci-
cos allows customization with regard to incorporating
user C, Fortran, or Scilab codes. Scicos translates the
block diagram model into a system of Ordinary Dif-

1www.scilab.org
2www.scicos.org

ferential Equations (ODE) or Differential Algebraic
Equation (DAE) and applies an ODE or a DAE solver
in order to perform a simulation. A block diagram sys-
tem representation can only be used to model ODEs
and a special class of DAEs, while the solvers used in
Scicos support a larger class of DAEs [9]. In this paper
we will explain the way Scicos environment has been
developed to write and simulate a large class of differ-
ential equations, called hybrid differential equations.
To get an idea what a Scicos model looks like, a model
of a simple control system implemented in Scicos has
been shown in Figure 1. In Figure 1 the Clock block

Den(s)
−−−−−
Num(s)

Den(s)
−−−−−
Num(s)

PlantControllerReference

generator
sinusoid
generator
sinusoid

33

Den(s)
−−−−−
Num(s)

Den(s)
−−−−−
Num(s)

Feedback

Figure 1: A Scicos model of a control system

generates a periodic activation signal (event) that acti-
vates the Scope block. At event times the scope reads
its input signal and displays them.

2 Mathematical Background

A differential equation expressed either by an Ordi-
nary Differential Equations (ODE), i.e.,

ẋ � f
�
x � u � t �

where ẋ denotes the derivative of x, the state variables,
with respect to the time variable t, and u is the input
vector variable, or by Differential Algebraic Equations
(DAE) [2, 3, 5], i.e.,�

ẋ � f
�
x � y � u � t �

0 � g
�
x � y � u � t � (1)

177

Modeling and Simulation of Differential Equations in Scicos

The Modelica Association Modelica 2006, September 4th – 5th

where (1-a) is the differential part and (1-b) is the al-
gebraic part of the DAE. The equation set (1) is a semi-
explicit DAE, where the differential and the algebraic
parts are decomposed. If we cast (1) in the form of

0 � F
�
ż � z � t ��� z ��� x

y � (2)

This system is called a fully implicit DAE. Note that if
∂F
∂ż

is non-singular, then it is possible to formally solve

ż as a function of z in order to obtain an ODE. How-
ever, if it is singular, this is no longer possible and the
solution z has to satisfy certain algebraic constraints.
DAEs are characterized by their index. The index of
a DAE , e.g.,(2), is the smallest number of differenti-
ation of (2) to obtain an ODE by algebraic manipula-
tions [7]. In general, the higher the index, the greater
the numerical difficulty one encounters, when trying
to integrate the DAE numerically. In a semi-explicit
index-1 DAE (1), variables whose derivatives appear
in DAE are called differential variables and the other
ones are called algebraic, i.e., x in (1-a) is differential
and y in (1-b) is algebraic [16, 17].

2.1 Numerical solvers of Scicos

In order to integrate differential equations or simu-
late any model, Scicos uses two numerical solvers;
Lsodar [8, 16] and DASKR [16, 2]. Lsodar is an
ODE solver which is used when the Scicos diagram
represents an ODE. If a diagram represents a DAE,
DASKR is used. DASKR is a variable step, variable
order index-1 DAE solver. The solver properties dis-
cussed here are those of DASKR and LSODAR; how-
ever these properties are common to most modern
solvers. The most important of these properties will
be explained in the following subsections [11].
Consistent initial condition: Most of the problems in
using standard solvers are common to both ODE and
DAE solvers. However, there is an additional difficulty
with the DAE case: the problem of re-initialization and
finding consistent initial conditions. Simulation of an
ODE can be started from any initial state, but simula-
tion of a DAE should be started from a consistent ini-
tial state. This is an additional difficulty in simulation
of DAEs.
Continuity criteria for numerical solver: DASKR

and LSODAR use a variable order variable step-size
BDF (backward differentiation formula) method to in-
tegrate. The BDF methods normally need continuity
in variables and their derivatives [1]. Consequently,

DASKR and LSODAR require that the system be suffi-
ciently smooth over an integration period. This means
that simulator must make sure to stop and reinitialize
the solver at each potential point of non-smoothness
(discontinuity, discontinuity in the derivative, etc.) of
the ODE/DAE. These ODE/DAEs require some addi-
tional solver features, such as event detection or root
finding.
Event detection: The ability to detect the time when a
discontinuity occurs, or more precisely, the time when
a function crosses some given value (by default con-
sidered zero) is of capital importance in simulation of
DAEs. For this purpose, the discontinuity function is
given to the solver as a zero-crossing function. When
a zero-crossing occurs, the solver stops the integration
and returns the exact crossing time to the main pro-
gram. So, it is important to halt the solver and restart at
the discontinuity point. The numerical solver can also
provide the direction in which a function has crossed
the zero.

2.2 Discontinuity handling in the simulator
of Scicos

DAEs may have discontinuities or may be variable
structure or may change at certain points in time. Such
types of DAEs are called hybrid DAEs. A hybrid DAE
is a way of describing non-smooth multi-model sys-
tems in terms of a finite number of smooth systems.
The idea is to divide the state space of the system into
different regions. It is assumed that the system is de-
scribed in terms of a single smooth DAE within each
region. A simple example of a multi-model DAE is:	�
 �

g
�
x �� 0 ��������� f1

�
ẋ � x � u � t � � 0������� f2
�
ẋ � x � u � t � � 0

(3)

where the DAE has two models: the first one is on
when

�
g
�
x �� 0 � and the second is when the condition

is not true. This switching may cause a discontinuity in
the signals, so they cannot be integrated by the numeri-
cal solvers. In order to cope with this problem, the dis-
continuity should be detected and the solver be reini-
tialized after the discontinuity point. To detect and lo-
calize the discontinuity time, solvers use zero-crossing
functions that cross zero over the discontinuity point.
For example, for (3), we use g

�
x � as the zero-crossing

function [11].
For localizing the discontinuity point, the simulator as-
sociates Mode variables with each zero-crossing func-
tions in Scicos. Mode variables are used to assign
and fix an ODE/DAE in every time interval between

178

M. Najafi, R. Nikoukhah

The Modelica Association Modelica 2006, September 4th – 5th

each two discontinuities. In general, when the nu-
merical solver is called, the system of equation should
not be changed. During integration, the zero-crossing
functions that indicate the conditions for the model
change are examined by the solver. In case of any
zero-crossing, the Mode variables should be updated
to feed another ODE/DAE to the solver. It should be
note that Mode variables are defined in the Scicos sim-
ulator and is transparent to the user. In Scicos, a Mode
variable is assigned systematically to each discontinu-
ity point, characterized by an If-then-Else block.
Scicos considers the system (3) in the following form:

0 � �
f1
�
ẋ � x � u � t � �
 ����� � �!

f2
�
ẋ � x � u � t � �
 ����� � �#"$ �%��� �

g
�
x �'& 0 �(���%��� ����� � �) $ �%��� �

g
�
x �'* 0 �(���%��� ����� � �+"

By default, for any discontinuity in the model,
a Mode is used. But it should be noted that
any If-then-Else, not resulting in a disconti-
nuity, can be used without Mode. If the result-
ing if-then-else expression is smooth, the mod-
eler has the possibility to give this extra information
to the simulator in order to avoid these unnecessary
solver reinitialization. That is why there is a param-
eter in If-then-Else blocks that lets the user de-
fine whether the block is used with or without zero-
crossing. The Mode variables should not be used in
some cases. For example, when a function is not de-
fined everywhere and might be called near the limit of
validity. In DAE (4),

ẋ �-, xy , x . y

y � � , 1 .0/ x �
 x & 0, 1 . / , x �
 x * 0
(4)

if the Mode variable is used the first model (i.e., / x)
is employed until the discontinuity point x � 0 is de-
tected. During the search process the solver uses / x
for x * 0 to localize the crossing point. This will
cause a failure in the integration, so the Mode variable
should not be used to permit the solver probe beyond
the discontinuity point.

3 Implementing differential equa-
tions with block diagram approach

Block diagram implementation is an old method to
represent differential equations. In this method,
through the use of multipliers, adders, integrators,
etc. a differential equations is constructed graphically.

Block diagram consists of blocks that are connected by
arrows and each block is a transducer that transforms
the incoming signals to one or more output signals.
A block can represent simple arithmetic operations or
functions without memory, but also operations whose
results are dependent on previous inputs to the block,
i.e., with memory. Several software tools such as Sci-
cos, Simulink, SystemBuild, etc. use block diagram
method to model and simulate dynamical systems. As
an example the diagram in Figure 2 displays the graph-
ical representation of equation (5).122223 22224

ẋ1
�-, 0 5 04x1 . 104x2x3

ẋ2
� 0 5 04x1

, 104x2x3
, 3 6 107x2

2�
 �
1 . sin

�
0 5 1t � , x2

, x1 � 0 5 5 ��7�%��� x3
�-, 10x1 ��8����� x3
� 10x1 5 (5)

Figure 2: Block diagram implementation of DAE (5)
in Scicos

3.1 Shortcomings in the block diagram ap-
proach

It is often possible to model differential equations via
block diagram approach, but in fact it is not an easy
and efficient way. There are several shortcomings. In a
block diagram model a small change in the differential
equations follows with another study to rearrange the
entire structure of the block diagram which may have
little similarity to the previous version. Furthermore,
most of the general-purpose simulation softwares on
the market such as ACSL, Simulink and SystemBuild
that use block diagram approach assume that a system
can be decomposed into block diagram structures with
causal interactions. This means that the models should
be expressed as an interconnection of models on semi-
explicit form, i.e., M

�
t � ẋ � f

�
x � t � , where the matrix

M
�
t � is singular [18]. Although theoretically any DAE

index-1, can be transformed into a semi-explicit DAE,

179

Modeling and Simulation of Differential Equations in Scicos

The Modelica Association Modelica 2006, September 4th – 5th

since such a transformation is done manually, it is time
consuming and sometimes it is practically impossible.
With these shortcomings, there is a rising need to have
an appropriate framework for DAE representation. A
convenient way is to work with the DAEs as the text.
The reader may think of simulation methods in which
DAEs are expressed in a textual environment, such as
writing computer programs and invoking the numer-
ical solvers, or writing Scilab or Matlab script files.
But these methods are not efficient and do not provide
a proper framework to control and interact with the nu-
merical solver. In fact, the numerical solver considers
the DAE as a black box and the internal discontinuities
remain hidden. For example, if a discontinuous DAE
is simulated directly by Dassl function in Scilab or
by ode15s function in Matlab, the simulation would
fail. As an example, when we tested DAE (5) with
Matlab, the simulation failed and the following error
message raised:
>> Warning: Failure at t=5.235698e+00.

Unable to meet integration tolerances

without reducing the step size

below the smallest value allowed

(1.860093e-14) at time t.

The problem lies in the solver control, i.e., a dis-
continuous DAE cannot be integrated by the numeri-
cal solver without discontinuity handling and a good
restart managements. Scicos has recently been de-
veloped to simulate non-casual models and the user
can write physical models symbolically with a new the
Modelica language [10].

4 Modelica language

Modelica3 is a freely available, object oriented, gen-
eral purpose language for modeling of physical sys-
tems, e.g., mechanical, electrical and control sys-
tems. The Modelica language allows a direct and
convenient specification of systems with continuous-
time and discrete-time dynamics. Although Model-
ica is a rich language having the capacity to handle
continuous-time and discrete-time behaviors, in this
paper we will focus mainly on modeling hybrid differ-
ential equations. A Modelica program or model like
any other computer language is composed of a vari-
able or component declaration section and an equation
section. Suppose that we want to model DAE (6) in

3www.Modelica.org

Modelica. 1223 224 ẋ � x , xy
ẏ � yx , 2y
x
�
0 � � 1

y
�
0 � � 2

(6)

This DAE consists of two differential variables, i.e., x
and y. They are continuous-time Real type variables
and their initial value at beginning (time=0) are 1 and
2, respectively. Here is the Modelica program:

class Oscillator "Oscillator model"
Real x(start =1), y(start=2);

equation
der(x) = x-x*y;
der(y) = x*y-2*y;

end Oscillator;

In the first part of the program, two variables and their
initial values are declared. The next part of the pro-
gram contains the equations. In this section, there are
two equations for two unknowns, i.e., der(x) and
der(y) the time derivatives of x and y. In Modelica,
equations are composed of expressions both on the left
hand side and the right hand side. It is neither required
to write the equations in form of assignments, nor to
write the equations in a specified order. It is, however,
important to provide equal number of unknowns and
equations. For instance, here is the above program that
has been rewritten without changing the model math-
ematically:

class Oscillator2 "Oscillator model"
Real x(start =1), y(start=2), v;

equation
der(x)-x+v=0;
0=-der(y)-2*y+ v;
x*y=v;

end Oscillator2;

Note that in this program, v is an algebraic variable. In
Modelica the initial value of all variables can be speci-
fied. Theoretically specifying initial value of algebraic
states is not required. This, however, would help the
numerical solver to find the consistent initial condition
for highly nonlinear DAEs or in case where there are
several solutions it acts as a guess value to help the
solver to catch the desired solution [13].
In Modelica models that are in fact the mathemati-
cal equations, it is not possible to classify (at least a-
priori) the variables as inputs and outputs. This type of
models are called acausal models. That is in contrast
with causal models where there are explicit inputs and
outputs and the outputs are computed as function of in-
puts and other internal variables. To make an analogy

180

M. Najafi, R. Nikoukhah

The Modelica Association Modelica 2006, September 4th – 5th

with computer programming languages, causal models
correspond to the use of assignment statements where
the right-hand sides of the equations are evaluated and
the result of the evaluation is assigned to the variables
on the left-hand side of the equations [10].
An acausal model cannot be simulated directly, it
should be transformed into a causal model. In general,
it is possible to convert an acausal model into a causal
model by rewriting the equations and finding the ap-
propriate causality structure in equations. In Scicos
this is done by the Modelica compiler. The Modelica
compiler receives the Modelica program and extracts
the necessary information for the numerical simulation
and generates a usable C program for Scicos.

5 Hybrid DAE modeling in Modelica

In block diagram approach one cannot model fully-
implicit DAEs directly. In Modelica this constraint
does not exist and any DAE4 can be expressed without
making any effort to transform them into an explicit
form. A multi-model DAE or a DAE with discontinu-
ity is defined with If-then-else constructs. Note
that an If should always be used with an else. As
an example, a Modelica Code for the DAE (5) follows:

class DAE2
Real x1(start=1.0), x2 (start=0.0), x3,xs;

equation
der(x1) = -0.04*x1 + 1e4*x2*x3;
der(x2) = 0.04*x1 - 1e4*x2*x3 - 3e7*x2*x2;
x3 = if (xs>0.5) then -10*x1 else 10*x1;
xs = 1 + sin(0.1*time)-x2-x1;

end DAE2;

For this DAE, the Modelica compiler automatically
extracts (xs-0.5) as the discontinuity or zero-
crossing function and assigns a Mode variable during
the generation of the C program. If-then-else
constructs can also be used to define multi-model
DAEs. For example, for the following multi-model
DAE�
 � x & 0 �9������� � 0 � ẋ3 , xyẋ , x . y2 . 1

0 � ẏẋ . yx , x������� � 0 � ẏ , 2yẋ . y . x2 , 1
0 � 5ẋ . 2 , 2yx . ẏx . sin

�
t �

we can write this Modelica code:
0=if (x>=0) then der(x)ˆ3-x*y*der(x)-x+y*y+1

else der(y)-2*y*der(x)+y+x*x-1;

0=if (x>=0) then der(y)*der(x)+y*x-x
else der(x)*5+2-2*y*x+der(y)*x+sin(time);

4In the current version of the Modelica compiler of Scicos only
index-1 DAEs are accepted

By default, the Modelica compiler of Scicos associate
Mode variables with discontinuity points. When a dis-
continuity does not need any special treatments, the
compiler should be informed with noEvent() oper-
ator. For example, for DAE (4) we write

der(x)=-y*x-x+y;
y=if noEvent(x>=0) then -1+sqrt(x)

else -1+sqrt(-x);

In this case, the Modelica compiler does not consider
the condition as a zero-crossing functions and during
the simulation, the solver does not stop at x=0. For
(x>0), / x is evaluated and for (x<0), / , x is used.
In general, noEvent() performs two things: First,
it inhibits the solver to probe for solutions beyond
the limit of validity. Then, it prevents the solver
from halting the integration and doing an unnecessary
restart.

Modelica can also be used for mixed continuous-time
and discrete equations. For the discrete-time parts,
the synchronous data flow principle with the single
assignment rule is used. Discrete event and discrete-
time models are supported by when statements. The
equations in a when clause are conditionally acti-
vated at instants (called event) where the when con-
dition becomes true. Here is an example to show the
way a discrete-time equation is written in Modelica.
The difference equation should be updated whenever x
crossed zero with a positive to negative direction, i.e.,�

ẍ �-, 4x:�; ��< ��� z
�
k . 1 � � 0 5 9 z

�
k � , 0 5 2

we can write the following modelica program.

class Sine
Real x(start=1), y(start=0);
discrete Real z(start=3), z1(start=-1);

equation
der(x)=y;
der(y)=-4*x;
when (x<0) then

z=0.9*z-0.2;
end when;

end Sine;

The Modelica compiler deduces the direction of the
zero-crossing form the condition (x<0). Because this
condition becomes true when the x becomes negative.
So far, Scicos provides a minimum support for Model-
ica discrete models. That is because the discrete time
models can be modeled in the Scicos environment. It
is however envisaged to improve Modelica compiler
of Scicos to support Modelica discrete models.
In when clauses, continuous-time variable can also
be initialized. A special operator reinit(state,

181

Modeling and Simulation of Differential Equations in Scicos

The Modelica Association Modelica 2006, September 4th – 5th

NewValue) can be used to assign new values to the
continuous states of a model at an event time. reinit
can only be employed in the body of a when-clause.
As an example, consider the bouncing ball system.
Whenever the ball hits ground, i.e., its height be-
comes negative, the velocity changes sign and damp-
ens down. Here is a Modelica code for this hybrid
system.

class Bounce
Real y(start=10), v(start=0);

equation
der(y) = v;
der(v) = -9.8;
when y < 0 then

reinit(v, -0.9*v);
end when;

end Bounce;

6 Simulation of Modelica programs

Modelica is a language that provides an environ-
ment to express the differential and algebraic equa-
tions. Note however that the main goal is simulat-
ing the models. In order to simulate Modelica mod-
els, they should be transformed into a causal pro-
gram. For that, the Modelica models should be com-
piled. There are several Modelica compilers such as
Dymola5 and Open-Modelica6 . Scicos has its own
Modelica compiler called Modelicac (acronym of
”Modelica compiler”) for a subset of the Modelica lan-
guage. Modelicac is an external tool, i.e., it is inde-
pendent of Scilab. By default, Modelicac comes with
a module that generates a C code for Scicos blocks.
However, since Modelicac is free and open source, it
is possible to develop code generators for other targets
as well.
A Modelica program is associated with a Scicos block.
A Scicos block whose behavior is written in Model-
ica is called an implicit block [10]. With the asso-
ciated implicit block the input/output variables of the
Modelica program can be defined or visualized. This
block may be connected to other blocks to build a big-
ger model, see for example Figure 3 in which a sim-
ple electrical circuit has been built with implicit blocks
and some output variables are visualized with ordinary
or explicit blocks..
The Modelica compiler uses the input and output vari-
ables to establish a causality between the variables in
the Modelica program. In the next stage, the compiler

5www.dymola.com
6www.modelica.org

L=0.0001L=0.0001
+ −

C= 0.1

+ −

C= 0.1 Voltmeter

Source

VV

~
2
~
2

AA
MScopeMScope

R=0.2R=0.2

Ammeter

Figure 3: A Modelica block for Oscillator3.mo

simplifies the equations and eliminates the unneces-
sary variables if possible. In the final stage a C pro-
gram that has the input/output behavior of the Model-
ica program is generated [13]. Most of the time, the
simplification and elimination of variables reduces the
size of DAE that consequently reduces the integration
time. In addition, a semi-explicit DAE form may be
obtained that simplifies the numerical integration [12].
In order to demonstrate the simulation of a complete
example, consider this Modelica program

class Oscillator3 "Oscillator model"
Real x(start =1), y(start=2), u;

equation
der(x) = x-x*y;
der(y) = x*y-u*y;

end Oscillator3;

where u is unknown and is defined by user or an-
other block. To simulate Oscillator3, we use a
Modelica block (see Fig. 4) . In the dialog box of
the block (see Fig. 5) an input variable u and two out-
put variables x,y are defined. After clicking on OK,
another window lets the user write the program (see
Figure 6).

MScopeMScope
Block
Modelica
Block
Modelica

Figure 4: A Modelica block for Oscillator3.mo

When the program is compiled, a C program is gener-
ated. Here is a fragment of the generated code.

182

M. Najafi, R. Nikoukhah

The Modelica Association Modelica 2006, September 4th – 5th

Figure 5: Defining the Modelica program input/output
variables

Figure 6: Modelica program in a Modelica block

if (flag == 0) { // generated DAE code
res[0] = xd[0]+x[0]*x[1]-x[0];
res[1] = u[0]*x[1]+xd[1]-x[0]*x[1];

}else if (flag == 1) { //output update
y[0][0] = x[0];
y[1][0] = x[1];

}else if (flag == 4) {// initial values
x[0] = 1.0;
x[1] = 2.0;

}

The simulation result is given in Figure 7.
As another example, consider the DAE (5) whose
block diagram implementation is depicted in Figure 2.
In this case, the Modelica block has only three out-
puts, see Figure 8-10. The simulation result is given in
Figure 11.

7 Conclusion

Modeling and simulation of DAEs via block diagram
approach has several shortcomings. Scicos which is a
simulation software based on block approach has re-
cently been developed to provide another approach for

0 4 8 12 16 20 24 28 32 36 40
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0

+

0 4 8 12 16 20 24 28 32 36 40
−3.0
−2.2
−1.4
−0.6

0.2
1.0
1.8
2.6
3.4
4.2
5.0

+

0 4 8 12 16 20 24 28 32 36 40
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0

+

Figure 7: Simulation results for the Scicos diagram in
Figure 4

MScopeMScopeBlock
Modelica
Block
Modelica

Figure 8: A Modelica block for the DAE (5)

modeling DAEs, i.e., using the Modelica language. In
this paper, with some examples we explained the way
hybrid DAEs are simulated in Scicos. The Modelica
language and its use in Scicos in modeling and simu-
lation of hybrid DAEs were explained. In the last part
of the paper, a simple Scicos block is introduced to
write and simulate Modelica programs in Scicos.

References

[1] BRENAN, K. E., CAMPBELL, S. L., AND PET-
ZOLD, L. R. Numerical solution of initial-
value problems in differential-algebraic equa-
tions. SIAM pubs., Philadelphia (1996).

[2] BROWN, P. N., HINDMARSH, A. C., AND PET-
ZOLD, L. R. Consistent initial condition calcu-
lation for differential-algebraic systems. SIAM
Journal on Scientific Computing 19, 5 (1998),
1495–1512.

[3] CAMPBELL, S. L. Numerical methods for un-
structured higher index daes. Annals of Numeri-

183

Modeling and Simulation of Differential Equations in Scicos

The Modelica Association Modelica 2006, September 4th – 5th

Figure 9: Defining the Modelica program input/output
variables

Figure 10: Modelica program in a Modelica block

cal Mathematics 1 (1994), 265–278.

[4] CAMPBELL, S. L., CHANCELIER, J.-P., AND

NIKOUKHAH, R. Modeling and simulation
Scilab/Scicos, 1st ed. Springer Verlag, 2005.

[5] CAMPBELL, S. L., MOORE, E., NAKASHIGE,
R., ZHONG, Y., AND ZOCHLING, R. Constraint
preserving integrators for unstructured higher in-
dex daes. Zeitschrift fuer Angewandte Mathe-
matik und Mechanik (ZAMM) 76 (1996), 83–86.

[6] CHANCELIER, J. P., DELEBECQUE, F.,
GOMEZ, C., GOURSAT, M., NIKOUKHAH,
R., AND STEER, S. An introduction to Scilab,
1st ed. Springer Verlag, Le Chesnay, France,
2002.

[7] GEAR, C. W. Differential-algebraic equation in-
dex transformations. SIAM. J. Sci. Stat. Comp. 9
(1988), 39–47.

[8] HINDMARSH, A. C. Lsode and lsodi, two
new initial value ordinary differential equation

5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50
−0.10

0.04
0.18
0.32
0.46
0.60
0.74
0.88
1.02
1.16
1.30

+

5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50
−1.0e−03
−4.0e−04

2.0e−04
8.0e−04
1.4e−03
2.0e−03
2.6e−03
3.2e−03
3.8e−03
4.4e−03
5.0e−03

+

5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50
−12.0

−9.6
−7.2
−4.8
−2.4

0.0
2.4
4.8
7.2
9.6

12.0

+

Figure 11: Simulation result for the diagram in Fig-
ure 4

solvers. ACM-Signum Newsletter 15 (1980), 10–
11.

[9] NAJAFI, M., AZIL, A., AND NIKOUKHAH, R.
Implementation of continuous-time dynamics in
scicos. 15th ESS Conference, Delft, the Nether-
lands (October 2003).

[10] NAJAFI, M., AZIL, A., AND NIKOUKHAH,
R. Extending scicos from system to component
level simulation. ESMC2004 international con-
ference, Paris, France (October 2004).

[11] NAJAFI, M., AND NIKOUKHAH, R. The use of
the numerical integrator in scicos, a user friendly
graphical based simulation software. European
Journal of Automation (JESA) Special issue on
modeling, formalism, methods and simulation
tools (2006), 95–111.

[12] NAJAFI, M., NIKOUKHAH, R., AND CAMP-
BELL, S. L. The role of model formulation in
dae integration: Experience gained in developing
scicos. 17th IMACS World Congress Mathemat-
ics and Computers in Simulation, Paris, France
(July 2005).

[13] NAJAFI, M., NIKOUKHAH, R., STEER, S., AND

FURIC, S. New features and new challenges in
modeling and simulation in scicos. IEEE con-
ference on control application, Toronto, Canada
(2005).

[14] NIKOUKHAH, R., AND STEER, S. Hybrid sys-
tems: modeling and simulation. In COSY: Math-

184

M. Najafi, R. Nikoukhah

The Modelica Association Modelica 2006, September 4th – 5th

ematical Modelling of Complex System, Lund,
Sweden (September 1996).

[15] NIKOUKHAH, R., AND STEER, S. Scicos: A dy-
namic system builder and simulator, user’s guide
- version 1.0. Tech. Rep. RT-0207, INRIA Tech-
nical Report, Le Chesnay, France, June 1997.

[16] PETZOLD, L. R. Automatic selection of meth-
ods for solving stiff and nonstiff systems of or-
dinary differential equations. SIAM J. Sci. Stat.
Comput 4 (1983).

[17] PETZOLD, L. R. Order results for implicit
runge-kutta method applied to differential alge-
braic systems. SIAM. J. Numer. Anal. 23 (1986),
837–852.

[18] SHAMPINE, L., REICHELT, M. W., AND

KIERZENKA, J. A. Solving index-1 DAEs in
MATLAB and Simulink. j-SIAM-REVIEW 41, 3
(1999), 538–552.

185

Modeling and Simulation of Differential Equations in Scicos

The Modelica Association Modelica 2006, September 4th – 5th

186

M. Najafi, R. Nikoukhah

The Modelica Association Modelica 2006, September 4th – 5th

How to dissolve complex dynamic systems for wanted unknowns with

Dymola / Modelica

Jochen Köhler

ZF Friedrichshafen AG

Graf-von-Soden-Platz 1, D-88046 Friedrichshafen, Germany

Abstract

For developing optimized hybrid driveline strategies

a way was found to make complex models of these

systems available in an optimization process. The

challenge here is to make models built up with Mod-

elica available for an optimization process in other

tools like Matlab. The simulation feature of Dymola

does not help here because the optimization is done

in one point in time.

After describing the optimization problem for these

drivelines the special way of implementing it in

Modelica is emphasized.

When the model is built it had to be exported into

Matlab as a MEX-funtion to make it available for

optimization algorithms.

Keywords: Dissolving equations; C-Interface;

dsblock; Matlab Mex File

1 Introduction

One main issue in control theory is to drive a system

in an optimal way. One task is to find an optimal

trajectory to get to a final desired state that is known.

If this final state is not known or if there is no “final”

another way is to optimize just the present working

point of the system. These optimal working points

for different working conditions can be found by an

optimization process. To be able to optimize it you

have to describe the model mathematically. In prin-

ciple, Modelica is a very good language to describe

complex systems in a mathematical form and Dy-

mola is a good and easy to use solver for it. With

Modelica you can build up models very quickly and

it’s easy to modify these models.

But the normal way to use Modelica is to build mod-

els of complex systems to simulate them in time.

This does not help here, because we need to dissolve

such systems at one point in time for wanted un-

knowns under the assumption that certain values are

known. In this case, it is no simulation issue any-

more! This is not only useful for optimizing working

points of dynamical systems (e.g. minimum con-

sumption at a specified output power) but also for

finding extreme working points of it (e.g. maximum

possible Output torque of a driveline). It would be

nice to benefit from Modelica also for this type of

task.

In principle, Dymola does all the critical work to

solve this problem: It manipulates the originally

given equations to make the numeric system dissolv-

able and generates C-Code, but there is no standard

way to make it useable for the described task.

The following approach to do this is elucidated on

the basis of optimizing the operation of hybrid drive-

lines.

2 Optimizing the work point of a hy-

brid driveline

The prior task of a hybrid driveline is to save fuel

and minimize emissions. Furthermore there are many

other conditions that have to be taken into account

Figure 1: Model of a “Prius” driveline

P
la

n
e
ta

ry

ra
tio

=
-i_

0-1

E
M

1

E
M

2

Flange_...Flange_in

Negative...PositiveP...

bus

w

w
In

S
e
n

s w

w
In

S
e
n

s
1

ZBF

G
e

a
r_

E
M

2
=

i_
E

M
2

187

How to Dissolve Complex Dynamic Systems for Wanted Unknowns with Dymola / Modelica

The Modelica Association Modelica 2006, September 4th – 5th

like State of charge of the battery, performance de-

mands and comfort issues. To get the “best compro-

mise” of these goals you need a driving strategy that

operates the hybrid system always on an appropriate

working point.

2.1 Task of a hybrid driving strategy

A driving strategy must interpret the driver com-

mand given by the accelerator α and brake pedal

β as a demanded torque OutT̂ at the actual driving

speed Outω .

Out
OutOut TT

ω
βα),(ˆˆ =

Eq. 1

Dependant on the driveline topology there are many

possibilities to perform this torque. Taking the “Toy-

ota Prius system” (Figure 1) as an example of a

power split transmission, this torque can be delivered

as a combination of torques from the internal com-

bustion engine (ICE), and both electric machines.

You could define the work point with some heuristic

rules in the driving strategy but then it’s very diffi-

cult to get the over all optimum of the whole system.

Another approach is to get this optimum using an

optimizing process. Therefore you need all the

torques and speeds of the ICE and all EM’s.

When desired speed ICEω̂ , acceleration ICEω&̂ and

torque ICET̂ of the ICE, furthermore the desired ac-

celeration of the vehicle, represented as angular ac-

celeration at the gearbox output Outω̂& , are selected as

degrees of freedom, a well-defined system can be

dissolved to this form.

Eq. 2

You don’t have to describe the system in steady-

state! However by setting the accelerations to zero,

you get this special case.

This equation can be used to get the torques, speeds

(and accelerations) of the EM’s and in consequence

the actual consumption of the ICE and the current

through the battery.

2.2 Components that effect a performance in-

dex

To be able to optimize the hybrid system a perform-

ance index G (Eq. 3) has to be defined. In the end it

depends on the actual consumption C of the ICE and

the current I through the battery that in turn depend

on the demanded torques and speeds given from the

driving strategy.

() ()
ICEICEICEOutOutOut TTGICG ωωωω && ˆ,ˆ,ˆ,ˆ,,ˆ, =

Eq. 3

There are a lot of components that have effect on

these values:

� Vehicle with its driving resistance

� ICE

� EM’s

� Battery

� Gears in the driveline

The mathematical description of each component can

be rather complex. Just as complex is the interaction

between these components. For a Modelica user the

obvious way to address this problem would be to

build a model of the complete driveline using de-

tailed models of the components. It’s the task of the

Modelica Interpreter / Solver to build a system of

nonlinear equations that can be dissolved numeri-

cally.

3 Modeling the hybrid driveline for

numeric solving

3.1 Defining knowns and unknowns

Having the mentioned components as model compo-

nent in Modelica it is easy to build a model of the

complete hybrid driveline. By using the block

 Modelica.Blocks.Math.TwoInputs,

()

()ICEICEICEOutOutOut

EMEMEMEM

TT

TT

ωωωω

ωω

&& ˆ,ˆ,ˆ,ˆ,,ˆ

,,, 2211

Φ

=

188

J. Koehler

The Modelica Association Modelica 2006, September 4th – 5th

The input values from function Φ (Eq. 2) can be

defined as inputs to this model. It turned out to be the

best way to declare the inputs as parameters in Mod-

elica. The block

Modelica.Blocks.Sources.Ramp

is the best way to define the speeds and accelerations

by putting the parameters in here.

In Figure 2 the Ramp for the ICE speed and accelera-

tion can be found in circle No. 1 that is connected to

the TwoInputs block. Accordingly the speed of

the output shaft is defined in the circle No. 2 of

Fiqure 2. The desired torque of ICE and output are

defined in a Modelica expression block.

As output a connector (circle No. 3 in Figure 2) with

the wanted unknowns is defined and connected to the

appropriate components or bus signals.

The main driveline is represented by the transmis-

sion model in circle No. 4 of Figure 2. You can just

replace this component by another transmission if

you want to. The frame around it just keeps the

same.

In this special case, to calculate the unknown values

for a certain point in time the initialization feature of

Modelica / Dymola is used.

3.2 Modifications of components for numeric

solving

Depending on the possibly variable structure of the

transmission, the number of degrees of freedom can

change. This has to be handled in the initial

equation block of the complete model. Another

possible problem can be “inconsistent speeds” be-

cause of any ratios within the driveline or clutches.

The simpliest case is a clutch that is known to be

stuck. Here it is useful to replace it by a fixed con-

nection.

If there is a clutch used as launching unit in a parallel

hybrid, it is a bit more complicated. We have “incon-

sistent speeds” if the given speeds of the ICE ICEω̂

and the output Outω does not match the condition

Figure 2: Modelica model of a hybrid driveline with given inputs and out put

FuelMa...

ZBF

WaveP...

Tout

tau

Jice

J=ZFlib.ZBF.Functions.GP(use.DB, "JMot", true)

S
_
w

ic
e

T...

S
_
w

i..
.

TOUT ...

CTOUT

RampWOUT

duration=1

Tice

TIC...TIC...Table...
ZB...

1
Re...

0.0
Re...

LossyGear1=1

Ground1

Battery

P=const

TICE

CTICE

RampWICE

duration=1

T...

H...

Transmission

in
te

g
e
r...

G
E
A

R

bus

1
2

3

4

5

189

How to Dissolve Complex Dynamic Systems for Wanted Unknowns with Dymola / Modelica

The Modelica Association Modelica 2006, September 4th – 5th

Eq. 4

where Geari is the gearbox ratio. In this case the

launching clutch has to be in a slipping state. Other-

wise it has to be stuck. With the standard clutch

model in the Modelica standard library, Dymola is

not able to solve the problem. Introducing a “special

clutch” just as a torque element, the system is solv-

able for Dymola (See Figure 3).

Doing it this way, Dymola calculates the needed

torque f_normalized to satisfy the given inputs.

Figure 3: Modelica Code of specialized clutch

Another point to be taken care of are possible delays

in form of FirstOrder or SecondOrder blocks

that are inserted in the model to make its behaviour

smooth. In normal simulation mode they start nor-

mally at a zero initial state and get rather fast to their

“steady state”, but if you want to get this “steady”

result just at initialization of the model you have to

think of eliminating these blocks or to define some

extra initial equations to avoid this problem.

4 Generate the numeric solver

After doing the steps described above, a Modelica

model exists, that can be used to calculate the wanted

unknowns with a defined input. You can perform

this calculation within Dymola interactively by just

starting the model for a short period of time and look

for the results at initial time. But if you want to op-

timize working points you have to do this very often.

In addition to this you should be able to make this

calculation available for an optimizing algorithm as

they are implemented for example in Matlab. There-

fore the Modelica model built above has to be ex-

ported into an appropriate environment.

4.1 MEX-function generation in Matlab

Dymola provides an export to Matlab Simulink in

form of a so called S-Function. To do this it embedds

the C-Code generated during the translation process

in the S-Function interface of Simulink. But this does

not help her because the model shall not be simu-

lated but be called for one point in time with certain

inputs. To provide this functionality one reasonable

way is to import the generated C-Code into Matlab

as a so called MEX-function. Instead of the S-

Function interface the MEX gateway function

void mexFunction(int nlhs, mxArray

*plhs[],

 int nrhs, const

mxArray *prhs[])

has to be used. To dissolve the hybrid driveline, the

code generated from Dymola (dsmodel.c) is

called within this gateway function. In the generated

code a function

dsblock(&idemand, …, inputs, para-

meters, …, outputs)

is implemented that contains all system equations.

The function dsblock can perform different tasks like

initialization, calculating derivatives, handling events

and so on. For this task, only the initialization func-

tionality is needed. Here’s the calling sequence:

1. Set inputs and parameters of the

model from prhs of mex function.

2. Call initialization of dsblock

3. Put the wanted values from outputs of

dsblock into plhs of mex function.

You can compile this MEX-gateway function with

the MEX-compiler and get a DLL that can be called

from the Matlab command line or in a Matlab M-

Script as any other Matlab function. In this form you

can use it for example within a fitting function for

the Matlab Optimization Toolbox.

4.2 Parametrizing the function

For one kind of driveline the mex function should be

built only once. As a consequence the parameters

must not be defined within the model. Therefore all

application dependable parameters are defined in

ASCII files that can be read by the model itself dur-

ing initialization. This is described in [1]. When in-

cluding the generated code from Dymola, we have to

insert a string variable to define the name of the AS-

CII file that shall be read by the model, because there

is no possibility to define this as a variable within

Modelica. This string variable is an input variable of

the MEX-function and is propagated to the model.

model Clutch_OutT extends

 Modelica.Mechanics.Rotational

 .Interfaces.Compliant;

public

Modelica.Blocks.Interfaces.RealInput

 f_normalized;

equation

 tau = f_normalized;

end Clutch_OutT;

OutGearICE i ωω ⋅=ˆ

190

J. Koehler

The Modelica Association Modelica 2006, September 4th – 5th

5 Conclusions

The main goal to make the efforts described above is

to get optimized driving strategies for many variants

of hybrid drivelines in a short period of time.

Modeling complex systems in Modelica / Dymola is

easy to do and fast. So this is the most efficient way

to describe them and make them available for opti-

mization issues. A lot of hybrid drivelines could be

provided to optimization process this way. The final

results when using the optimized working point in a

simulation are very good.

The possibility to dissolve such systems not “only”

for time simulation is a great enrichment in many

other engineering tasks apart from optimizing hybrid

driving strategies.

References

[1] Köhler J., Banerjee, A. Usage of Modelica in

modeling transmissions in ZF, ZF Frie-

drichshafen AG, 2005.

191

How to Dissolve Complex Dynamic Systems for Wanted Unknowns with Dymola / Modelica

The Modelica Association Modelica 2006, September 4th – 5th

192

J. Koehler

The Modelica Association Modelica 2006, September 4th – 5th

Using Modelica Models for Complex Virtual Experimentation
with the Tornado Kernel

Filip H.A. Claeys Peter Fritzson Peter A. Vanrolleghem
Department of Applied Mathematics, Programming Environments modelEAU

Biometrics and Process Control (BIOMATH) Laboratory (PELAB) Département de génie civil
Ghent University Linköping University Université Laval

Coupure Links 653 Campus Valla Pavillon Pouliot
B-9000 Gent SE-581 83 Linköping Québec, G1K 7P4

Belgium Sweden QC, Canada
E-mail: fc@biomath.ugent.be E-mail: petfr@ida.liu.se E-mail: peter@modelEAU.org

Abstract

Tornado is a software kernel for virtual experimen-
tation on the basis of ODE/DAE models. Recently,
a model compiler has been developed that converts
flat Modelica code to executable models suitable for
use with the Tornado kernel. As a result, a subset of
Modelica models can now be used for tasks such as
parameter estimation, scenario analysis, Monte Carlo
simulation, sensitivity analysis and steady-state anal-
ysis. The inherent computational complexity of the
virtual experiment types implemented by Tornado can
be efficiently handled by the kernel’s semi-automated
distributed execution capabilities.

Keywords: Model compiler; Virtual experimentation;
Tornado; Modelica

1 Introduction

Tornado [1] is an advanced kernel for modelling and
virtual experimentation (i.e., any evaluation of a model
such as simulation, optimization, scenario analysis,
. . .) that was recently jointly developed by BIOMATH
(Ghent University) and HEMMIS N.V. (Kortrijk, Bel-
gium). Although the kernel is generic in nature, it is
mostly adopted in the water quality domain. In water
quality research, the biological and/or chemical qual-
ity of water in rivers, sewers and wastewater treatment
plants (WWTP) is studied. Research in this domain is
facilitated by a number of models that have received
a formal or de facto standardization status. Most no-
table are River Water Quality Model No.1 (RWQM1)
[2] and the Activated Sludge Model (ASM) series [3].
Water quality models typically consist of large sets
of non-linear Ordinary Differential Equations (ODE)

and/or Differential-Algebraic Equations (DAE). These
equations are mostly well-behaved, although disconti-
nuities occur regularly. The complexity of water qual-
ity models is therefore not in the nature of the equa-
tions, but in the sheer number. In WWTP, smaller
models such as the well-known Benchmark Simula-
tion Model (BSM) [4] consist of approximately 150
derived variables. Larger systems have up to 1,000
derived variables and over 10,000 (partly coupled) pa-
rameters. On a typical workstation, a simulation run
usually lasts minutes to hours.
The modelling language that has thus far been used
in the scope of Tornado is MSL (Model Specification
Language) [5]. This language is similar to Modelica
[6] in the sense that it is high-level, declarative and
object-oriented. In fact, both MSL and Modelica were
designed according to the ideas resulting from the
1993 ESPRIT Basic Research Working Group 8467 on
“Simulation for the Future: new concepts, tools and
applications” [7]. Although similar in nature, MSL
lacks some of the readability and expressiveness of
Modelica. Therefore, it was decided to work towards
inclusion of support for Modelica-based modelling in
the Tornado framework.
The most recent result of our efforts to bridge the gap
between Modelica and Tornado is a model compiler
that converts flat Modelica (i.e., a Modelica model de-
scription that does not rely on inheritance nor decom-
position) to executable models suitable for use with the
Tornado kernel. At the moment, this compiler is a pro-
totype that supports basic functionalities of the Mod-
elica language. However, it does allow for a subset of
Modelica models to be used in the context of Tornado.
Since solutions already exist that generate flat Model-
ica from full Modelica (e.g., omc - the OpenModelica
Compiler), only the conversion from flat Modelica to

193

Using Modelica Models for Complex Virtual Experimentation with the Tornado Kernel

The Modelica Association Modelica 2006, September 4th – 5th

executable model code had to be implemented.
The sequel of this paper is structured as follows: Sec-
tion 2 and Section 3 respectively provide a further in-
troduction to Tornado and its complex virtual exper-
imentation capabilities. Subsequently, Section 4 ex-
plains how Modelica models can be used in Tornado.
Section 5 discusses two simple Modelica models for
which virtual experiments were run with Tornado. Fi-
nally, Section 6 contains some conclusions and refer-
ences to future work.

2 Tornado

The Tornado kernel for modelling and virtual experi-
mentation attempts to offer a compromise between the
computational efficiency of custom hard-coded (typ-
ically FORTRAN or C) model implementations and
the flexibility of less computationally efficient generic
tools such as MATLAB. In Tornado, hierarchical mod-
els are specified in high-level, declarative, object-
oriented modelling languages such as MSL [5] and -
since recently - also Modelica. From these high-level
specifications, efficient executable code is generated
by a model compiler. Using the dynamically-loadable
executable models generated by the model compiler,
Tornado allows for running a variety of so-called vir-
tual experiments. Virtual experiments are the virtual-
world counterpart of real-world experiments, similar
to the way models relate to real-world systems. A
highly simplified conceptual diagram of Tornado is
shown in Figure 1.

Figure 1: Tornado Conceptual Diagram

The Tornado kernel relies on a flexible input provider
and output acceptor mechanism to deal with I/O for
virtual experiments. Input can be provided by any
combination of data files, internal data buffers and data

generators. Output will be accepted by any combina-
tions of data files, internal data buffers and plot han-
dles (Note: since Tornado is merely a kernel, it does
not have any data visualization interface of its own).
In order to allow for the kernel to be deployed in a di-
verse array of applications, it has been equipped with
multiple interfaces. Next to its native C++ interface,
Tornado currently also has a C, .NET and MATLAB
MEX interface (cf. Figure 2). The kernel is portable
across platforms and was designed according to the
three-tier principle. Most persistent representations
of information types are XML-based. The grammar
of these representations is expressed in XSD (XML
Schema Definition) format and mimics very closely
the internal representation of the respective types of
information. An interesting feature of Tornado is the
fact that it allows for dynamic loading of numerical
solvers for tasks such as integration, optimization and
Latin Hypercube Sampling. In order to support this
principle, a generalized framework has been set up [8].

Figure 2: Tornado-based Interfaces and Applications

Several applications (graphical and other) can be built
on top of Tornado. Examples include the next gener-
ation of the WEST R© [5] commercial modelling and
simulation tool for WWTP’s, its research-oriented
counterpart named EAST and DHI’s MOUSE-TRAP
(cf., http://www.dhigroup.com/Software/Urban.aspx).
However, the most direct way of using the kernel is
through the Tornado CUI (Command-line User Inter-
face) suite, which is a comprehensive set of tools that
is included with the kernel distribution. Full-fledged
graphical applications such as WEST R© are conceived
to be used by all types of users (expert, intermediate,
novice). The Tornado CUI suite however focuses on
experts only. Table 1 gives an overview of the most
commonly used command-line tools. The results dis-

194

F.H.A. Claeys, P. Fritzson, P.A. Vanrolleghem

The Modelica Association Modelica 2006, September 4th – 5th

cussed further in this paper were obtained through the
Tornado CUI suite.

Table 1: Tornado CUI Suite

Program Description

tbuild Compiles and links executable model code to a

dynamically-loadable binary object (.dll / .so)

tcreate Creates an empty XML description of a virtual

experiment

texec Executes virtual experiments described in XML

tinitial Dumps all model quantity values after initialization

tmsl Compiles a high-level MSL model to executable

model code

tobj Computes aggregation functions and other criteria

from simulation trajectories

tproject Manages sets of related experiments and

connection graphs

tsort Sorts a Tornado-generated data file

t2msl Converts a connection graph to MSL code

3 Complex Virtual Experimentation

Tornado consists of strictly separated modelling and
virtual experimentation environments. Virtual exper-
iments can either be atomic or compound. The lat-
ter are hierarchically structured whereas the first can-
not be further decomposed. Atomic experiment types
that are available in Tornado are dynamic simulation
and steady-state analysis. The most straightforward
types of compound experiments are optimization, sce-
nario analysis, Monte Carlo analysis (e.g. using Latin
Hypercube Sampling) and sensitivity analysis. More
convoluted types of compound experiments are also
available, such as combinations of scenario / Monte
Carlo analysis and optimization. Thanks to the object-
oriented nature of Tornado, new virtual experiment
types can easily be added. Several types of virtual ex-
periments are based on the computation of objective
values. As far as possible, the same set of objective
types is available for each objective-based experiment
type, thereby promoting orthogonality.
Given the hierarchical nature of compound virtual ex-
periments, computational complexity can be substan-
tial. Tornado therefore allows for coarse-grained grid-
ification of certain types of compound virtual experi-
ments. Supported distributed execution environments
include BIOMATH’s Typhoon cluster software [9] and
CERN’s LCG-2 grid middleware (cf., http://public.eu-

egee.org). Tornado generates generic job descriptions
for dynamic execution. Typhoon is capable of directly
interpreting these generic job descriptions, whereas for
LCG-2, an additional conversion step has to be ap-
plied.
Using Tornado’s powerful complex virtual experimen-
tation capabilities, large risk/cost/benefit analyses for
integrated water systems were carried out, including
Latin Hypercube Sampling from multi-dimensional
parameter spaces and the automated execution of
1,000’s of simulations [10], each requiring an average
of 0.5h of computation time.

4 Using Modelica Models in Tornado

In Tornado, executable models consist of two distinct
parts. The first part is represented in C and is made up
of the actual model equations, in addition to a number
of flat arrays containing data containers for parameters
and variables. The second part is a XML representa-
tion of meta-information, i.e., information regarding
names, descriptions, units, constraints, . . . of parame-
ters, variables and models. The relationship between
these hierarchically structured meta-information items
and the respective elements of the flat C arrays is
also expressed in XML. The availability of meta-
information in executable models allows for the latter
to be self-describing, which is a requirement given the
strict separation between modelling and experimenta-
tion in Tornado.
In the Tornado framework, model compilers are to
generate executable models in the format that was de-
scribed above. The MSL model compiler that is part
of the Tornado suite generates these executable mod-
els directly from MSL input. In the case of Mod-
elica however, the approach is two-phased. During
the first phase, the OpenModelica Compiler is used to
generate flat Modelica (.mof) from full Modelica in-
put (.mo). During the second phase, a new Tornado
CUI tool called mof2t is used to convert flat Mod-
elica to the Tornado executable model format. This
approach was mainly inspired by practical considera-
tions (lack of resources for the re-implementation of
the non-trivial full-to-flat Modelica conversion). At
the moment mof2t only supports a subset of flat Mod-
elica.
For the development of the mof2t compiler, the
same technologies and libraries were used as for
the remainder of the Tornado framework, i.e., C++,
flex/bison, and Elcel Technologies OpenTop (cf.,
http://www.elcel.com). The mof2t compiler nicely

195

Using Modelica Models for Complex Virtual Experimentation with the Tornado Kernel

The Modelica Association Modelica 2006, September 4th – 5th

completes the Tornado CUI suite, which in all consists
of approximately 20 tools. The relationship between
mof2t and the most important other CUI tools is de-
picted in Figure 3.

Figure 3: Relationship between the Main Tornado CUI
Tools

5 Examples

In this section, two simple cases are presented that il-
lustrate the use of Modelica models in Tornado. The
first case is based on the ubiquitous Van der Pol sys-
tem, which is frequently found as an example in mod-
elling and simulation textbooks when stiff systems are
discussed. The second case is based on the ARGESIM
- C1 simulator comparison. In both cases, results
were obtained using the Tornado CUI suite. Evidently,
when using Tornado through one of the GUI appli-
cations that it supports, most of the technical details
shown below are hidden from the user.

5.1 Van der Pol

5.1.1 Model

The Van der Pol system can be described in Modelica
as follows:

VanDerPol.mof:

fclass VanDerPol
Real x(start = 1.0);
Real y(start = 1.0);
parameter Real mu = 1;
equation
der(x) = y;
der(y) = -x + mu * (1.0 - x * x) * y;

end VanDerPol;

Given the fact that this model does not rely on inher-
itance nor decomposition, there is no difference be-
tween its full and flattened version. In order to gener-
ate executable code for Tornado and convert this code
into a dynamically-loadable object, the mof2t and
tbuild CUI tools are to be used:

> mof2t VanDerPol.mof

Flat Modelica to Tornado Convertor (Build: Jun 23 2006)

I Loading license spec: Tornado.lic|.Tornado
I Checking MAC address...
I Starting executable model code generation...
I Executable model code generation ended
I Total execution time: 0 seconds

> tbuild -p win32-msvc7.1 VanDerPol

Tornado Model Builder (Build: Jun 23 2006)

I Loading license spec: Tornado.lic|.Tornado
I Checking MAC address...
I Starting build...
I Build ended
I Total execution time: 0 seconds

The executable C code and XML meta-information
that is generated by mof2t is as follows:

VanDerPol.c:

#include <math.h>
#include <stdlib.h>

#include "Tornado/EE/Common/DLL.h"
#include "Tornado/EE/MSLE/MSLE.h"

#define _mu_ pModel->Params[0]
#define _time_ pModel->IndepVars[0]
#define _x_ pModel->DerVars[0]
#define _D_x_ pModel->Derivatives[0]
#define _y_ pModel->DerVars[1]
#define _D_y_ pModel->Derivatives[1]

void ComputeInitial(struct TModel* pModel) {}

void ComputeState(struct TModel* pModel)
{
_D_x_ = _y_;
_D_y_ = -_x_ + _mu_ * (1 - _x_ * _x_) * _y_;

}

void ComputeOutput(struct TModel* pModel) {}

void ComputeFinal(struct TModel* pModel) {}

void* GetID() { return (void*)L"Tornado.MSLE.Model.VanDerPol"; }

void* Create()
{
struct TModel* pModel;

pModel = (struct TModel*)malloc(sizeof(struct TModel));

pModel->Type = L"ODE";

pModel->NoParams = 1;
pModel->NoIndepVars = 1;
pModel->NoInputVars = 0;
pModel->NoOutputVars = 0;
pModel->NoAlgVars = 0;
pModel->NoDerVars = 2;
pModel->NoDerivatives = 2;
pModel->NoPrevious = 0;
pModel->NoResidues = 0;
pModel->NoSolveSets = 0;
pModel->NoEvents = 0;

196

F.H.A. Claeys, P. Fritzson, P.A. Vanrolleghem

The Modelica Association Modelica 2006, September 4th – 5th

pModel->Params =
(double*)malloc(sizeof(double) * pModel->NoParams);

pModel->IndepVars =
(double*)malloc(sizeof(double) * pModel->NoIndepVars);

pModel->InputVars =
(double*)malloc(sizeof(double) * pModel->NoInputVars);

pModel->OutputVars =
(double*)malloc(sizeof(double) * pModel->NoOutputVars);

pModel->AlgVars =
(double*)malloc(sizeof(double) * pModel->NoAlgVars);

pModel->DerVars =
(double*)malloc(sizeof(double) * pModel->NoDerVars);

pModel->Derivatives =
(double*)malloc(sizeof(double) * pModel->NoDerivatives);

pModel->Previous =
(double*)malloc(sizeof(double) * pModel->NoPrevious);

pModel->Residues =
(double*)malloc(sizeof(double) * pModel->NoResidues);

pModel->SolveSets =
(TSolveSetP)malloc(sizeof(struct TSolveSet) *

pModel->NoSolveSets);
pModel->Events =
(TEventP)malloc(sizeof(struct TEvent) * pModel->NoEvents);

pModel->ComputeInitial = ComputeInitial;
pModel->ComputeState = ComputeState;
pModel->ComputeOutput = ComputeOutput;
pModel->ComputeFinal = ComputeFinal;

return (void*)pModel;
}

VanDerPol.SymbModel.xml:

<Tornado>
<Model>
<Exec FileName="VanDerPol"/>
<Symb>
<Model Name="">
<Params>
<Param Name="mu" DefaultValue="1"/>

</Params>
<IndepVars>
<IndepVar Name="time" DefaultValue="0"/>

</IndepVars>
<InputVars>
</InputVars>
<OutputVars>
</OutputVars>
<AlgVars>
</AlgVars>
<DerVars>
<DerVar Name="x" DefaultValue="1"/>
<DerVar Name="y" DefaultValue="1"/>

</DerVars>
<Models>
</Models>

</Model>
</Symb>
<Links>
<Link Name=".mu" ValueType="Params" ValueIndex="0"/>
<Link Name=".time" ValueType="IndepVars" ValueIndex="0"/>
<Link Name=".x" ValueType="DerVars" ValueIndex="0"

DerivativeType="Derivatives" DerivativeIndex="0"/>
<Link Name=".y" ValueType="DerVars" ValueIndex="1"

DerivativeType="Derivatives" DerivativeIndex="1"/>
</Links>

</Model>
</Tornado>

The exact semantics of these representations are be-
yond the scope of this paper and will therefore not be
further discussed. Important to note however is that
the format of the generated C code has been kept as
simple as possible in order to be able to compile the
code with as many C compilers as possible. The com-
pilers that have been shown to work so far are Borland
C++ 5.5, MS Visual C++ 6.0, 7.1 & 8.0, LCC, INTEL
C++ 9.0 and g++.

5.1.2 Simulation

In order to simulate the generated model code, a sim-
ulation experiment spec is to be provided to the exper-

iment executor. Specs must conform to the respective
XML schemas that have been defined in the scope of
Tornado. When using the Tornado CUI suite, empty
specs can be generated by the tcreate program
and must then be further completed manually. Below
is a simulation experiment spec for the Van der Pol
model that was generated by invoking tcreate -t
Simul VanDerPol and further completed through
manual editing:

VanDerPol.Simul.Exp.xml:

<Tornado>
<Exp Version="1.0" Type="Simul">
<Props>
<Prop Name="Author" Value="PCFC1\fc"/>
<Prop Name="Date" Value="Wed Jun 28 14:58:02 2006"/>
<Prop Name="Desc" Value="Van der Pol simulation"/>
<Prop Name="FileName"

Value="VanDerPol.Simul.Exp.xml|.Tornado"/>
<Prop Name="UnitSystem" Value=""/>

</Props>
<Simul>
<Model Name="VanDerPol" CheckBounds="false">
<Quantities>
<Quantity Name=".mu" Value="100"/>
<Quantity Name=".x" Value="2"/>

</Quantities>
</Model>
<Inputs Enabled="false">
</Inputs>
<Outputs Enabled="true">
<Output Name="*Calc*">
<CalcVars Enabled="false">
</CalcVars>

</Output>
<Output Name="*Plot*">
<Plot Enabled="false">
<Props>
<Prop Name="CommInt" Value="0"/>
<Prop Name="Info" Value=""/>
<Prop Name="Interpolated" Value="false"/>
<Prop Name="StartTime" Value="-INF"/>
<Prop Name="StopTime" Value="+INF"/>
<Prop Name="UseDisplayUnits" Value="true"/>

</Props>
<Quantities>
</Quantities>

</Plot>
</Output>
<Output Name="File">
<File Name="VanDerPol.Simul.out.txt" Enabled="true">
<Props>
<Prop Name="CommInt" Value="0"/>
<Prop Name="CommIntType" Value="Linear"/>
<Prop Name="DecSep" Value="."/>
<Prop Name="Interpolated" Value="false"/>
<Prop Name="Precision" Value="8"/>
<Prop Name="StartTime" Value="-INF"/>
<Prop Name="StopTime" Value="+INF"/>
<Prop Name="UseDisplayUnits" Value="true"/>

</Props>
<Quantities>
<Quantity Name=".x"/>
<Quantity Name=".y"/>

</Quantities>
</File>

</Output>
</Outputs>
<Time>
<Start Value="0"/>
<Stop Value="300"/>

</Time>
<Solve>
<Integ Method="CVODE">
<Props>
<Prop Name="AbsoluteTolerance" Value="1e-006"/>
<Prop Name="CVBandLowerBandwidth" Value="0"/>
<Prop Name="CVBandUpperBandwidth" Value="0"/>
<Prop Name="CVSPGMRGSType" Value="ModifiedGS"/>
<Prop Name="IterationMethod" Value="Newton"/>
<Prop Name="LinearMultistepMethod" Value="BDF"/>
<Prop Name="LinearSolver" Value="Diag"/>
<Prop Name="MaxNoSteps" Value="0"/>
<Prop Name="RelativeTolerance" Value="1e-005"/>

</Props>
</Integ>

</Solve>
</Simul>

</Exp>
</Tornado>

197

Using Modelica Models for Complex Virtual Experimentation with the Tornado Kernel

The Modelica Association Modelica 2006, September 4th – 5th

For a simulation experiment, XML specs basically
allow for specifying initial values (hereby overrul-
ing initializations that were specified through the
model’s meta-information), defining input providers
/ output acceptors, specifying the simulation start /
stop time and configuring integrator solver settings.
In this case, initial values were given for .mu and
.x, input was disabled and one output file accep-
tor was defined. The simulation will be run from
0 to 300 and the CVODE stiff system solver (cf.,
http://www.llnl.gov/CASC/sundials) will be used as
an integrator. Important to note is that the settings
of the CVODE integrator are given through a flexible
attribute-value pair mechanism instead of through tags
that are part of the XML grammar. This is required to
support dynamic loading of solver plugins. The frag-
ment below shows the output of the experiment execu-
tor, when applied to the VanDerPol simulation spec.
One will notice that before execution starts, a number
of solver plugins are dynamically loaded (in this case
only a subset of the 35 solver plugins that are provided
with Tornado are loaded):

> texec VanDerPol.Simul.Exp.xml

Tornado Experiment Executor (Build: Jun 13 2006)

I Loading license spec: Tornado.lic|.Tornado
I Checking MAC address...
I Loading main spec: Tornado.Main.xml|.Tornado
I Loading plugin: Tornado.Solve.Integ.CVODE
I Loading plugin: Tornado.Solve.Integ.Euler
I Loading plugin: Tornado.Solve.Integ.RK4
I Loading plugin: Tornado.Solve.Integ.RK4ASC
I Loading plugin: Tornado.Solve.Optim.GA
I Loading plugin: Tornado.Solve.Optim.Praxis
I Loading plugin: Tornado.Solve.Optim.SA
I Loading plugin: Tornado.Solve.Optim.Simplex
I Loading plugin: Tornado.Solve.Root.Broyden
I Loading plugin: Tornado.Solve.Root.Hybrid
I Loading plugin: Tornado.Solve.Scen.Cross
I Loading plugin: Tornado.Solve.Scen.Fixed
I Loading plugin: Tornado.Solve.Scen.Grid
I Loading plugin: Tornado.Solve.Scen.Plain
I Loading plugin: Tornado.Solve.Scen.Random
I Loading plugin: Tornado.Solve.Sens.Plain
I Loading plugin: Tornado.Solve.CI.Nelder
I Loading plugin: Tornado.Solve.CI.Richardson
I Loading plugin: Tornado.Solve.MC.IHS
I Loading plugin: Tornado.Solve.MC.CVT
I Loading plugin: Tornado.Solve.MC.LHS
I Loading plugin: Tornado.Solve.MC.PR
I Main information:
I Author = PCFC1\fc
I Date = Thu Oct 13 16:08:06 2005
I Desc = Main spec
I EnableHashOutputHeaders = true
I EnableWESTInputHeaders = true
I EnableWESTOutputHeaders = false
I FileName =
I KernelAuthor = Filip Claeys, Dirk De Pauw
I KernelDesc = Advanced Kernel for Modelling and Virtual Ex...
I KernelVersion = 0.22
I LimitMRE = 0.7
I LimitSRE = 0.0235
I Precision = 8
I New job: VanDerPol.Simul.Exp.xml
I Starting thread...
I Loading experiment spec: VanDerPol.Simul.Exp.xml|.Tornado
I Loading simulation experiment spec: VanDerPol.Simul.Exp.xml...
I Loading symbolic model spec: VanDerPol.SymbModel.xml|.Tornado
I Loading executable model: Tornado.MSLE.Model.VanDerPol
I Executable model information:
I Type = ODE
I #Params = 1
I #IndepVars = 1
I #InputVars = 0
I #OutputVars = 0
I #AlgVars = 0

I #DerVars = 2
I #Derivatives = 2
I #Previous = 0
I #Residues = 0
I #SolveSets = 0
I #Events = 0
I Building model symbol table...
I Checking model linkage...
I Creating simulator...
I Setting integration solver: Tornado.Solve.Integ.CVODE
I Experiment information:
I Type = Simul
I Embedded = true
I Author = PCFC1\fc
I Date = Wed Jun 28 14:58:02 2006
I Desc = Van der Pol simulation experiment
I FileName = VanDerPol.Simul.Exp.xml|.Tornado
I UnitSystem =
I Initializing model...
I Opening simulation output file: VanDerPol.Simul.out.txt
I Simulation from 0 to 300
I Starting simulation...
I Simulation ended
I Closing simulation output file: VanDerPol.Simul.out.txt
I Executable model statistics:
I #ComputeInitials: 1
I #ComputeStates: 3240
I #ComputeOutputs: 1686
I #ComputeFinals: 1
I Total execution time: 0 seconds
I Thread ended
I Unloading plugins

The Tornado CUI suite does not contain any data visu-
alization mechanism, however one can easily use tools
such as MS Excel, MATLAB or GNUPlot to display
the simulated trajectories. Figure 4 shows the result of
invoking the following commands in GNUPlot:

set xlabel "t"
set ylabel ".x"
plot ’VanDerPol.Simul.out.txt’ using 1:2 with lines

Figure 4: Van Der Pol for .mu = 100

5.1.3 Parameter variation

More interesting it becomes if we wish to run the same
simulation for different initial values. For instance,
suppose we wish to run the simulation for values of
.mu that are logarithmically spaced between 1 and 100
with a spacing of 2. Suppose also that for each simu-
lation, we want to determine the maximum value and

198

F.H.A. Claeys, P. Fritzson, P.A. Vanrolleghem

The Modelica Association Modelica 2006, September 4th – 5th

standard deviation of the trajectory of .y, in addition to
the value of .y at t = 50. The scenario analysis experi-
ment shown below provides a solution to this problem:

VanDerPol.Scen.Exp.xml:

<Tornado>
<Exp Version="1.0" Type="Scen">
<Props>
<Prop Name="Author" Value="PCFC1\fc"/>
<Prop Name="Date" Value="Wed Jun 28 15:37:57 2006"/>
<Prop Name="Desc" Value="VanDerPol scenario analysis"/>
<Prop Name="FileName"

Value="VanDerPol.Scen.Exp.xml|.Tornado"/>
<Prop Name="UnitSystem" Value=""/>

</Props>
<Scen>
<Obj>
<Exp Version="1.0" Type="Simul"

FileName="VanDerPol.Simul.Exp.xml|.Tornado"/>
<Props>
<Prop Name="CommInt" Value="0"/>
<Prop Name="DecSep" Value="."/>
<Prop Name="EnableNoComputeStates" Value="false"/>
<Prop Name="EnableRetrieval" Value="false"/>
<Prop Name="EnableStorage" Value="true"/>
<Prop Name="Interpolated" Value="false"/>
<Prop Name="OutputFileName"

Value="VanDerPol.Scen.Simul.out.txt.{}"/>
<Prop Name="Precision" Value="8"/>
<Prop Name="ThousandSep" Value=","/>
<Prop Name="TyphoonBaseName" Value="Typhoon"/>

</Props>
<Quantities>
<Quantity Name=".y">
<Props>
<Prop Name="Criterion" Value="AbsSquared"/>
<Prop Name="EnableAvg" Value="false"/>
<Prop Name="EnableDiffMax" Value="false"/>
<Prop Name="EnableDiffSum" Value="false"/>
<Prop Name="EnableEndValue" Value="false"/>
<Prop Name="EnableInt" Value="false"/>
<Prop Name="EnableMax" Value="true"/>
<Prop Name="EnableMin" Value="false"/>
<Prop Name="EnableStdDev" Value="true"/>
<Prop Name="EnableTIC" Value="false"/>
<Prop Name="EnableValueOnTime" Value="true"/>
<Prop Name="Time" Value="50"/>
<Prop Name="Weighted" Value="false"/>

</Props>
</Quantity>

</Quantities>
</Obj>
<Log Name="VanDerPol.Scen.log.txt" Enabled="true">
<Props>
</Props>

</Log>
<Inputs Enabled="false">
</Inputs>
<Outputs Enabled="true">
<Output Name="*File*">
<File Name="VanDerPol.Scen.out.txt" Enabled="true">
<Props>
<Prop Name="DecSep" Value="."/>
<Prop Name="Precision" Value="8"/>

</Props>
</File>

</Output>
<Output Name="*Plot*">
<Plot Enabled="false">
<Props>
<Prop Name="Info" Value=""/>

</Props>
</Plot>

</Output>
</Outputs>
<Vars>
<Var Name=".mu">
<Props>
<Prop Name="DistributionMethod" Value="Logarithmic"/>
<Prop Name="LowerBound" Value="1"/>
<Prop Name="NoValues" Value="0"/>
<Prop Name="RefValue" Value="1"/>
<Prop Name="Spacing" Value="2"/>
<Prop Name="StdDev" Value="0"/>
<Prop Name="UpperBound" Value="100"/>
<Prop Name="UpperBoundPolicy"

Value="IncludeUpperBound"/>
<Prop Name="Values" Value=""/>

</Props>
</Var>

</Vars>
<Solve>
<Scen Method="Grid">
<Props>
<Prop Name="EnableRef" Value="false"/>
<Prop Name="Generate" Value="true"/>

<Prop Name="UseTyphoon" Value="false"/>
</Props>

</Scen>
</Solve>

</Scen>
</Exp>

</Tornado>

As one can see, this scenario analysis spec refers
to a simulation spec that resides in an external file
(VanDerPol.Simul.Exp.xml). Directly embedding the
XML content of this file into the scenario analysis
experiment is however also possible. One will also
notice that other types of objectives and aggregation
functions (next to the Min, StdDev, ValueOnTime func-
tions that are needed for our application) such as Avg
(average) and Int (integral) are also possible. Table 2
shows the contents of the VanDerPol.Scen.out.txt file
that is generated during the execution of the scenario
analysis.

Table 2: Results of the VarDerPol.Scen.Exp.xml Experi-
ment

RunNo .mu Max(.y) StdDev(.y) ValueOnTime(.y)

1 1 2.6865596 1.4272097 -1.5137494

2 2 3.8300373 1.4645402 -0.034409599

3 4 6.3463996 1.5316644 0.58337344

4 8 11.553678 1.593544 -0.092195286

5 16 22.097001 1.6317544 0.058550465

6 32 43.305241 1.6404037 0.052380761

7 64 85.828672 1.5529595 -0.0439915

8 100 133.68028 1.4986709 -0.010200556

5.2 ARGESIM - C1

ARGE Simulation News (cf., http://www.argesim.org)
is a non-profit working group providing the infras-
tructure and adminstration for dissemination of infor-
mation on modelling and simulation in Europe. AR-
GESIM is located at Vienna University of Technology,
Dept. Simulation and publishes Simulation News Eu-
rope (SNE), which features a series on comparisons of
simulation software. Based on simple, easily compre-
hensible models special features of modelling and ex-
perimentation within simulation languages, also with
respect to an application area, are compared. Fea-
tures are, for instance: modelling technique, event-
handling, numerical integration, steady-state calcula-
tion, distribution fitting, parameter sweep, output anal-
ysis, animation, complex logic strategies, submodels,
macros, statistical features etc. Approximately 20
comparisons have thusfar been defined, the first was

199

Using Modelica Models for Complex Virtual Experimentation with the Tornado Kernel

The Modelica Association Modelica 2006, September 4th – 5th

published in November 1990, the last in December
2005.

5.2.1 Model

As a second example of the use of Modelica models in
Tornado, the C1 ARGESIM comparison will be used.
The model that is at the basis of this comparison can
be represented in Modelica as follows:

C1.mof:

fclass C1
parameter Real kr = 1;
parameter Real kf = 0.1;
parameter Real lf = 1000;
parameter Real dr = 0.1;
parameter Real dm = 1;
parameter Real p = 0;
Real f(start = 9.975);
Real m(start = 1.674);
Real r(start = 84.99);

equation
der(r) = -dr * r + kr * m * f;
der(m) = dr * r - dm * m + kf * f * f - kr * m * f;
der(f) = dr * r + 2 * dm * m - kr * m * f -

2 * kf * f * f - lf * f + p;
end C1;

The comparison requires the following tasks to be per-
formed:

• Simulation of the stiff system over [0,10].

• Parameter variation of lf from 1.0e2 to 1.0e4 and
a plot of all f(t; lf), logarithmic steps preferred.

• Calculation of steady states during constant bom-
bardment (p(t) = pc = 1.0E4) and without bom-
bardment (p(t) = 0).

5.2.2 Simulation

As in the first example, a dynamically-loadable ex-
ecutable model for Tornado can be generated using
mof2t and tbuild. Afterwards, an empty simula-
tion experiment can be generated with tcreate and
then be completed through manual editing:

C1.Simul.Exp.xml:

<Tornado>
<Exp Version="1.0" Type="Simul">
<Props>
<Prop Name="Author" Value="PCFC1\fc"/>
<Prop Name="Date" Value="Fri Jun 30 12:28:12 2006"/>
<Prop Name="Desc" Value=""/>
<Prop Name="FileName"

Value="C1.CVODE.Simul.Exp.xml|.Tornado"/>
<Prop Name="UnitSystem" Value=""/>

</Props>
<Simul>
<Model Name="C1" CheckBounds="false">
<Quantities>
</Quantities>

</Model>
<Inputs Enabled="false">
</Inputs>
<Outputs Enabled="true">
<Output Name="*Calc*">
<CalcVars Enabled="false">
</CalcVars>

</Output>
<Output Name="*Plot*">

<Plot Enabled="false">
<Props>
<Prop Name="CommInt" Value="0"/>
<Prop Name="Info" Value=""/>
<Prop Name="Interpolated" Value="false"/>
<Prop Name="StartTime" Value="-INF"/>
<Prop Name="StopTime" Value="+INF"/>
<Prop Name="UseDisplayUnits" Value="true"/>

</Props>
<Quantities>
</Quantities>

</Plot>
</Output>
<Output Name="File">
<File Name="C1.Simul.out.txt" Enabled="true">
<Props>
<Prop Name="CommInt" Value="1.2"/>
<Prop Name="CommIntType" Value="Logarithmic"/>
<Prop Name="DecSep" Value="."/>
<Prop Name="Interpolated" Value="true"/>
<Prop Name="Precision" Value="8"/>
<Prop Name="StartTime" Value="1e-007"/>
<Prop Name="StopTime" Value="+INF"/>
<Prop Name="UseDisplayUnits" Value="true"/>

</Props>
<Quantities>
<Quantity Name=".f"/>
<Quantity Name=".m"/>
<Quantity Name=".r"/>

</Quantities>
</File>

</Output>
</Outputs>
<Time>
<Start Value="0"/>
<Stop Value="10"/>

</Time>
<Solve>
<Integ Method="CVODE">
<Props>
<Prop Name="AbsoluteTolerance" Value="1e-006"/>
<Prop Name="CVBandLowerBandwidth" Value="0"/>
<Prop Name="CVBandUpperBandwidth" Value="0"/>
<Prop Name="CVSPGMRGSType" Value="ModifiedGS"/>
<Prop Name="IterationMethod" Value="Functional"/>
<Prop Name="LinearMultistepMethod" Value="Adams"/>
<Prop Name="LinearSolver" Value="Dense"/>
<Prop Name="MaxNoSteps" Value="0"/>
<Prop Name="RelativeTolerance" Value="1e-006"/>

</Props>
</Integ>
<Root Method="Broyden">
<Props>
<Prop Name="MaxNoSteps" Value="0"/>
<Prop Name="MaxStepSize" Value="1"/>

</Props>
</Root>

</Solve>
</Simul>

</Exp>
</Tornado>

Important to notice in this simulation experiment is
that for the output file acceptor, the communication in-
terval type (CommIntType) was set to logarithmic. In
this case, logarithmic spacing of output timepoints is
required in order to be able to accurately represent the
dynamics of the simulated trajectories during the ini-
tial phase of the simulation (without generating huge
amounts of irrelevant data). After running the simula-
tion with texec, one could for instance use GNUPlot
to display the results (see Figure 5) onto logarithmic
axes using the following commands:
set logscale xy
set xlabel "t"
set ylabel ".f"
plot ’C1.Simul.out.txt’ using 1:2 with lines

5.2.3 Parameter variation

The parameter variation that is requested by the com-
parison can easily be implemented in Tornado us-

200

F.H.A. Claeys, P. Fritzson, P.A. Vanrolleghem

The Modelica Association Modelica 2006, September 4th – 5th

Figure 5: Simulation results for the ARGESIM C1
model

ing the scenario analysis experiment type. However,
in contrast to the Van der Pol example, no post-
processing functions (such as Min, StdDev, . . .) are
needed in this case. Important however is that the vari-
ation of .lf is to be set to Logarithmic, as requested.
Figure 6 shows the results of a 10-shot scenario analy-
sis experiment defined in this way.

Figure 6: Scenario analysis results for the ARGESIM
C1 model

5.2.4 Calculation of steady states

For the calculation of steady states, the steady-state
(SS) experiment type can be used. In Tornado, the
steady-state of a system is directly computed through
the application of a root finding solver to the system
equations, where the derivatives (i.e., the left hand
sides) of state equations are used as residues (that are
to be brought to zero).

The following describes a steady-state experiment for
the ARGESIM C1 model where p = 1e4:

C1.p=1e4.SS.Exp.xml:

<Tornado>
<Exp Version="1.0" Type="SS">
<Props>
<Prop Name="Author" Value="PCFC1\fc"/>
<Prop Name="Date" Value="Fri Jun 30 15:39:27 2006"/>
<Prop Name="Desc" Value=""/>
<Prop Name="FileName" Value="C1.p=1e4.SS.Exp.xml|.Tornado"/>
<Prop Name="UnitSystem" Value=""/>

</Props>
<SS>
<Model Name="C1" CheckBounds="false">
<Quantities>
<Quantity Name=".p" Value="1e4"/>

</Quantities>
</Model>
<Solve>
<Root Method="Hybrid">
<Props>
<Prop Name="Tolerance" Value="1e-008"/>

</Props>
</Root>

</Solve>
</SS>

</Exp>
</Tornado>

Execution of this experiment with texec will in-
stantly yield the correct steady state values for .f, .m
and .r :

> texec "C1.p=1e4.SS.Exp.xml"

Tornado Experiment Executor (Build: Jun 13 2006, 10:32:40)

I Loading license spec: Tornado.lic|.Tornado
I Checking MAC address...
I Loading main spec: Tornado.Main.xml|.Tornado
I Loading plugin: Tornado.Solve.Integ.CVODE
I Loading plugin: Tornado.Solve.Integ.Euler
I Loading plugin: Tornado.Solve.Integ.RK4
I Loading plugin: Tornado.Solve.Integ.RK4ASC
I Loading plugin: Tornado.Solve.Optim.GA
I Loading plugin: Tornado.Solve.Optim.Praxis
I Loading plugin: Tornado.Solve.Optim.SA
I Loading plugin: Tornado.Solve.Optim.Simplex
I Loading plugin: Tornado.Solve.Root.Broyden
I Loading plugin: Tornado.Solve.Root.Hybrid
I Loading plugin: Tornado.Solve.Scen.Cross
I Loading plugin: Tornado.Solve.Scen.Fixed
I Loading plugin: Tornado.Solve.Scen.Grid
I Loading plugin: Tornado.Solve.Scen.Plain
I Loading plugin: Tornado.Solve.Scen.Random
I Loading plugin: Tornado.Solve.Sens.Plain
I Loading plugin: Tornado.Solve.CI.Nelder
I Loading plugin: Tornado.Solve.CI.Richardson
I Loading plugin: Tornado.Solve.MC.IHS
I Loading plugin: Tornado.Solve.MC.CVT
I Loading plugin: Tornado.Solve.MC.LHS
I Loading plugin: Tornado.Solve.MC.PR
I Main information:
I Author = PCFC1\fc
I Date = Thu Oct 13 16:08:06 2005
I Desc = Main spec
I EnableHashOutputHeaders = true
I EnableWESTInputHeaders = true
I EnableWESTOutputHeaders = false
I FileName =
I KernelAuthor = Filip Claeys, Dirk De Pauw
I KernelDesc = Advanced Kernel for Modelling and Virtual...
I KernelVersion = 0.22
I LimitMRE = 0.7
I LimitSRE = 0.0235
I Precision = 8
I New job: C1.p=1e4.SS.Exp.xml
I Starting thread...
I Loading experiment spec: C1.p=1e4.SS.Exp.xml|.Tornado
I Loading steady-state analysis experiment spec: C1.p=1e4...
I Loading symbolic model spec: C1.SymbModel.xml|.Tornado
I Loading executable model: Tornado.MSLE.Model.C1
I Executable model information:
I Type = ODE
I #Params = 6
I #IndepVars = 1
I #InputVars = 0
I #OutputVars = 0
I #AlgVars = 0
I #DerVars = 3
I #Derivatives = 3

201

Using Modelica Models for Complex Virtual Experimentation with the Tornado Kernel

The Modelica Association Modelica 2006, September 4th – 5th

I #Previous = 0
I #Residues = 0
I #SolveSets = 0
I #Events = 0
I Building model symbol table...
I Checking model linkage...
I Creating steady-state analyser...
I Setting root solver: Tornado.Solve.Root.Hybrid
I Experiment information:
I Type = SS
I Embedded = true
I Author = PCFC1\fc
I Date = Fri Jun 30 15:39:27 2006
I Desc =
I FileName = C1.p=1e4.SS.Exp.xml|.Tornado
I UnitSystem =
I Initializing model...
I Initializing model...
I Starting steady-state analysis...
I Steady-state analysis ended
I Executable model statistics:
I #ComputeInitials: 8
I #ComputeStates: 8
I #ComputeOutputs: 0
I #ComputeFinals: 0
I Final variable values:
I .f = 10
I .m = 10
I .r = 1000
I Total execution time: 0 seconds
I Thread ended
I Unloading plugins

For p = 0, one can proceed in a similar way. However,
in this case the process is more sensitive to the ini-
tial value of the state variables. The experiment below
therefore shows that for .f, a differing initial value had
to be chosen to ensure convergence of the algorithm.

C1.p=0.SS.Exp.xml|.Tornado:

<Tornado>
<Exp Version="1.0" Type="SS">
<Props>
<Prop Name="Author" Value="PCFC1\fc"/>
<Prop Name="Date" Value="Fri Jun 30 15:39:20 2006"/>
<Prop Name="Desc" Value=""/>
<Prop Name="FileName" Value="C1.p=0.SS.Exp.xml|.Tornado"/>
<Prop Name="UnitSystem" Value=""/>

</Props>
<SS>
<Model Name="C1" CheckBounds="false">
<Quantities>
<Quantity Name=".f" Value="0.1"/>

</Quantities>
</Model>
<Solve>
<Root Method="Hybrid">
<Props>
<Prop Name="Tolerance" Value="1e-008"/>

</Props>
</Root>

</Solve>
</SS>

</Exp>
</Tornado>

...
I Fri Jun 30 15:59:44 2006 Final variable values:
I Fri Jun 30 15:59:44 2006 .f = 0
I Fri Jun 30 15:59:44 2006 .m = 0
I Fri Jun 30 15:59:44 2006 .r = -2.47032822920623e-323
I Fri Jun 30 15:59:44 2006 Total execution time: 0 seconds
...

6 Conclusions and Future Work

Through the development of the mof2t compiler, Tor-
nado’s powerful complex virtual experimentation ca-
pabilities have become available for a subset of Mod-
elica models. To facilitate maintenance and further in-
tegration, mof2t was implemented using the same tech-
nologies as the remainder of the Tornado framework.

In the forthcoming months, the mof2t will be further
stabilized and enhanced.

Acknowledgement

Peter A. Vanrolleghem is Canadian Research Chair in
Water Quality Modelling.

References
[1] F. Claeys, D. De Pauw, L. Benedetti, I. Nopens, and P.A. Vanrol-

leghem. Tornado: A versatile efficient modelling & virtual exper-
imentation kernel for water quality systems. In Proceedings of the
iEMSs 2006 Conference, Burlington, VT, 2006.

[2] P. Reichert, Borchardt D., Henze M., Rauch W., Shanahan P.,
Somlyódy L., and P.A. Vanrolleghem. River Water Quality Model
No.1. Scientific and Technical Report No.12. IWA Publishing, Lon-
don, UK, 2001.

[3] M. Henze, W. Gujer, T. Mino, and M. van Loosdrecht. Activated
Sludge Models ASM1, ASM2, ASM2d, and ASM3. Scientific and
Technical Report No.9. IWA Publishing, London, UK, 2000.

[4] J.B. Copp, editor. The COST simulation benchmark. European Com-
mission, 2002.

[5] H. Vanhooren, J. Meirlaen, Y. Amerlinck, F. Claeys, H. Vangheluwe,
and P.A. Vanrolleghem. WEST: modelling biological wastewater
treatment. Journal of Hydroinformatics, 5(1):27–50, 2003.

[6] P. Fritzson. Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1. Wiley-IEEE Press, February 2004.

[7] H. Vangheluwe, F. Claeys, S. Kops, F. Coen, and G.C. Vansteenkiste.
A modelling simulation environment for wastewater treatment plant
design. In Proceedings of the 1996 European Simulation Symposium,
Genoa, Italy, October 24-26 1996.

[8] F.H.A Claeys, P.A. Vanrolleghem, and P. Fritzson. A generalized
framework for abstraction and dynamic loading of numerical solvers.
In Proceedings of the 2006 European Modeling and Simulation Sym-
posium, Barcelona, Spain, 2006.

[9] F. Claeys, M. Chtepen, L. Benedetti, B. Dhoedt, and P.A. Vanrol-
leghem. Distributed virtual experiments in water quality manage-
ment. Water Science and Technology, 53(1):297–305, 2006.

[10] L. Benedetti, D. Bixio, F. Claeys, and P.A. Vanrolleghem. A model-
based methodology for benefit/cost/risk analysis of wastewater sys-
tems. In Proceedings of the iEMSs 2006 Conference, Burlington,
VT, 2006.

202

F.H.A. Claeys, P. Fritzson, P.A. Vanrolleghem

 Session 2d

The Modelica Association Modelica 2006, September 4th – 5th 203

Session 2d

Mechanical Systems and Applications 2

Session 2d

The Modelica Association Modelica 2006, September 4th – 5th 204

The Modelica Association Modelica 2006, September 4th – 5th

Leaf spring modeling

Niklas Philipson
Modelon AB

Ideon Science Park SE-22370 Lund, Sweden
niklas.philipson@modelon.se

Abstract

Although leaf springs are one of the oldest suspension
components they are still frequently used, especially
in commercial vehicles. Being able to capture the leaf
spring characteristics is of significant importance for
vehicle handling dynamics studies. The conventional
way to model leaf springs is to divide the spring into
several rigid links connected to each other via rota-
tional stiffnesses. This can easily be done with the
Modelica Standard Library, but it results in hard-to-
use models with long simulation times. The models in
this paper are designed as generalized force elements
where the position, velocity and orientation of the axle
mounting gives the reaction forces in the chassis at-
tachment positions.

Keywords: Leaf spring; Vehicle dynamics; Com-
mercial vehicle suspensions

1 Introduction

The commercial VehicleDynamics Library [1] is cur-
rently undergoing expansions to suite heavy vehicles
(figure 1), requiring models of new components such
as leaf springs. This paper covers one technique to
generate a leaf spring that has good simulation perfor-
mance and still captures the following characteristics.

• The axle attachment position will deflect in an arc
shape in the longitudinal-vertical plane under ver-
tical loading conditions [3].

• Leaf spring suspension designs have two anti roll
bar effects. The springs are stiff in roll (twist)
which counteracts the vehicles roll motion if the
spring is mounted to a rigid axle as in figures 8
and 10. If the axle is mounted asymmetrically,
that is not centered on the middle of the spring,
the axle will twist as the vehicle rolls. This will
resist vehicle roll as well [4].

• The effective length of the leaf spring varies with
deflection causing a varying spring rate. The
models in this paper require large deflections
for the effect to be seen, but this effect can be
higher for other shapes and mounting types of the
spring [3].

The basic idea for the model is to use five massless
links connected with rotational elasticities with the
axle mounted at the center of the middle link. A mass-
less approximation is reasonable since the masses in-
volved in rigid axles, wheels and the body of the ve-
hicle are considerably higher than the mass of the leaf
spring. The implemented leaf spring can easily be ex-
tended with masses connected to the frames at the leaf
springs three mounting positions. The shape of the

Figure 1: Tractor with leaf spring suspension in a
shaker rig

leaf spring will be determined by the rotations between
each link, except for the roll angles. These angles are
left out of the equations of motion since they have very
little impact on the leaf spring’s shape. The roll resis-
tance is handled as a rotational stiffness added to the
torque equilibrium equations instead.

205

Leaf Spring Modeling

The Modelica Association Modelica 2006, September 4th – 5th

2 Reference MultiBody model

The model used as a basis for comparison is designed
with components from the Multi-body package. The
model consists of six rigid links connected by rota-
tional stiffnesses that allow the center position to de-
flect in a plane. This design forms a planar loop and is
only useful for vertical plane comparison.

Figure 2 illustrates a primitive suspension model
assembled from two multi-body leaf springs. A trans-
lational joint is used to handle the distance variations
in length between the mounting positions against the
leaf springs. A spring is applied to the translational
joint to control the lateral motion of the axle. The sim-
ulation time increases significantly with a stiffer trans-
lational spring. A more realistic model can be assem-
bled by adding revolute joint for the lateral and roll
motion as well, but the simulation time for just one
planar leaf spring is already long.

Figure 2: Multi body rigid axle suspension

3 Equations of motion

Lagrange’s method, equation (1), is used to derive
the equations of motion resolved in the generalized
coordinates (p1y...p4y, p1z...p4z) as illustrated in fig-
ure 3. Together with the stiffnesses indicated in fig-
ure 4, these form the expressions for the potential en-
ergy U in equation (2).

dL
dt

∂L
∂q̇

− ∂L
∂q

+
∂R
∂q̇

= Fqi (1)

L = T −U (2)

In the sequel, it is assumed that the spring is massless
giving T = 0. Viscous damping is applied over the

generalized coordinates, giving

R =
i

∑
i=1

1
2
·di · q̇2

i (3)

where qi and di denotes each generalized coordinate
and the corresponding damping coefficient.

Figure 3: Definition of generalized coordinates and
geometry properties.

Figure 4: Parameters for stiffness and damping.

The potential energy stored in the spring is given
by

U =
1
2

cP1x w2
P1x

+
1
2

cP1y w2
P1y

+
1
2

cP1z w2
P13

+
1
2

cv1 p22
y +

1
2

cv2 p22
y +

1
2

cv3 p32
y

+
1
2

cv4 p42
y +

1
2

cl1 p12
z +

1
2

cl2 p22
z

+
1
2

cl3 p32
z +

1
2

cl4 p12
z +

1
2

cP2l w2
P2l

+
1
2

cP2r w2
P2r

(4)

where wP1x,y,z and cP1x,y,z are the displacements and
stiffnesses of the front eye bushing. wP2r,l denote the
lateral and radial displacement of the shackle with
cP2r,l as the corresponding stiffnesses.

206

N. Philipson

The Modelica Association Modelica 2006, September 4th – 5th

A non linear bushing description including a linear

and a cubic stiffness gives the forces

F =
Z w

0
k1 ·w2 + k2︸ ︷︷ ︸

c

dw (5)

and the potential energy

E =
Z w

0
F dw (6)

which can be used in equation (2) instead of the lin-
ear model. The forces will in this case depend on

Figure 5: Force deflection diagram for front bushing

c(p1y,p2y,p1z,p2z) and w(p1y,p2y,p1z,p2z) for the front bush-
ing. This results in a force deflection diagram for the
front bushing seen in figure 5.

The displacements for the front eye bushing and
the shackle are given by

w̄P1 = r̄rel1 − (ā1 +Ty1 ·Tz1 · ā2

+Ry1 ·Rz1 ·Ty2 ·Tz2 · ā3)
(7)

and

w̄P2 = r̄rel2 − (ā4 +Ty3 ·Tz3 · ā5

+Ty3 ·Tz3 ·Ty4 ·Tz4 · ā6)
(8)

respectively. Since the leaf spring is assumed to be
rigidly mounted to the axle, it is convenient to resolve
the equations for motion and force balance in the axle
frame. The vectors r̄rel1 and r̄rel2 are expressed in the
axle frame’s coordinate system. The transformation
matrices used to describe the end positions depending
on the generalized coordinates used in equation (7) and
(8) are given by

Ty =

 cos(pXy) 0 sin(pXy)
0 1 0

−sin(pXy) 0 cos(pXy)

 (9)

and

Tz =

cos(pXy) −sin(pXy) 0
sin(pXy) cos(pXy) 0

0 0 1

 (10)

where X represents the respective generalized coordi-
nate. L from equation (2) is now completely described
with the eight generalized coordinates and the stiffness
parameters. When solving equation (1) with respect
to the generalized coordinates, two sets of non-linear
equations appear. Since these sets do not depend on
each other but only are a function of the axle’s posi-
tion, they can be used separately if there is a need to
model half a leaf spring in conjunction with, for in-
stance, an air spring.

The complexity of the equation system increases
rapidly with added degrees of freedom. If, for in-
stance, roll stiffness is added to the leaf spring in
the same way as the other elasticities, it will expand
the equation systems from two systems with four un-
knowns to two systems with six unknowns. Each ex-
pression in the equation systems will also expand since
equations 7 and 8 must be modified with additional
transformation matrices for the roll angles.

Instead of adding the roll degree of freedom, the
roll torque is added externally as described in the next
section by terms in equation 17 and 18. This approach
is considered valid since the roll angles are small un-
der normal operation conditions and the spring is rela-
tively stiff in roll compared to the bushings.

Five links seem to be a reasonable compromise
that achieve a fast simulated model but still captures
the essential spring characteristics, this discretization
is also used in [2]. Possibly, a larger number of links
could be used if the equations of motion were to be
linearized. This might cause problems with the ini-
tial curvature which requires large angles between the
links.

4 Force generation

The displacements and the displacement’s derivative
together with the stiffness and damping coefficients
give the forces in the mounting positions to the chassis.
The forces in the chassis mounts are given by equation
(11) and (14),

f̄P1 = CP1 · w̄P1 + ¯̇wP1 ·dP1 − f̄0P1 (11)

fP2r = cP2r · (wP2r − sP0)+ ẇP2r ·dP2r − f0P2z (12)

fP2l = cP2l ·wP2l + ẇP2l ·dP2l (13)

207

Leaf Spring Modeling

The Modelica Association Modelica 2006, September 4th – 5th

f̄P2 = fP2r · n̂P2r + fP2l · n̂P2l (14)

where C is a diagonal (3x3) matrix with the transla-
tory stiffnesses for the front eye bushing. The damp-
ing of the front bushing is currently set as one value
for all directions. n̂P2l,r denote unit vectors in the ra-
dial and lateral directions of the shackle. The length
of the shackle used for describing the shackles radial
displacement in equation (12) is named s0P.

The force and torque equilibria are given by

0̄ = f̄P4 + f̄P1 + f̄P2 (15)

and

0̄ = t̄P4 + t̄P1 + t̄P3 + r̄rel1 × f̄P1 + r̄rel2 × f̄P3 (16)

respectively. The roll stiffness is modeled as a rota-
tional spring and added to the torque equilibrium. The
roll angle is the only variable that has an impact on the
torque acting on the front bushings. This gives

pr · cr · n̂x = t̄P1. (17)

as the resulting torque. The force is calculated in the
lower shackle mount and must be transformed as

t̄P2 = f̄P3 × n̂P2 · s0P + pr · crn̂x (18)

.pr is the spring’s roll angle with the corresponding ro-
tational stiffness cr. The unit vector in the x direction
of the axle frame’s coordinate system is denoted n̂x.

5 Implementation

The primitive model of the leaf spring requires geom-
etry positions in a two dimensional plane. For the
model to be useful, a wrapper is needed to translate
the initial three dimensional positions to parameters
for the leaf spring. This is done according to equation
22 though 29. The location of the primitive model’s

Figure 6: Leaf spring primitive and wrapped model

hard points are illustrated in figure 6.

The transformation matrix T in which the planar
positions are resolved is given by the base vectors
(nx,ny).

n̄x = r̄0CS − r̄0PS (19)

n̄y = (r̄0PS − r̄0BS)× (r̄0CS − r̄0BS) (20)

Equation (20) is unsolvable when the vectors are par-
allel. This is taken care of by an assertion which en-
courages the user to enter ny manually.

r̄1 =T (r̄0PS − r̄0CS) (21)

r̄2 =T (r̄0BS − r̄0CS) (22)

The vectors (r1,r2) resolved in T have y-values equal
to zero, and can thus be used to extract the positions
for the four hard points used in the primitive model
according to equations (23) though (26).

¯rP1 = 0̄ (23)

r̄P2 = r̄P3 + s0P · (sin(p0P),cos(−p0P)) (24)

r̄P3 = (r1x,r1z) (25)

r̄P4 = (r2z,r2z) (26)

The leaf spring’s curvature is defined as 1/R where
R is the radius of the leaf springs shape. The imple-
mented models have a curvature that depends on the
hard points for the three mounting positions. There is
one curvature for the rear part generated from the axle
and the lower shackle mounts position and one for the
front part generated in the same way as for the rear.

Figure 7: Pretension forces

To enable an easy way to determine the shape of
the leaf spring and the ride height of the vehicle at the
design configuration it is necessary to specify a preten-
sion value corresponding to the load when the vehicle
is at rest. The forces from pretension are given by

f0P1x + f0P3x = 0 (27)

f0P1z − f0 + f0P3z = 0 (28)

208

N. Philipson

The Modelica Association Modelica 2006, September 4th – 5th

f0P3z · rP3P1x − f0P3x · rP3P1z − f0 · rP4P1x = 0 (29)

f0P3z = f0P3 ·−
r0P3P2z

|r0P3P2|
(30)

f0P3x = f0P3 ·−
r0P3P2x

|r0P3P2|
(31)

and indicated in figure 7. These forces are calculated
initially and added as static values in equation (11) and
(12).

Figure 8: Semi trailer boogie suspension

Figure 9: Leaf spring and double wishbone suspension

The implemented leaf spring models can be used
in numerous designs, here presented in a semi trailer
boogie suspension, figure 8, and in a double wishbone
design, figure9. One of the axles in the semi trailer
suspension is assembled as shown in figure 10. Fig-
ure 9 illustrates another leaf spring model without a
shackle mounted between two wishbones and with the
center attachment mounted to the chassis. This model
is based on the same technique as the standard leaf
spring model.

Figure 10: Diagram view of leaf spring axle carriage

6 Parametrization

The parameters needed for the leaf spring consists of
positions, stiffnesses, dampings, and animation prop-
erties.

Figure 11: Elasticity parameters

209

Leaf Spring Modeling

The Modelica Association Modelica 2006, September 4th – 5th

Figure 11 displays the elasticity parameters for the

primitive model. The default value for the internal
rotational stiffnesses are calculated from the vertical
and lateral stiffness under the assumption that the leaf
spring will deflect in the shape of an arc. The internal
rotational stiffnesses can be set manually to enable the
user to customize the deflection profile.

The parametrization can easily be changed to suite
different specific types of leaf springs in terms of shape
and asymmetric stiffness.

7 Validation and results

Figure 12: Leaf spring test rig

The validation of the standard leaf spring has been
carried out by comparing the model to a reference
multi-body model described in section 2. A test rig,
figure 12, has been used to generate the dynamic and
kinematic comparison. As seen in figure 13 the verti-

Figure 13: Vertical plane kinematics comparison

cal plane kinematics of the leaf spring modeled with
rigid elements are virtually the same as for the model
described by Lagrange’s equation. Both models are
damped via viscous damping over each generalized
coordinate and corresponding revolute joint for the

multi-body model. The vertical plane dynamics for the
different models are very similar to each other as long
as the excitation does not consist of high frequency
components as in figure 14.

The fact that the standard model has both stiff-
ness and damping in the mount positions makes it a
bit complicated to compare these results, but with-
out fine tuning of the stiffness and damping they per-
form as shown in figure 13.The differences can easily
be related to the bushings in the mount positions and
the massless approximation used in the standard leaf
spring.

Figure 14: Vertical plane dynamics

Figure 15: Cpu time used for simulation of the differ-
ent suspension models

A suspension assembled as in figure 10 simulates
approximately 18 times faster then the reference sus-
pension, as shown in figure 15.

A comparison of the kinematic and dynamic be-
havior of two multi body leaf springs with five versus

210

N. Philipson

The Modelica Association Modelica 2006, September 4th – 5th

Figure 16: Kinematic comparsion between nine and
five link leaf spring

Figure 17: Dynamic comparison between nine and five
link leaf spring

nine links is illustrated in figure 16 and 17. The dif-
ferences between the models are small which implies
that the five link leaf spring meets the requirements for
vehicle handling simulations.

The shackle has big influence on the leaf spring’s
kinematics. The shape of the leaf spring in the com-
parison results in larger deflection in bounce than in
rebound, figure 16. This because the shackle’s lower
mount towards the spring always moves upwards with
deflection. Other geometries would give different re-
sults.

8 Summary

The leaf spring model is essential for heavy vehicle
handling dynamics simulations. The proposed model

is superior to the multi-body reference model with re-
spect to simulation time and it is much easier to pa-
rameterize the geometry positions and to implement
it in suspension designs. The model is equipped to
deal with the specific characteristics of a leaf spring.
It is possible to add forces through the same equations
as the pretension but varying over time. This enables
a user to add additional force elements as damping
via hysteresis or air springs. The standard leaf spring
model fulfills all the requirements specified in section
1.

References

[1] J. Andreasson, M. Gävert. The VehicleDy-
namics Library — Overview and Applications
Modelon., Homepage: http://www.modelon.se/.
In Proceedings of Modelica’2006, Vienna,
Sep. 2006.

[2] Georg Rill, Norbert Kessing, Olav Lange and Jan
Meier: Leaf Spring Modelling for Real Time Ap-
plications In the 18th IAVSD-Symposium in At-
sugi, Japan 2003, 2003.

[3] SAE: Spring Design Manual ISBN: 1-56091-
680-X, 1996.

[4] A grimm, C. Winkler and ,R. Sweet Mechanics of
Heavy Duty Truck Systems. University of Michi-
gan transportation research institute, UK , 2004.

211

Leaf Spring Modeling

The Modelica Association Modelica 2006, September 4th – 5th

212

N. Philipson

The Modelica Association Modelica 2006, September 4th – 5th

Multibody Systems Dynamics: Modelica Implementation and
Bond Graph Representation

Ivan I. Kosenko1, Maria S. Loginova2, Yaroslav P. Obraztsov2, Mayya S. Stavrovskaya1

1Moscow State University of Service, Department of Engineering Mechanics
Glavnaya str. 99, Cherkizovo-1, Moscow reg., 141221, Russia

2Moscow State Academy of Instrument Making and Computer Science
Department of Applied Mathematics, Stromynka str. 20, Moscow, 107646, Russia

Abstract

Using an example of the snakeboard, a vehicle with
four wheels and nonholonomic constraints, the process
of construction and verification for the sparse dynami-
cal models of the multibody systems is analyzed. Two
approaches for the formal representation of the mod-
els: object-oriented, and bond graph based are con-
sidered. Energy based similarities between these ap-
proaches are analyzed.
A detailed description of the bond graph representa-
tion for the most general type of constraint is pre-
sented. It turned out the resulting total bond graph
model of the multibody system dynamics always has
exactly a canonical junction structure. This repre-
sentation has a tight correspondence with our re-
cent object-oriented implementation of the mechani-
cal constraint architecture. As an example Modelica
implementation of the joint classes family is investi-
gated. Finally these classes are applied to construct
the snakeboard dynamic model.
Keywords: vechicle; nonholonomic; disc; wheelset;
snakeboard; object-oriented modeling; bondgraph;
canonical junction structure; joint; servoconstraint

1 Introduction

When developing a computer model of the multibody
system (MBS) dynamics it is interesting to have a uni-
fied technology to construct the models in an efficient
way. It turns out Modelica language provides a tools
to resolve such a problem successively step by step
using its natural approaches. One of them is con-
nected tightly with the so-called multiport represen-
tation of the models initially based on the bond graph
use. These latter in turn based on the idea of energy
interaction, and substantially on energy conservation

for physically interconnected subsystems of any engi-
neering type.
Moreover, Modelica introduces the notions similar to
ones of the bond graph theory, but in a way more nat-
ural for the usual engineering approaches with forces,
interfaces, parameters, equations etc. Consider in the
sequel a technology to construct a model of MBS dy-
namics with constraints of any specific type in a uni-
fied way. Note that the unilateral constraints can also
be included in the further consideration process.

2 Constraint representation via bond
graphs

Previously, when considering a unified model of the
constraint, or, in a more general way, any physical in-
teraction between two rigid/deformable bodies we de-
fined [1, 2] two classes of the kinematic and the effort
ports. These ones are the kinematic and wrench con-
nectors. It turned out the connections of such types
make it possible to construct a model of the bodies in-
teractions based on the causality physically motivated.
Namely, the constraint object imports the kinematic
information accepting it from the objects of interact-
ing bodies and reciprocally exports it in the opposite
direction. Thus the constraint “computes” an efforts
the bodies interact by.
On the other hand geometric formalisms to repre-
sent the MBS dynamics are known [3] which oper-
ates with the similar information objects: twists and
wrenches. In our approach twist is defined by the
KinematicPort class, and wrench obviously corre-
sponds to our WrenchPort class. The representa-
tion under consideration is tightly connected with the
power based approach to modeling, so-called bond
graphs [4].
Indeed, let the rigid body kinematics be defined by the

213

Multibody Systems Dynamics: Modelica Implementation and Bond Graph Representation

The Modelica Association Modelica 2006, September 4th – 5th

twist (v,www), where v is the mass center velocity, and www
is the body angular velocity. Further let all the forces
acting upon the body be reduced to the wrench (F,M)
with the total force F and the total torque M. Thus
the total power of all the forces acting on the body is
computed by the known formula

W = (v,F)+(www,M)

using to represent a multibond in the bond graphs
simulating the MBS dynamics. We have in such the
case an evident canonical duality between twists and
wrenches.
Sometimes wrenches are selected as flow variables. In
other cases twists play this role. For instance similari-
ties between electricity and mechanics cause the paral-
lelism for electric current and forces/torques in one di-
mensional powertrains of mechanisms. In this case we
can set a correspondence between the Kirchhoff law
for currents and the d’Alembert principle for external
forces and forces of inertia “acting” upon the body.
In our opinion it may be interesting enough to apply an
approach dual to the first one mentioned above. Such
an approach is more natural in traditional classical me-
chanics and assumes twist for the flow variable in the
multibond. In the further course we present an illus-
tration for this approach and demonstrate its conve-
nience to construct the mechanical constraints of dif-
ferent types. Moreover, object-oriented implementa-
tion may be interpreted in both above dual approaches
in a symmetric ways.
Let us trace now the similarities between the bond
graphs and our MBS models. Evidently the pair of
classes KinematicPort/WrenchPort plays a role
of the multiport notion, and corresponding pairs of
connections in Figure 1 stand for the notion of a bond.

Figure 1: Architecture of Constraint

Furthermore, in this way we can associate an ob-
ject of the RigidBody class with 1-junction, while
0-junction is associated with the object of the class
Constraint. The relevant general bond graph rep-

resentation of the constraint in any MBS may be de-
picted as it shown in Figure 2.

Figure 2: Architecture of Constraint: Bond Graph
Representation

All multibonds here consist of the twist (v,www) sig-
nals representing the flow component, and the wrench
(F,M) signals as an effort. Causality of an iner-
tance elements arranges according to the Newton–
Euler system of ODEs. Left and right transform-
ers are to shift the twist from the mass center to the
contact point according to the known Euler formula:
(v,www) 7→ (v + [www,r],www), where the vector r begins at
the corresponding center of mass and ends at the con-
tact point. Reciprocally the wrenches shift to the body
mass center from point of the contact in a following
way: (F,M) 7→ (F,M +[r,F]). As one can see easily
the transformers conserve the power.
Central transformer is responsible for the transfer to
orthonormal base at the contact point with the com-
mon normal unit vector and two others being tangent
ones to both contacting bodies’ surfaces supposed reg-
ular enough. For definity we interpret here the case of
usual contact interconnection between the bodies by
their outer/inner surfaces. If the inertial coordinates of
these vectors compose columns of the orthogonal rota-
tional matrix Q then shifting from bottom to top across
the transformer in Figure 2 we will have for the flow
signals: (v,www) 7→ (Qv,Qwww). Likewise when shifting
in a reverse direction we have a transformation of the
efforts: (F,M) 7→ (Q−1F,Q−1M) also conserving the
power. Organization of the 0-junction depicted in Fig-
ure 2 provides a possibility to compute exactly the rel-
ative velocities at the constraint contact point.
Note that it is a usual practice to attach the inertance el-
ement to 1-junction, in particular because of its causal-
ity nature, see for example [5, 6]. Figure 2 in some
degree can remind us an element of the lumped model
for the flexible beam dynamics.
Causality for some multibonds inside the constraint
object is defined individually for each particular scalar

214

I.I. Kosenko, M.S. Loginova, YA.P. Obraztsov, M.S. Stavrovskaya

The Modelica Association Modelica 2006, September 4th – 5th

bond [7] depending on the type of the constraint and
is assigned finally after the whole MBS model com-
pilation. For instance, if the constraint is of the slip-
ping type at a contact then supposing decompositions
of the relative velocities and contact forces v = vn +vt,
F = Fn +Ft we have the following flow constraint, el-
ement FC, vn = 0 representing one scalar kinematic
equation for the normal relative velocity, and the effort
constraint, element EC, Ft = 0, M = 0 representing
two scalar equations for the tangent contact force plus
three scalar equations for the contact torque. Nonzero
tangent force at the contact may arise due to the re-
sistive element, see the bottom right multibond. If
we will continue to build the bond graph model for
the whole MBS in a proposed way then finally we
can arrive exactly to the so-called canonical junction
structure [7] useful for the formal procedures of the
bond graph optimal causality assignment. For this we
have to add an intermediate 0-junctions for elements
attached to 1-junction in the constraint component C,
see Figure 2.
Leaving some multibonds without the causality as-
signment and trusting this work to compiler we apply
a so-called acausal modeling [8]. On the other hand
if we will act in a manner close to the real cases of
constraints with the flexibility then instead of the con-
straint elements FC/EC, we have to use an element
of the compliance with the causality uniquely deter-
mined, see Figure 3.

Figure 3: Bond Graph of Constraint with Compliance

Further we analyze one example of the constraint fre-
quently occurring in engineering applications: we con-
sider an object classification of the joint constraint.

3 Implementation of the joint con-
straint

For simplicity and clearness we will apply the compo-
nent library to simulate the dynamics of MBSs with bi-

lateral constraints [1]. Application of the components
for the unilateral constraints [2] doesn’t change any-
thing in principle. The only difference is that dynam-
ics of the moving bodies becomes more complicated.
For example in the latter case a vehicle under simula-
tion get an ability to bounce over the uneven surface it
rolls on. In addition, its wheels can slip while moving.
Thus in frame of the current paper we suppose that
nonholonomic constraints implemented exactly, with-
out any slip or separation with respect to (w. r. t.) the
surface.

Remind that according to our technology of the con-
straint construction [1] two connected bodies are iden-
tified by convention with the letters A and B fixed for
each body. All kinematic and dynamic variables and
parameters concerned one of the bodies are equipped
with the corresponding letter as a subscript.

Class Joint plays a key role in the future model of a
vehicle we will build. Joint is a model derived from
the base class Constraint. Remind [2] that in order
to make a complete definition of the constraint object
behavior for the case of rigid bodies one has to com-
pose a system of twelve algebraic equations w. r. t. to
twelve coordinates of vectors FA, MA, FB, MB consti-
tuting the wrenches acting upon the connected bodies.

First six equations always present in the base model
Constraint due to Newton’s third law. For defin-
ity suppose these six equations are used to express six
components of FB, MB depending on FA, MA. Thus
six components of FA, MA remain as unknowns. To
determine them each constraint of rigid bodies need in
six additional independent algebraic equations. These
equations can include components of force and torque
directly, or be derived from the kinematic relations
corresponding to specific type of the constraint.

In the case of the joint constraint being investigated
here let us represent the motion of the body B as a
complex one consisting of the body A convective mo-
tion w. r. t. an inertial frame of reference which is
similar to the Modelica Standard MultiBody Library
model World, and a relative motion w. r. t. the body
A. An absolute motion is one of the body B w. r. t.
inertial system.

Define the joint constraint with help of the following
parameters: (a) a unit vector nA defining in the body A
an axis of the joint; (b) a vector rA fixed in the body
A and defining a point which constantly stays on the
axis of the joint; (c) a vector rB fixed in the body B
and defining a point which also constantly stays on the
axis of the joint. The main task of the base joint class
is to keep always in coincidence the geometric axes

215

Multibody Systems Dynamics: Modelica Implementation and Bond Graph Representation

The Modelica Association Modelica 2006, September 4th – 5th

fixed in each of the bodies.
First of all one has to compute the radii vectors of the
points fixed in the bodies w. r. t. inertial system

Ra = rOa +Tara (a = A,B),

where [2] rOa is the position of the a-th body center
of mass, Ta is its current matrix of rotation. The joint
axis has the following components

nAi = TAnA

in the inertial frame of reference. According to the
equation for relative velocity for the marked point of
the body B defined by the position RB we have

vBa = vBe +vBr,
vBa = vOB +[wwwB,TBrB] ,
vBe = vOA +[wwwA,RB− rOA] ,

(1)

where vBa, vBe, vBr are an absolute, convective, and
relative velocities of the body B marked point, wwwA, wwwB

are the bodies angular velocities.
Furthermore, according to the computational experi-
ence of the dynamical problems simulation the pre-
compiler work is more regular if the kinematic equa-
tions are expressed directly through accelerations. In-
deed, otherwise the compiler tries to perform the for-
mal differentiation of equations for the velocities when
reducing an index of the total DAE system. Frequently
this leads to the problems either in time of translation
or when running the model.
In the first case usually diagnostics of the compiler es-
sentially helps the developer. In the second case the
model has an unpredictable behavior, and only man-
ual preliminary reduction “regularizes” the simulation
process. Thus we differentiate equations (1) and ob-
tain an equations for the relative linear acceleration in
the form

aBa = aOB +[eeeB,TBrB]+ [wwwB, [wwwB,TBrB]] ,
aBe = aOA +[eeeA,RB− rOA]+ [wwwA, [wwwA,RB− rOA]] ,
aBa = aBe +2 [wwwA,vBr]+aBr,
aBr = µnAi,

(2)
where aBa, aBe, aBr are an absolute, convective, and
relative accelerations of the body B marked point, eeeA,
eeeB are the bodies angular accelerations.
We also need in an analytic representation of the con-
ditions that the only projections of the bodies angular
velocities and accelerations having a differences are
ones onto the joint axis. Corresponding equations have
a form

wwwB = wwwA +wwwr,
eeeB = eeeA +[wwwA,wwwr]+ eeer,
eeer = lnAi,

(3)

where wwwr, eeer are the relative angular velocities and ac-
celerations.
The Modelica code of the class Joint reads

partial model Joint
extends Constraint;
parameter Real[3] nA;
parameter SI.Position[3] rA;
parameter SI.Position[3] rB;
SI.Position[3] RA;
SI.Position[3] RB;
SI.Velocity[3] vBa;
SI.Velocity[3] vBe;
SI.Velocity[3] vBr;
SI.Acceleration[3] aBa;
SI.Acceleration[3] aBe;
SI.Acceleration[3] aBr;
SI.AngularVelocity[3] omegar;
SI.AngularAcceleration[3] epsilonr;
Real[3] nAi;
SI.Force F; // Force along axis
SI.Torque M; // Torque about axis
SI.Acceleration mu;
SI.AngularAcceleration lambda;

equation
RA = InPortA.r + InPortA.T*rA;
RB = InPortB.r + InPortB.T*rB;
nAi = InPortA.T*nA;
vBa = InPortB.v +
cross(InPortB.omega,
InPortB.T*rB);

vBe = InPortA.v +
cross(InPortA.omega,
RB - InPortA.r);

vBa = vBe + vBr;
aBa = InPortB.a +
cross(InPortB.epsilon,
InPortB.T*rB) +

cross(InPortB.omega,
cross(InPortB.omega,
InPortB.T*rB));

aBe = InPortA.a +
cross(InPortA.epsilon,
RB - InPortA.r) +

cross(InPortA.omega,
cross(InPortA.omega,
RB - InPortA.r));

aBa = aBe + aBr +
2*cross(InPortA.omega, vBr);

aBr = mu*nAi;
omegar = InPortB.omega -
InPortA.omega;

epsilonr = InPortB.epsilon -
InPortA.epsilon -
cross(InPortA.omega, omegar);

epsilonr = lambda*nAi;
F = OutPortA.F*nAi;
M = OutPortA.M*nAi;
OutPortA.P = RA;

216

I.I. Kosenko, M.S. Loginova, YA.P. Obraztsov, M.S. Stavrovskaya

The Modelica Association Modelica 2006, September 4th – 5th

OutPortB.P = RA;

end Joint;

Besides the kinematic scalars µ, l we will need in their
reciprocal values F = (FA,nAi), M = (MA,nAi) corre-
spondingly. Note that the class described above is a
partial one and can be used to produce any imaginable
model of the joint type constraint. To obtain a com-
plete description of the joint model one has to add to
the behavioral section exactly two equations. One of
them is to define one of the values µ, F (translatory
case). Other equation is intended to compute one of
the values l, M (rotary case).
Regarding the general scheme depicted in Figure 2 we
can conclude that the equations (1), (2), (3) together
implement implicitly the constraint transformer to the
joint local coordinate system and four scalar flow con-
straints forbidding relative translatory and rotary mo-
tions in the direction orthogonal to the joint axis. For
derived classes only two free scalar bonds remain.
Here we encounter the known complementarity rules
once more in a way similar to one described in [2]. In
our context the variables in the pairs (µ,F), (l,M) are
mutually complement, where one of µ, l is to be uti-
lized for the flow constraint and one of F , M is used to
compose the effort constraint. All the variables men-
tioned complete the set of constraints for the remain-
ing yet unused joint axis creating thus two final scalar
constraint elements in the bond graph of Figure 2.
Namely, the equations (2) implementing the Coriolis
theorem for accelerations simultaneously implement,
in an implicit manner, two scalar flow constraints, FC-
elements, from the bottom left corner of the multi-
bondgraph model in Figure 2. These flow constraints
due to compiler restrictions constructed using acceler-
ations instead of the velocities being used in a classic
bond graph approach. The constraints have an obvi-
ous kinematic sense: they prevent the relative motion
of the body B marked point in two directions normal
to the joint axis fixed in the body A.
In addition, the equations (3) implement two other
scalar flow constraints, this time for the rotary mo-
tion. These constraints forbid the relative rotation of
the body B w. r. t. body A about two axes each nor-
mal to the joint axis mentioned above which is rigidly
connected with the body A.
Note, that the construct of equations (2) and (3) is such
that they allow the body B relative motion along and
about the joint axis of the body A thus implement-
ing the kinematic pair with two DOFs. Returning to
Figure 2 of the general constraint multi-bondgraph we
can conclude that the vertical multibond attached to 0-

junction implements flow variables corresponding to
the relative body B motion w. r. t. body A in iner-
tial coordinates. Such a description supposes an ex-
istence of the special coordinates reference frame con-
nected with the body A at its joint constraint marked
point. The transformation to these coordinates is im-
plemented exactly via corresponding transformer, cen-
tral in the triangle block C. The transformer itself nests
in formulae of equations (2) and (3).
Consider several examples of the classes derived from
the Joint model for the several particular types of
joints. The model FixedIdealJoint is defined by
the equations

µ = 0, M = 0

and prevents the relative motion along the joint axis
but allows free rotation about it. It is exactly a revolute
joint without any control for the rotary motion. The
model FreeIdealJoint is defined by the equations

F = 0, M = 0

permitting free translation along and free rotation
about the joint axis. Class SpringIdealJoint de-
scribed by the equations

F = cn+dṅ, M = 0, n̈ = µ

with an initial data n(t0) = 0, ṅ(t0) = 0 for the relative
translatory position n provides a viscoelastic compli-
ance with the stiffness c and damping d. The rotary
motion remains free. This model is useful to simulate
almost rigid constraints to avoid the potential problems
with so-called statically undefinable systems of forces
acting upon the ideal rigid bodies.
The model FixedControlledJoint with the be-
havior defined by the equations

µ = 0, M = f (t,j, j̇) , j̈ = l (4)

provides the rotating torque as a control effort with
the prescribed control function f (t,j, j̇). Initial data
j(t0) = j0, j̇(t0) = j̇0 are prepared according to the
initial data concerning the joint. From the bond graph
viewpoint the second equation in (4) can be imple-
mented as a combination of the source effort, compli-
ance, and resistance elements. This type of joint cor-
responds to the Revolute joint constraint of Model-
ica Standard Library from the ModelicaAdditions
package. Such a joint can be driven by the electromo-
tor.
The model FreeSlideJoint defined by the equa-
tions

F = 0, l = 0

217

Multibody Systems Dynamics: Modelica Implementation and Bond Graph Representation

The Modelica Association Modelica 2006, September 4th – 5th

provides free, without any resistance, relative sliding
along the joint axis without any rotation about it. As
one can see this is a prismatic type of joint.
We can reformulate the FixedControlledJoint

model creating the model FixedServoJoint in a
following useful way

µ = 0, l = f (t,j, j̇) , j̈ = l

thus composing a kinematic restricting constraint, so-
called servoconstraint. The function f (t,j, j̇) sup-
posed as a prescribed one. Initial data for the angle
j of the relative rotation are prepared in the same way
as for (4). It is clear one can create a lot of other dif-
ferent combinations of equations to construct the joint
constraints needed in engineering applications.
The derived joint classes described here are to close
the system of kinematic equations (2) and (3) complet-
ing them mainly by two scalar additional equations,
each playing a role of an either FC-element, like µ = 0,
or EC-element, like F = 0. Any time to be able to
construct a consistent system of equations for the total
model we have to follow the guidelines of the comple-
mentarity rules.
These latter correspond to the notions of the bond
graph theory in a natural way. Indeed, the theory of
bond graphs is based on the energy interactions. Every
our multibond being an energy/power conductor re-
flects complementarity by its twist/wrench duality. To
close the total DAE system for the model under devel-
opment we have to “close” or rather to “seal” each free
scalar bond in EC/FC-element of the block C in Fig-
ure 2 by the corresponding one scalar equation for flow
or effort variable. Thus here we outline the main rule
to compose equations for the models of constraints for
MBS of any type in a consistent way when applying
the object-oriented approach. In the further course we
present an example for the systematic application of
the rules mentioned.

4 Example of the snakeboard

The snakeboard [9], see Figure 4, represents a four
wheeled vehicle moving in field of gravity on a hor-
izontal surface due to the servocontrol of a relative ro-
tation of wheelsets and a flywheel located at the mid-
point of the coupler and having a vertical axis of rota-
tion. The flywheel simulates a torso of the snakeboard
rider.
We will construct the model hierarchically step by step
verifying and integrating the parts into an assembly
units. Ideal mechanical system of the snakeboard has

Figure 4: The Snakeboard

three degrees of freedom (DOF). But we will add new
DOFs on some stages of modeling either to make the
model more physically oriented or to apply any proce-
dures of regularization.

4.1 Dynamics of the rolling disc

This problem is a classic one of dynamics [10] and has
a visual representation depicted in Figure 5

Figure 5: Visual Model of the Rolling Disc

Disc, the Body B, supposed an axisymmetric rigid
body which is able to roll on the another body, hori-
zontal surface, only by the curve fixed in the Body B.
In our case this curve supposed a circle relocated in
the plane

zB = 0 (5)

of the Body B coordinate system OBxByBzB and has
the fixed radius R, see Figure 6. In the current paper
we assume that the nonholonomic constraints are im-
plemented in an accurate sense as bilateral constraints.

The horizontal plane, Body A, is defined by its normal
unit vector such that radius vector rP = {xP,yP,zP} of
the contact point P has to satisfy an equation of the
horizontal plane

(rP,nA) = 0. (6)

Further denoting the Body B current orientation matrix
by TB and by rOB its center of mass position vector we

218

I.I. Kosenko, M.S. Loginova, YA.P. Obraztsov, M.S. Stavrovskaya

The Modelica Association Modelica 2006, September 4th – 5th

Figure 6: Rolling Disc

obtain the system of three equations

TBr = rP− rOB (7)

defining the dependence between the vector rP and the
vector r of the contact point position in the Body B
coordinate system.
On the other hand the vector ttt tangent to the circle
at the contact point can expressed in the disc coordi-
nates as ttt = {−yB,xB,0} because the vectors ttt and
r = {xB,yB,zB} are to be orthogonal mutually and to
be situated in the disc plane permanently. In addition,
in inertial system the path vector TBttt has to lie in the
horizontal plane. Then also holds the condition

(nA,TBttt) = 0. (8)

The system of six equations (5), (6), (7), (8) together
compose the one w. r. t. six variables xP, yP, zP, xB, yB,
zB and implements in a simple and effective way the
model Disc on Base derived from the class Roll[1].
Verification of the model outlined above was based on
the comparison of its simulation results with ones ob-
tained for the corresponding classic problem defined
by the system of ODEs [10]

Ṁ = [M,www]+m [ṙ, [www,r]]+mg[r,ggg],
ġgg = [ggg,www]

expressed w. r. t. the Body B rotating system. Here
M = Iwww + m[ṙ, [www,r]] is the vector of the disc angular
momentum computed w. r. t. the contact point, I =
diag(Ixx, Iyy, Izz) is the central principal inertia tensor
of the disc, www is its angular velocity, r is the vector
already mentioned above, ggg is the unit vector nA but
expressed w. r. t. the Body B system such that satisfy
the relations

xB =− Rgx√
1− g2

z

, yB =− Rgy√
1− g2

z

, zB = 0.

The simulations showed a high degree of accordance
between the two above models of the rolling disc dy-
namics. Errors increase inevitably and for the vectors
www, M, ggg components are of the order 10−7 over the
time interval of the several hundreds units.

4.2 Model of the wheelset

This model plays an important role when construct-
ing the simplest vehicle models. It is assembled using
the considered model of the rolling disc. Visual model
of the wheelset depicted in Figure 7, where the Rotate
and Flip commands were applied to symmetrize the di-
agram. Application of the model FixedIdealJoint
for the joints connecting the wheels and a rod of the
wheelset axis is impossible due to the uncertainty for
forces acting along this axis. If the contact points with
a floor supposed without slipping then introduction of
the compliance in the joints is a natural way to avoid
the degeneracy mentioned. Making this we add two
DOFs to the mechanical system of the wheelset. One
else additional DOF has the rod rotating independently
about its, and of the wheelset, axis. Compliances are
implemented by the model SpringIdealJoint.

Figure 7: Visual Model of the Isolated Wheelset

To verify the wheelset model built the following sys-
tem of DAEs was applied

max = X1 +X2 +Xext, may = Y1 +Y2 +Yext,
maz = Z +Zext,

(9)

ax =−R
2

(j̈1 + j̈2) , ay = 0, az =
R2

2L

(
j̇2

1− j̇2
2

)
,

(10)

219

Multibody Systems Dynamics: Modelica Implementation and Bond Graph Representation

The Modelica Association Modelica 2006, September 4th – 5th

Idzj̈1 = RX1, Idzj̈2 = RX2, Irzj̈r = 0, (11)

j̇ [Idz (j̇1 + j̇2)+ Irzj̇r] = L
2 (Y2−Y1)−RZ +Mextx,

Irzj̈ = L
2 (X1−X2)+Mexty,

(12)
Lj̇ = R(j̇1− j̇2) (13)

which is written w. r. t. moving coordinate system con-
nected with the wheelset according to Figure 8 in an
evident way. This system of coordinates performs a
convective motion tracing the motion of the rod which
plays a role of the wheelset axis shaft.

Figure 8: Top View of the Wheelset

The DAE system consists of twelve equations w. r. t.
twelve unknowns: j1, j2, j, jr, ax, ay, az, X1, X2, Y1,
Y2, Z. Let us give a more detailed explanations to these
DAEs. The subsystem of equations (9) represents the
theorem for the center of mass motion of the wheelset.
Here m = 2md + mr is the total mass of the wheelset,
md , mr are the masses of the wheel simulated by the
disc and the rod of the wheelset axis, R is the wheels
radius, L is the rod length. The variables ax, az, ay

are correspondingly the tangent, normal, and binormal
components of the masscenter acceleration.
The variables X1, X2, Y1, Y2 are the projections to the x,
y axes of the contact forces acting to the wheels from
the surface. The value Z = Z1 + Z2 is used because
z-projections of the contact forces can’t be computed
individually for the reason of degeneration of the prob-
lem along the z-axis. This discussed above problem
is resolved due to the compliance introduced for the
joints.

In the kinematic equations (10) all signs are adjusted
such that j1, j2 are the angles of the wheels relative
rotation, j̇1, j̇2, j̈1, j̈2 are their relative angular veloc-
ities and angular accelerations. Point C is a center of
velocities for the rigid planar convective motion of the
Ozx coordinate system.
The equations (11) represent z-projections of the Euler
dynamic equations for the discs and the rod considered
separately. We conclude from the third equation that
the rod relative angular velocity is the integral of the
motion: j̇r = const. Remind we consider rotations in
the joints as an ideal, without friction, ones.
First of the equations (12) is the dynamical one for
the angular momentum of the whole wheelset w. r. t.
the axis Ox. The second equation is the projection of
the same vector equation to the axis Oy. Further the
parameters Idz, Irz are the moments of inertia for the
wheel and rod w. r. t. the axis Oz, Iy = 2Idy + Iry where
Idy, Iry are the moments of inertia for the disc and shaft
w. r. t. the axis Oy. The angle j is one of the convec-
tive rotation about the Oy axis. The kinematic equa-
tion (13) is derived from a simple geometric consider-
ations, see Figure 8.
We can add an external force Fext = {Xext,Yext,Zext}
and rotating torque Mext = {Mextx,Mexty,Mextz} to the
right hand sides of equations (9), (11), (12). Regarding
the equations (11) one can distribute the torque Mextz

between all three bodies of the wheelset in an any de-
sirable way.
Computational experiments show a high degree of
concordance between our “physically oriented” model
of the wheelset and the ideal model described above
if the parameters of stiffness c and damping d in the
joint objects of class SpringIdealJoint are large
enough. Namely, in simulations we have used the val-
ues c = 1000, d = 5000.

4.3 Model of the vehicle

Let us construct at last a complete model of the snake-
board. Its visual representation see in Figure 9, where
rotation and flipping were applied to the graphic im-
ages of the objects as it has been done for the wheelset
visual model. Similar to the wheelset case we have
here a static indeterminacy along the coupler axis if
one supposed a rigid body. To avoid this degenera-
tion we splitted it into two equal parts and connected
them via viscoelastic joint, with an axis along the cou-
pler, using the model SpringIdealJoint with the
stiffness and damping large enough for the longitudi-
nal compliance of the snakeboard.

220

I.I. Kosenko, M.S. Loginova, YA.P. Obraztsov, M.S. Stavrovskaya

The Modelica Association Modelica 2006, September 4th – 5th

Figure 9: Visual Model of the Snakeboard

To perform a comparison with the known re-
sults [9] three servoconstraints were introduced to
the model. These servoconstraints imitate the con-
trol of the robot-snakeborder and are implemented by
the FixedServoJoint class which defines a relative
rotation of the bodies by the prescribed angle. To
be more precise in the class mentioned the control
is given by a law of the relative acceleration with a
proper initial values of the angle and the angular ve-
locity.
Servoconstraints are mounted at the joints between
the coupler and the wheelsets, and between the fly-
wheel and, for definity, the left part of the cou-
pler. The joints mentioned correspond to the objects
LeftJoint, RightJoint, and CJoint in Figure 9.
All three servoconstraints can be described by the
equations

j f = a f sin(w f t +b f), jb = ab sin(wbt +bb),
y = ay sin

(
wyt +by

)
,

where j f , jb are the angles of the front and rear (back)
wheelsets relative to the coupler rotation correspond-
ingly, y is the angle of the flywheel rotation w. r. t. the
coupler, to be more exact relative to its left (rear) part,
the object LBar in Figure 9, a f , ab, ay are the corre-
sponding amplitudes of libration, w f , wb, wy are their
frequencies, and b f , bb, by are their initial phases.
According to [9] three types of the snakeboard gait
were under verification:

1. “drive”: ab =−a f , w f = wb = wy;

2. “rotate”: ab =−a f , 2w f = 2wb = wy;

3. “parking”: ab =−a f , 3w f = 3wb = 2wy.

The simulations results showed a full coincidence of
the gait types for our regularized model and the ide-
alized model of the paper [9]. All types of the be-
havior are demonstrated in Figures 10, 11, 12, where
the flywheel masscenter projections to the xz plane are
presented. In [9] for the ideal model when deriving
the DAEs of the snakeboard motion for simplicity of
the model the wheels rotary motion and the wheelsets
translatory motion weren’t taken into account. In such
a sense from the dynamical point of view our model is
more complete.

Figure 10: Masscenter Trajectory for “Drive” Gait

Figure 11: Masscenter Trajectory for “Rotate” Gait

If we introduce a small parameter playing a role of the
scaling multiplier for the inertia moments and masses
for the motion types neglected in [9] then if its value
is small enough, 10−7 for our simulations, the mo-
tions compared become practically indistinguishable,

221

Multibody Systems Dynamics: Modelica Implementation and Bond Graph Representation

The Modelica Association Modelica 2006, September 4th – 5th

Figure 12: Masscenter Trajectory for “Parking” Gait

see for instance the plot of the snakeboard masscenter
x-components difference for the models under com-
parison, Figure 13, in the case of the “Rotate” gait.
Animation shot in the case of the ”drive” type gait see
in Figure 14.

Figure 13: Closeness of Models

A set of different laws of the snakeboard control per-
formed by the robot-snakeborder generating the mass-
center trajectories like astroid, cycloid, eight, 3-rose,
4-rose is presented in [11]. The port-controlled Hamil-
tonian representation of the simplified ideal snake-
board model from [9] with its bond graph implemen-
tation is investigated in [12].
Considering balance of energy in the total model one
can remark here that servodrives applied between the
coupler on one side and the flywheel and wheelsets on
the other one are implemented correspondingly in the
objects

CJoint, LeftJoint, RightJoint

of the class FixedServoJoint. Such kinematic con-
straints are known in the bond graph theory to be able

Figure 14: Animation of “Drive” Gait

to inject into the system any amount of energy needed
to hold the desired motion. On the other hand energy
loses due to the resistance elements encapsulated in
the objects

Spring,
LeftWheels.Joint1, LeftWheels.Joint2,
RightWheels.Joint1, RightWheels.Joint2,

of the class SpringIdealJoint.
Thus the class FixedServoJoint implements two
scalar FC-elements from the general bond graph de-
picted in Figure 2 for the rotary and translatory mo-
tions, while the class SpringIdealJoint imple-
ments one C-element, ideal elastic compliance, in
combination with R-element, resistance due to viscos-
ity, for the translatory motion plus one EC-element for
the rotary motion. Remind that all motions supposed
here as a relative ones of the body B w. r. t. body A in
each of the constraint objects considered.

5 Conclusion

We can make now our brief list of conclusions in the
following form:

• A unified multi-bondgraph representation of the
MBS dynamics in a sufficiently simple way with
the canonical junction structure is possible.

• The representation depicted in Figure 2 can be
used as a guideline to construct the consistent sys-
tem of DAEs in a systematic way. In other words
we can say that multi-bondgraph constructs like
ones of Figure 2 are to be used as a regular basis
for more informal object-oriented approach.

222

I.I. Kosenko, M.S. Loginova, YA.P. Obraztsov, M.S. Stavrovskaya

The Modelica Association Modelica 2006, September 4th – 5th

• An object-oriented representation makes it possi-

ble to develop the constraints models adopted to
the specific types of the bodies interconnections
in a fast and effective manner implementing the
corresponding bond graph formalisms in a more
natural and informal way mainly by chains of in-
heritance for the behavior (equations) and prop-
erties thus gradually filling the complete multi-
bondgraph description.

• An acausal modeling accelerates the modeling re-
leasing a developer from the problem of causal-
ity assignment if s/he takes into account some re-
quirements like complementarity rules.

• Introducing the compliance into the model may
be useful and effective preserving the principal
properties of the MBS like anholonomity etc.

Enumerate also some possible directions of the further
work:

• Development of the vehicle models more compli-
cated then considered here.

• Development of the more complicated contact
models taking into account friction and a unilat-
eral nature of the constraints.

• Account of the road uneven surfaces of different
types.

6 Acknowledgement

The paper was prepared with partial support of Rus-
sian Foundation for Basic Research, projects 05–08–
65470, 05–01–00454, SS–6667.2006.1.

References

[1] Kossenko, I. I., and Stavrovskaia, M. S., How
One Can Simulate Dynamics of Rolling Bod-
ies Via Dymola: Approach to Model Multibody
System Dynamics Using Modelica // Proceed-
ings of the 3rd International Modelica Confer-
ence, Linköpings universitet, Linköping, Swe-
den, November 3–4, 2003, pp. 299–309.

[2] Kossenko, I. I., Implementation of Unilateral
Multibody Dynamics on Modelica // Proceedings
of the 4th International Modelica Conference,
Hamburg University of Technology, Hamburg–
Harburg, Germany, March 7–8, 2005, pp. 13–23.

[3] Stramigioli, S., Blankenstein, G., Duindam, V.,
Bruyninckx, H., Melchiorri C., Power Port Con-
cepts in Robotics. The Geometrical–Physical
Approach. Tutorial at 2003 IEEE International
Conference on Robotics and Automation. —
IEEE, 2003.

[4] Paynter, H. M., Analysis and Design of Engi-
neering Systems. — The M. I. T. Press: Cam-
bridge, Massachusetts, 1961.

[5] Cellier, F. E., Continuous System Modeling. —
Springer–Verlag: New York, 1991.

[6] Mukherjee, A., Karmakar, R., Modelling and
Simulation of Engineering Systems through
Bondgraphs. — Alpha Science International
Ltd.: 2000.

[7] Golo, G., Interconnection Structures in Port-
Based Modelling: Tools for Analysis and Simu-
lation. PhD Thesis. — University of Twente: En-
schede, The Netherlands, 2002.

[8] Dymola. Dynamic Modeling Laboratory. User’s
Manual. Version 5.3a. — Lund: Dynasim AB,
Research Park Ideon, 2004.

[9] Lewis, A. D., Ostrowski, J. P., Murray, R. M.,
and Burdick, J. W. Nonholonomic Mechanics
and Locomotion: The Snakeboard Example //
Proceedings of the IEEE International Confer-
ence on Robotics and Automation, San Diego,
May 1994, IEEE, pp. 2391–2400.

[10] Borisov, A. V., Mamaev, I. S., Kilin, A. A., Dy-
namics of Rolling Disk // Regular and Chaotic
Dynamics, 2003, Vol. 8, No. 2, pp. 201–212.

[11] Golubev, Yu. F., Motion Design for a Robot-
Snakeborder // Keldysh Institute of Applied
Mathematics, the Russian Academy of Science,
Preprint No. 65, 2004.

[12] Duindam, V., Blankenstein, G., Stramigioli S.,
Port-Based Modeling and Analysis of Snake-
board Locomotion // Sixteenth International
Symposium on Mathematical Theory of Net-
works and Systems, Katholieke Universiteit Leu-
ven, Belgium, July 5–9 2004.

223

Multibody Systems Dynamics: Modelica Implementation and Bond Graph Representation

The Modelica Association Modelica 2006, September 4th – 5th

224

I.I. Kosenko, M.S. Loginova, YA.P. Obraztsov, M.S. Stavrovskaya

The Modelica Association Modelica 2006, September 4th – 5th

NowaitTransit
®
 concept assessment.

Modeling of trains on complex track geometry

Jan Tuszyński, Niklas Philipson, Johan Andreasson, Magnus Gäfvert

Nowaittransit AB, Modelon AB
jan@nowaittransit.com, niklas.philipson@modelon.se, johan.andreasson@modelon.se, magnus.gafvert@modelon.se

Abstract

This paper presents modeling and verification of

Nowaittransit’s concept of mass passenger transpor-

tation for big cities. Cars of the train, coupled in a

closed loop, move continuously along the track but

slow down in station areas due to the special scheme

of car folding. Concept verification through model-

ing was requested by the investors.

Keywords: Mass city transportation; Train dynamics

modeling; Vehicles in complex constraints; Invest-

ment in new technology

1 Introduction

1.1 Background

Nowaittransit AB has developed and patented new

concept of mass passenger transportation for big cit-

ies. The closed loop of interconnected cars moves

continuously along the track slowing down in station

areas by the special scheme of folding cars.

The concept has advantages of high transport capac-

ity of modern subway but at much lower costs for

investment and exploitation providing that way at-

tractive alternative to subway. The company has sev-

eral Asian cities interested, but closing final con-

tracts requires formal assessment proving that pro-

posed functionality of the system can be achieved.

The assessment is run presently in two stages;

through computer modeling and through physical

verification on the test track in Sweden. The com-

puter modeling reported here was performed by

Nowaittransit and Modelon and had two main objec-

tives:

To prove that the concept has no “show stoppers”

which may be hidden in dynamics of the long chain

of the cars moving along the complex rail geometry.

Requirements on the orderly start-up and braking

shall be achieved and potential hazards identified.

To show that design team of the Nowaittransit has

capacity and tools to handle complexity of mechani-

cal and control systems of the train.

The interesting aspect of the project presented was

that modeling was required by investors as a proof

that a new concept is trustworthy enough to invest in

the test track.

1.2 Short introduction of the NowaitTransit
®

The underlying principle of the NowaitTransit® in-

vention is a continuous train movement with a reduc-

tion of the traveling speed at the stations.

Figure 1: Nowaittransit mass transportation system

The length of the NowaitTransit
®
 car is reduced

through a 90-degree horizontal folding shown in

Figure 1. The cars traveling out of the station areas

have a normal transport speed, which during the

folding is reduced by the factor 1:12 when the cars

enter the station. The passengers can now board and

disembark the train at the end of each slowly moving

car. This speed at the station corresponds to the high

end of normal walkway speeds. The passengers’ en-

try and exit is further facilitated through use of mov-

ing walkways, making it acceptable for disabled per-

sons.

225

NowaitTransit Concept Assessment. Modeling of Trains on Complex Track Geometry

The Modelica Association Modelica 2006, September 4th – 5th

Due to this continuous boarding/disembarking prin-

ciple, station loads will be evenly distributed with no

crowds of passengers waiting. Traditional systems

have passengers gathering on the platforms and

whole trainloads of people boarding and disembark-

ing simultaneously. Accordingly NowaitTransit®

stations can be smaller with capacities of stairs, ele-

vators and stairways reduced. Small stations, light

modular structures and simplicity allow reduction of

investment costs to approximately 25 MEUR/km

compared to 85-125 MEUR for conventional sub-

way.

2 Objectives of the modeling and

tests performed

2.1 Objectives

The main objective for modeling was proving that

the concept can be realized. We concentrated accord-

ingly on the following:

• Analysis of train structural singularity or system

over-determination.

Mainly aspects of the train dynamics where

movements of the interconnected cars are bound

to 3D geometry of the rail

• Structural loads on the train components.

Load analysis was required to prove that the

train can be accelerated and slowed down, and

that the main train structures will hold intact

through pre-identified hazard situations

• Identification and evaluation of factors of pas-

senger comfort and train controllability

Assessment of the NowaitTransit
® concept reported

here should be seen as the final stage of the concept

introduction to investors. The Modelica models will

be further developed and verified to become eventu-

ally design tool of the full scale projects of the fu-

ture.

2.2 Requirements on tests and introduction to

main models developed

The objectives above were addressed by specifying

simulation experiments required, which led to the

final requirements on train models.

A couple of cars moving on rail of free definable

geometry and coupled by a single distance beam was

found the basic structure of the model. That structure

was pretty straight forward to model, but it showed

up quickly that the main problems came from the

long chains of cars acting on each. Long chains

meant huge number of equations to solve and diffi-

culties in defining initial conditions, which led to

extremely long simulation times. We had to simplify

the whole train model worked accordingly with two

main types of models:

Centre Rail Model (CRM): where the cars, which

travel on the central rail can turn round z-axis verti-

cal to the rail line. The cars can now be forced into

folding and un-folding according to angle α, pre-

define function of car position (s) on the track. This

scheme replaces here car-turning forced by changing

of the rail gauge of the original concept.

CRM model will not allow studies of the rail bogy

interaction but is a good approximation for studies of

car propulsion and car interaction in open and closed

loops of coupled cars covering at least one car transi-

tion zone (e.g. station of folding zone, station plat-

form zone and un-folding zone).

Figure 2 shows part of the CRM animation, with

middle (red) line representing centre rail, and two

external lines showing trajectory of wheel-rail con-

tact points.

Final Rail Model (FRM): where at least one basic

car structure is run through various rail zones linked

Figure 2: Cars and distance beams of the CRM

model

Figure 3: Two car couples ascending rail of FRM

226

J. Tuszynski, N. Philipson, J. Andreasson, M. Gäfvert

The Modelica Association Modelica 2006, September 4th – 5th

with rest of the train represented by CRM. This

model allows us study of car wheel interaction with

the rail. Figure 3 shows FRM of the cars ascending

rail, while Figure 4 shows complete rail loop of the

same simulation.

3 Selected aspects of Nowait models

3.1 General

We present here the following aspects of Nowait-

Transit
®
 modeling:

• Tools for selection and testing of track geometry

• NowaitLib: Modelica library for simulation of

train cars on the complex track geometry

• Car and rail components of the library

3.2 Generating track geometry

As it was already implied train of Nowait cars is ba-

sically over-determined. Due to the folding and un-

folding schemes length of the closed loop of the train

can vary. It becomes accordingly crucial to match

dimensions of car components and car geometry to

reduce those length variations until they could be

absorbed by elasticity of train components and rail.

This complex process of selecting car geometry was

facilitated by development of the package of Matlab

functions, transforming input data (e.g. lengths of the

zones) into output matrix ‘trackTab’ with description

of rail geometry. The ‘trackTab’ is read as a table of

Modelica models.

Two basic forms for track building are available:

• Polynomial, of continuous 1st, 2nd and 3rd deriva-

tives

• Exponential, according to function

y = C*exp(-|s-s0|^nExp)

Exponential form allows symmetrical track geometry

only, and has a convenient property of continuous

derivatives. The track geometry may be varied in x-,

y- and z-direction of the world.

Changes in z-direction (altitude) are required mainly

for slowing down / acceleration of the folding / un-

folding cars by transfers between kinetic and poten-

tial car energy. This z-compensation can be complete

(100% kinetic energy at normal train velocity trans-

ferred to the potential energy) or partial only. Exam-

ples of the polynomial and exponential geometry are

shown in Figures 5 and 6, presenting car folding an-

gle, velocity and elevation of both cases.

Figure 5: Profiles of car folding angle, velocity and z-

elevation for exponential track geometry

Figure 6: Profiles as car angle, v and z, for polynomial

track geometry

Matrix ‘trackTab’ is used for centre and final rail

models. It can be noted from Figure 2, that required

geometry of each rail (upper and lower lines) can be

Figure 4: Complete train loop of FRM

227

NowaitTransit Concept Assessment. Modeling of Trains on Complex Track Geometry

The Modelica Association Modelica 2006, September 4th – 5th

unequivocally decided from centre line geometry,

dimensions of car components and angles of the car

in relation to car centre. All this information is avail-

able in matrix ‘trackTab’.

3.3 Testing of track geometry

Matlab-generated track geometry must be tested.

Initial testing is done using special Matlab functions,

the final testing through Modelica models. There are

three criteria which can be evaluated in Matlab: 1)

length of the train between any two cars holding the

same angle shall be constant, 2) number of cars be-

tween any two points of the track shall be constant,

and 3) velocity of moving cars shall comply with

constant car passing frequency (number of cars /

sec).

Results from testing track geometry of Figure 6 are

shown in Figure 7.

Figure 7: Testing results of polynomial geometry of

Figure 6

The testing showed positive results concerning third

criteria; final velocity variation was contained in ap-

proximately +/- 0.1 %. The vertical lines on the up-

per plot of Figure 7, indicate initial position of cars

in the transition zone. Vector of initial positions is

used for initialization of Modelica simulations.

3.4 NowaitLib Library

All modeling NowaitTransit
®

trains follow formal

Modelica instructions, considering initial develop-

ment of the system library including formal verifica-

tion of library modules. The name of the library is

NowaitLib and library structure is shown in Figure 8.

Figure 8: Structure of the NowaitLib library

The components of the library are universal in a

sense they can be applied to various kind of bodies

moving in boundaries of any track geometry defined

in pre-defined table (here ‘trackTab’)

3.5 Main models of the NowaitLib

Main train components modeled are cars, distance

beams for car coupling and finally track/rail ele-

ments. Models of the cars and beams built on the

standard Modelica Mechanics of MultiBody Library.

228

J. Tuszynski, N. Philipson, J. Andreasson, M. Gäfvert

The Modelica Association Modelica 2006, September 4th – 5th

One of the main problems encountered was placing

free body of the car in constraints of the track.

Figure 9 shows main components of the Contact-

Point model used in FRM for interconnection of the

wheel contact point (CP) and rail, where:

• CP of the wheel is connected through MultiBody

frame ‘bogieFrame’

• ActuatedPrismatic component models lateral (y-

direction) movements of the rail

• LateralForce component calculates forces acting

on the CP (and car bogie), there mainly centering

force of wheel crowning, and friction

• Track geometry is enforced through ‘actuated-

RailJoint’ getting ‘trackTab’ data through ‘axis‘

connector.

’RailJoint’ model describes the (translational) mo-

tion along a track defined in space by vectors of

frames ‘a’ and ‘b’ (Figure 10), as

r_b = r(s) + r_a. It can essentially be considered as a

generalizing modification of the

MultiBody.Joints.Internal.Prismatic joint where

r_b = n*s + r_a. The following modifications are

essential for train modeling:

• The track is able to follow any (two times differ-

entiable) trajectory in space given via the outer

function ‘track.position’. This means that also

the orientation of ‘frame_b’ relative ‘frame_a’

must be given (for the prismatic it is assumed

that there is no relative rotation), here via the

outer function ‘track.orientation’.

Figure 10: RailJoint as extension of Prismatic joint

Figure 9: Main components of the track - car interconnection

229

NowaitTransit Concept Assessment. Modeling of Trains on Complex Track Geometry

The Modelica Association Modelica 2006, September 4th – 5th

• To allow efficient symbolic manipulation of the

functions ‘track.position’ and ‘track.orientation’,

the differentiations are provided through ‘track-

Tab’ table. Note especially that for this applica-

tion, it is assumed that dr_rel/ds points in the x-

direction of frame_b. The differentiation has to

be possible at least three times to resolve the mo-

tion equations on acceleration level of both rota-

tional and translational loops.

As a result, the relative velocity and d'Allembert's

principle are always in the heading direction dr/ds

which is the x-axis of frame_b. This model is ex-

tended as MultiBody.Joints.Internal.Prismatic to al-

low addition of Translational flanges.

4 Summary of experiments run on

the models

The experiments run on the models covered three

main groups:

• Tests/generation of the track geometry and di-

mensioning of cars and car coupling elements

• Tests of the longitudinal forces acting between

cars in dynamic situations of train runs, start-ups,

and different cases of braking down

• Tests of complete train sets including bogie and

wheels moving along the complex rail geometry.

The first group was run through package Matlab

functions as reported already above. The Matlab re-

sults were confirmed by Modelica/Dymola experi-

ments.

Tests of the longitudinal forces required models of

the long chain of cars and were run accordingly on

the centre rail models.

Tests of complete train sets required simulations on

the final rail models.

All tests were run on the ‘representative track ge-

ometry’, covering mainly two basic profiles; one of

complete station zone, and second of 90
o
 curve with

cars folding and un-folding in order to manage

curves of relatively small radii required for adoption

of the train track to existing city environment.

4.1 Experiments run on the centre rail model

Experiments of this group concentrate on demonstra-

tion of forces between cars, and forces required to

drive/brake cars through raising and falling parts of

the track (δz/δs), and cars on the curves in x-y plane.

The following groups of experiments were run:

• Cars run in constant base velocity,

• Cars of the starting train; accelerated from v= 0

to base v,

• Cars of the braking train; slow down from base v

to 0.

• Cars in “let free” situation, cars are left over

without any external forces testing car behaviour

on the raising and falling part of the track

• Train emergency brake down (according to in-

ternational standards)

• Train in accidental brake down (i.e. hazard)

In addition to the above tests concerning mainly

identification of the dynamic behaviour of the

NowaitTransit train, the following tests were added:

• Test of passenger comfort. Comfort factors were

selected measuring forces acting on passengers.

• Test of car controllability (only initial evalua-

tions)

4.2 List of experiments run on the final rail

model

Experiments run on the final rail model were essen-

tially the same as for CRM. The focus of testing was

moved here on the following:

• Verification of compatibility between CRM and

FRM (does CRM reflect real behavior of cars on

the variable gauge track?)

• Verification of the wheel movement on the rail.

E.g. prove that wheel friction across the rail will

limit lateral sliding of the wheel

• Verification of train controllability during se-

lected phases of the train operation. This to esti-

mate complexity of the train control system

(Note: here identify potential problems only)

230

J. Tuszynski, N. Philipson, J. Andreasson, M. Gäfvert

The Modelica Association Modelica 2006, September 4th – 5th

5 Examples of experiments run on

the centre rail track

Experiments listed above are exemplified here on

three case only:

Case 1 (Figure 11): shows, velocities of cars, forces

on distance beams and car turning torques during a

normal car passage of the station area. Note that the

case reflects the special situation when cars in transi-

tion are not propelled but only pushed through by the

cars still on straight part of the track

Case 2 (Figure 12): shows the same car configura-

tion as for case 1. Here cars are slowed down from 5

to 0 m/sec. This case is special as well as cars in

transition are braked but slowing down of the cars on

straight part of the track. Note pulsing character of

forces and torques implying that control is required.

Figure 11: Cars of the CRM in normal operation passing station area

Figure 12: Cars in CRM during train stop from 5 to 0 m/sec

231

NowaitTransit Concept Assessment. Modeling of Trains on Complex Track Geometry

The Modelica Association Modelica 2006, September 4th – 5th

Case 1 (Figure 13): shows, velocities of cars, lateral

forces on the rail and forces in distance beam acting

on the selected cars of the train during normal pas-

sage of the station area.

6 Summary of results and conclu-

sions

The study presented here had the main purpose to

show for investors deep knowledge of the proposed

NowaitTransit® concept. The study resulted accord-

ingly in the models which allow ‘driving’ Nowait

train along various track geometry. The study had

the ambition to identify the process of driving long

trains along complex track geometry, which implies

that the modeling effort shall be continued. We can

tell today that no distinct ‘show stoppers’ were iden-

tified, but at the same time we see difficulties to be

met. There are clear tendencies to longitudinal car

oscillations. Main effort of the studies was to gener-

ate track geometry reducing those oscillations to the

minimum, which showed up feasible. The coming

modeling stages should concentrate on design and

verification of the train propulsion system, on find-

ing optimal algorithms for train control (done par-

tially in ref [1]) and on verification of the auxiliary

systems for train start-up and brake-down. We are

pretty advanced in further model development allow-

ing study of the complete loops of the interconnected

cars (Figure 14). Modelica models and package of

Matlab functions are already powerful tools but must

be developed further to ensure that train design and

design verification will be effective and trustworthy.

Figure 14: Animation of the complete closed loop of

Nowait train model

7 References

[1] Dynamic Simulation of the Train Concept

Nowait Transit. Master Thesis, Daria Mad-

jidian, Arash Majedi. 2005. Department of

Automatic Control. LTH

Figure 13: Cars of FRM during normal operation in station area

232

J. Tuszynski, N. Philipson, J. Andreasson, M. Gäfvert

 Session 3a

The Modelica Association Modelica 2006, September 4th – 5th 233

Session 3a

Thermodynamic Systems for Energy Storage and Conversion

Session 3a

The Modelica Association Modelica 2006, September 4th – 5th 234

The Modelica Association Modelica 2006, September 4th – 5th

Analysis of steam storage systems using Modelica

J. Buschle, W.D. Steinmann, R. Tamme
German Aerospace Center (DLR), Institute of Technical Thermodynamics

Pfaffenwaldring 38-40, 70569 Stuttgart, Gemany
jochen.buschle@dlr.de

Abstract

Modelica is used for the analysis of steam accumula-
tors used as energy storage systems in power plants
and process industry. The analysis includes varying
pressure accumulators and steam accumulators with
latent heat technology. Physical models for the phase
change material (PCM) and for the vertical discreti-
sation of stacked volume elements are implemented
in Modelica. Modelica is used for the analysis of
new PCM enhanced steam accumulators which are
not state of the art. The results of this analysis help to
design these novel storage systems.
Keywords: thermal energy storage; steam accumula-
tor; phase change material

1 Introduction

Industrial process heat applications have been identi-
fied as a promising new area of application for ther-
mal energy storage systems. Storage systems im-
prove the efficiency by the reuse of energy in cyclic
processes. The bulk of process heat applications re-
quire steam at pressures between 1 and 20 bar with
corresponding saturation temperatures between
100°C and 210°C. While the application of phase
change materials (PCMs) is straightforward for iso-
thermal energy storage, no commercial system is
available in this temperature range today.

Modelica is used to analyse different kinds of steam
storage systems for applications in power plants and
process industry. The analysis includes varying pres-
sure steam accumulators, which are state of the art,
and a novel kind of steam accumulator with a phase
change material (PCM). For the various storage sys-
tems physical models are implemented in Modelica.

2 Steam accumulator

Due to increasing costs for fossil energy, systems for
thermal energy storage have become attractive for
process heat applications. Especially in cyclic proc-
esses, energy storage systems offer an additional op-
tion for efficient energy usage. An example for such
a cyclic process is the production of gas concrete.
Here the produced stones are hardened under a steam
atmosphere in an autoclave. During a hardening cy-
cle, the pressure in the autoclave is raised to 15 bar
for several hours. Between two production cycles,
the steam is partially stored in varying-pressure ac-
cumulators (Figure 1), so called Ruths steam accu-
mulators, which represent the current state-of-the-art
technology in medium temperature thermal energy
storage.

Discharge pipe

Feed pipe

Drain

Charging pipe

Savety valve
Water level

gauge

Charging nozzle

Circulation pipe

Figure 1: Varying pressure accumulator [1]

Varying-pressure accumulators use hot pressurised
water as storage medium. Liquid and gas phases are
in thermodynamic equilibrium. During the discharge
process , the systems provides saturated steam at de-
creasing pressure.

235

Analysis of Steam Storage Systems using Modelica

The Modelica Association Modelica 2006, September 4th – 5th

Holes

Circulation
pipe

Connection to the
distribution pipe

Figure 2: Charging nozzle with circulation pipe [1]

During the charging process, steam is blown into the
liquid contained in the accumulator. The incoming
steam bubbles condense in the liquid or pass into the
steam space, depending on the thermodynamic equi-
librium in the vessel. The bubbles which rise to the
steam space increase the pressure and lead to a
higher saturation temperature, so that the next bubble
might condense. To use the entire storage content,
the charging process requires circulation. Ruths in-
vented a method that consists of nozzles (Figure 2)
which turn the flow of steam upwards. The nozzles
are surrounded by a circulation pipe, wherein the
water flows upwards. The minimum temperature loss
is composed of the difference between the steam
space and the uppermost liquid layer as well as the
difference between the saturation temperatures due
to the additional pressure of the water at lower
depths. Depending on the accumulator pressure and
the steam intake, there is a certain depth for the noz-
zles which minimizes the overall temperature loss.
[1]

3 MultiPhase Media Library

The Modelica.Media package provides a standard-
ized interface to fluid media models and specific
media models based on this interface. For the han-
dling of multiphase applications, a general media
package was developed based on the Mode-
lica.Media package. An additional properties record
called MultiPhasePropertiesRecord is used in the
BaseProperties model to provide the thermody-
namic properties of the different phases to the mod-
els using the Modelica.Media package.

replaceable record MultiPhasePropertiesRecord

 extends Modelica.Icons.Record;

 MassFraction x[nPhase];

 SpecificVolume v[nPhase];

 MassFraction[nPhase, nX] X;

 MassFraction[nPhase, nXi] Xi;

 SpecificEnthalpy h[nPhase];

 SpecificInternalEnergy u[nPhase];

 SpecificHeatCapacity R[nPhase];

 MolarMass MM[nPhase];

end MultiPhasePropertiesRecord;

In this record, the thermodynamic properties of the
different phases of the medium are included. Com-
pared to the BasePropertiesRecord, as defined in
the PartialMedium package of the Modelica.Media
library, the mass fraction of the different phases is
added and the specific volume is used instead of the
density. The PartialMultiPhaseMedium package
extends the PartialMedium package of the Mode-
lica.Media library. The BaseProperties model in the
PartialMultiPhaseMedium package is extended in
the following way.

redeclare replaceable partial model extends Base-
Properties

 "Base properties (p, d, T, h, u, R, MM and,
if applicable, X) of a medium"

 MultiPhasePropertiesRecord MultiPhase;

equation

 /*

d = 1/(MultiPhase.v*MultiPhase.x);

for i in 1:nX loop

 X[i] = MultiPhase.X[:, i]*MultiPhase.x;

end for;

for i in 1:nXi loop

 Xi[i] = MultiPhase.Xi[:, i]*MultiPhase.x;

end for;

h = MultiPhase.h*MultiPhase.x;

u = MultiPhase.u*MultiPhase.x;

R = MultiPhase.R*MultiPhase.x;

MM = MultiPhase.MM*MultiPhase.x;

*/

end BaseProperties;

It is possible to use the MultiPhase medium models
with single phase models. The required base proper-
ties are calculated as a mixture of the different
phases.

236

J. Buschle, W.D. Steinmann, R. Tamme

The Modelica Association Modelica 2006, September 4th – 5th

4 Downflow model

For the analysis of steam accumulators, a vertical
discretisation of the storage vessel is elemental.
Based on the Modelica.Fluid library, models for the
simulation of multiphase flows are developed. The
drainage and flooding of vessels can be reproduced
as well as the vertical stacking of control volumes.

Between two volume elements stacked one above the
other, two kinds of mass exchange mechanisms are
identified. One type of mass exchange results from
the pressure difference between these two elements
and the other mass exchange occurs due to down-
flowing water and upflowing steam caused by the
density difference of these two phases. The mass
flow of the downflowing water is calculated in the
following way:

if noEvent(y_liq > y_min and y_vap > y_min) then

 m_flow= V_upper*V_lower*f_flow*

 (y_liq - y_min)*(y_vap - y_min);

else

 m_flow = 0.0;

end if;

The mass flow of the upflowing steam is not calcu-
lated separately. This mass transport mechanism is
covered by the mass transport due to the pressure
difference. The required volume fraction, y, can be
calculated from the MultiPhase Modelica.Media
models in the following way:

y = medium.MultiPhase.v[nPhase] *

 medium_u.MultiPhase.x[nPhase] *

 medium_u.d;

5 Simulation steam accumulator

In Figure 3 the simulation models for a Ruths accu-
mulator and a single control volume are shown. They
are connected to an ambience model by a control
valve, an enthalpy flow rate sensor and a MultiPhase
flange which ensures that only vapour is leaving the
volumes. The enthalpy flow rate is integrated over
time. The steam accumulator is dicretised in the ver-
tical direction into control volumes. The water va-
pour exchange between the volume elements is cal-
culated with the downflow model as presented in
section 4.

II

Figure 3: simulation models for Ruths accumulator
and single control volume

The ambience model is initialized with a pressure of
3 bar. The volumes of the pressure vessel are initial-
ized with a pressure of 4 bar and an enthalpy of 610
kJ / kg. The height of the pressure vessel is 3 m and
the diameter is 1 m. The pressure vessel is filled up
to 50 percent with water. The single control volume
and steam accumulator model have the same dimen-
sions. In the beginning, the control valve is closed.
After 1000 seconds it is opened.

In Figure 4 the simulation results are presented. In
the beginning the water is flowing down in the
stacked volumes of the Ruths accumulator.

0

4

8

12

14

Single Volume
Ruths accumulator

0 400 800 1200 1600 2000 2400 2800

3.0

3.2

3.4

3.6

3.8

4.0

time [s]

Single Volume
Ruths lower
Ruths upper

pr
es

su
re

[b
ar

]
pr

ov
id

ed
he

at
[k

W
h]

0 400 800 1200 1600 2000 2400 2800

time [s]
Figure 4: simulation results of pressure and provided
heat for Ruths accumulator and single control vol-
ume

Because of the static pressure of the water column,
the pressure in the lower volume element is increas-
ing and the pressure in upper volume element is de-
creasing. After 1000 seconds, the control valve is
opened and the pressure vessels are discharged to the
ambience model. The pressure in the single control
volume and in the upper volume of the Ruths accu-
mulator is lowered to 3 bar. The pressure in the
lower volume element of the Ruths accumulator re-

237

Analysis of Steam Storage Systems using Modelica

The Modelica Association Modelica 2006, September 4th – 5th

mains above 3 bar due to the static pressure. More
heat is provided by the single control volume com-
pared to the stacked volumes. The reason for this is
the higher pressure in the lower volume elements of
the Ruths accumulator which matches the real be-
havior of the varying-pressure accumulator.

6 Phase change materials (PCM)

Isothermal energy storage increases the storage effi-
ciency. This can be achieved by using a PCM as
storage material. Due to the latent heat of melting
thermal energy can be stored in a very small tem-
perature range.

6.1 Materials

For the temperature range of interest, various materi-
als can be used as PCMs. Examples of inorganic ma-
terials are technical salts and eutectic mixtures of
these salts such as: lithium nitrate (LiNO3), lithium
chloride (LiCl), potassium nitrate (KNO3), potas-
sium nitrite (KNO2), sodium nitrate (NaNO3), so-
dium nitrite (NaNO2) and calcium nitrate
(Ca(NO3)2). In the group of organic PCMs an inter-
esting material is Pentaerythritol. It undergoes a
solid-solid transition at 189°C with an enthalpy of
269 kJ/kg [Benson, 1985]. The melting point of this
plastic crystal is about 50 Kelvin above the solid-
solid transition temperature.

6.2 Calculation of enthalpy

Three ways to calculate the enthalpy in the Mode-
lica.Media models are compared. The first method is
the linear interpolation using If-, Elseif- and Else-
clauses, the second method is the usage of the arc
tangent function and the third method is the usage of
the error function. Using the arc tangent method no
If-clauses are needed. The arc tangent function can
be calculated by series expansion as provided by
Euler in the following way:

() ()
...

153
42

13
2

1
arctan 32

5

22

3

2 +
+

⋅
⋅
⋅

+
+

⋅+
+

=
x

x

x

x
x

xx

The error function is calculated according to W J
Cody [3] as an approximation. In this implementa-
tion different approximations are combined by If-
clauses.

Linear interpolation method
The heat capacity in the liquid and in the solid state
is assumed to be constant and increases from the on-
set temperature of phase change to a maximum at the
transition temperature followed by a decrease until
the constant value of the liquid state is reached at the
final phase change temperature. In Figure 5 heat ca-
pacity and enthalpy are plotted against the tempera-
ture.

he
at

ca
pa

ci
ty

temperature
Tonset Ttransition Tfinish

cpmax

cpupper

cplower

en
th

al
py

enthalpy
heat capacity

Figure 5: heat capacity and enthalpy plotted against
temperature for the linear interpolation method

The latent heat of melting can be calculated in the
following way:

() ()
() ()
() ()
() () ()onsfinlowp,upp,onsfinlowp,

upp,maxp,transfin

lowp,maxp,onstrans

transfinupp,onstranslowp,trans

T-Tc-c5.0T-Tc

ccTT5.0

ccTT0.5

TTcTTch

⋅⋅−⋅−

−⋅−⋅+

−⋅−⋅+

−⋅+−⋅=

If the transition temperature, the onset temperature of
phase change, the final temperature of phase change,
the heat capacity in the liquid state, the heat capacity
in the solid state and the latent heat of melting are
known, the maximum heat capacity can be calculated
from the latent heat of melting.

() ()

upp,lowp,

onsfin

transfinupp,onstranslowp,trans
maxp,

cc
TT

TTcTTch2
c

++
−

−⋅−−⋅−⋅
=

The calculation of the enthalpy in the Mode-
lica.Media package is implemented with if, elseif
and else clauses in the following way:

238

J. Buschle, W.D. Steinmann, R. Tamme

The Modelica Association Modelica 2006, September 4th – 5th

if noEvent(T < Tonset) then

 h = cp,lower*(T - T0);

elseif noEvent(T > Tfinish) then

 h = cp,lower*(Tonset-T0)+htransition+cp,upper*(T-Tfinish);

else

 if noEvent(T < Ttransition) then

 h = cp,lower*(Tonset - T0) + cp,lower*

 (T - Tonset) + 0.5*(cp,max -cp,lower)*

 (T - Tonset)^2/(Ttransition - Tonset);

 else

 h = cp,lower*(Tonset - T0) + cp,lower*

 (Ttransition-Tonset)+0.5*(cp,max - cp,lower)*

 (Ttransition-Tonset)+cp,max*(T-Ttransition)-0.5*

 (cp,max - cp,upper)*(T-Ttransition)^2/

 (Tfinish-Ttransition);

 end if;

end if;

Arc tangent method
The arc tangent function is used to reproduce the
behavior of the PCM’s enthalpy at the melting point.

x

y
π/2

- π/2

Figure 6: arc tangent curve

For the calculation of the enthalpy curve the arc tan-
gent function is standardized to one and moved in y
direction by 0.5 and in the x direction by the melting
temperature, Ttransition. The resulting curve is multi-
plied with the latent heat of melting, htransition. The
sensible heat, cp*, is added in the second term. The
melting range coefficient, CMR, is used to adjust the
width of the melting range.

()()

()0p

MRtransition
transition

TT*c

0,5
π

CTTarctanhh

−⋅+

⎥⎦
⎤

⎢⎣
⎡ +

⋅−
⋅=

The effective heat capacity is calculated by differen-
tiating the enthalpy function.

()()() *c
1CTTπ

h
c p2

MRtransition

transition
p +

+⋅−⋅
=

In Figure 7 enthalpy and heat capacity calculated
with the arc tangent method are plotted against tem-
perature. The thermodynamic properties of an eutec-
tic mixture of potassium nitrate, sodium nitrate and
sodium nitrite are used. The latent heat of melting,
htransition, is 83 kJ/kg, the melting temperature ,Ttran-

sition, is 415 Kelvin, the heat capacity ,cp, is 1.5 kJ/(kg
K) and the reference temperature ,T0,is 273 Kelvin.
The melting range coefficient ,CMR,is 2.

100

150

200

250

300

350

400

410 412 414 416 418 420
temperature [Kelvin]

en
th

al
py

 [k
J/

kg
]

0

5

10

15

20

25

30

he
at

 c
ap

ac
ity

 [k
J/

(k
g

K
)]

enthalpy

heat capacity

Figure 7: enthalpy and heat capacity calculated with
the arc tangent method plotted against temperature

Error function method
The Gauss error distribution curve is used to repro-
duce the behavior of the heat capacity of the PCM at
the melting point.

x

y

x0

a

2
0)(xxbeay −⋅−⋅=

Figure 8: Gauss error distribution curve

For the calculation of the heat capacity curve the co-
efficients of the Gauss error distribution curve are
adapted. The coefficient a is the maximum heat ca-
pacity, cp,max, at the melting temperature, x0 is the
melting temperature Ttransition and b is the melting
range coefficient, CMR, which is used to adjust the
width of the melting range. The sensible heat, cp*, is
added in the second term.

()[] *T-TC-expcc transitionMRmaxpp pc+⋅⋅=

239

Analysis of Steam Storage Systems using Modelica

The Modelica Association Modelica 2006, September 4th – 5th

The enthalpy is calculated by integrating the heat
capacity function.

()[] ()0p
transitionMR

transition T-T*c
2

1T-TCerf
hh ⋅+

+⋅
⋅=

The error function is implemented according to W J
Cody [3]. The heat capacity cp,max in the melting
point can be found with the following equation.

π
MR

transitionmax
C

hcp ⋅=

In Figure 8 the enthalpy and the heat capacity calcu-
lated with the error function method are plotted
against temperature. The thermodynamic properties
of the eutectic salt mixture, as presented in the arc
tangent method, are used. The melting range coeffi-
cient CMR is 1.

100

150

200

250

300

350

400

410 412 414 416 418 420
temperature [Kelvin]

en
th

al
py

 [k
J/

kg
]

0

10

20

30

40

50

60

he
at

 c
ap

ac
ity

 [k
J/

(k
g

K
)

enthalpy

heat capacity

Figure 8: enthalpy and heat capacity calculated with
the error function method plotted against tempera-
ture

Comparsion enthalpy methods
For the comparison of the three suggested methods
the thermal behaviour of a cylinder of PCM is simu-
lated. The cylinder is discretised into 100 radial lay-
ers. The inner diameter is 1cm and the outer diameter
is 2cm. The prescribed temperature at the inner side
of the cylinder is switched between 440 and 400
Kelvin every 1000 seconds. Again the thermody-
namic properties of the eutectic salt mixture, as pre-
sented in the arc tangent method, are used. The re-
sulting temperature profile is plotted in Figure 9.
Volume 1 is the PCM layer at the inner side of the
tube and Volume 100 is the PCM layer at the outer
side of the tube.

0 2000 4000 6000 8000 10000

400

404

408

412

416

420

424

428

432

436

440 presc. temp.
Volume 1
Volume 25
Volume 50
Volume 100

time [s]

te
m

pe
ra

tu
re

[K
]

Figure 9: temperature profile of radial discretised
cylinder

The results of simulation time of the three methods
to calculate the enthalpy of the PCM are presented in
the following table:

 Arc
tangent

Linear
interpol.

Error
function

CPU-time for
integration [s]

40,7 179 1250

CPU-time for one
GRID interval [ms]

81,4 358 2500

Number of
(successful) steps

197444 28846 25471

The arc tangent method is 4.5 times faster than the
linear interpolation method and more than 30 times
faster than the error function method.

7 Simulation PCM enhanced steam
accumulator

A concept to increase the energy efficiency of an
existing varying-pressure steam accumulator is to
connect a tube register with externally arranged
PCM to the pressure vessel (Figure 10). A pump as-
sures the circulation between the tube register and
pressure vessel. The charging and discharging opera-
tions are the same as for a varying pressure accumu-
lator, as presented in section 2. With the PCM the
capacity of the storage system can be increased. The
same amount of thermal energy can now be stored in
a smaller temperature range. The heat transport in-
side of the PCM is a limiting factor to the power of
the storage system.

240

J. Buschle, W.D. Steinmann, R. Tamme

The Modelica Association Modelica 2006, September 4th – 5th

Figure 10: PCM enhanced steam accumulator

In Figure 11 the model of the PCM enhanced steam
accumulator is shown as it is implemented in Mode-
lica. The ambience model is initialized with a pres-
sure of 3 bar. The volumes of the pressure vessel are
initialized with a pressure of 4 bar and an enthalpy of
610 kJ / kg. The height of the pressure vessel is 3 m
and the diameter is 1 m. The pressure vessel is filled
up to 50 percent with water. The inner diameter of
the 10 tubes connected to the pressure vessel is 20
mm and the outer diameter is 25 mm. The outer di-
ameter of the PCM layer is 100 mm. The tubes have
a length of 5 meter. The thermodynamic properties
of the eutectic salt mixture, as presented in section
6.2, are used. The temperature of the PCM is initial-
ized to 416 Kelvin. This means that the PCM is com-
pletely molten.

I

10 10

true -100Po...

Figure 11: simulation model PCM enhanced steam
accumulator

In the beginning, the control valve is closed. After
1000 seconds it is opened and the storage vessel is
discharged. The pump is switched on all the time.

In Figure 12 simulation results of pressure and pro-
vided heat are plotted against time. The pressure in
the upper part of the storage vessel is decreasing af-
ter the control valve is opened to 3 bar. The provided
heat is higher compared to the simulation results of
the varying-pressure accumulator in section 5.

0 400 800 1200 1600 2000 2400 2800

3.0
3.2
3.4
3.6
3.8
4.0

0

5

10

15

20

pressure upper
pressure lower
provided heat

pr
es

su
re

[b
ar

]

pr
ov

id
ed

he
at

[k
W

h]

time [s]
Figure 12: simulation results of pressure and pro-
vided heat for the PCM enhanced steam accumulator

In Figure 13 the temperature in the lower part of the
storage vessel and in the PCM layer around the tubes
is plotted against time. Only parts of the PCM are
solidified after 2000 seconds of discharging. The
melting temperature is 415 Kelvin.

0 400 800 1200 1600 2000 2400 2800

408

410

412

414

416

time [s]

te
m

pe
ra

tu
re

[K
el

vi
n]

PCM inner
PCM middle
PCM outer
Ruths lower

Figure 13: simulation results of the temperature in
the lower control volume of the pressure vessel and
the temperatures in the PCM cylinders around the
tube register

8 Conclusions

With the simulation models presented in this work,
PCM steam storage concepts can be analyzed.
Simulation results of a PCM steam accumulator with
a tube register and externally arranged PCM are pre-
sented. In the next step, different simulation models
will be developed for comparison. These simulation
models will focus on using macro-encapsulation of

241

Analysis of Steam Storage Systems using Modelica

The Modelica Association Modelica 2006, September 4th – 5th

the storage material, composite materials and the
integration of layers made of materials showing a
high thermal conductivity to increase the power of
the storage system. Further validation of the models
will be done using laboratory scale experiments. Us-
ing a tube register with externally arranged PCM, the
number of tubes and their distance has to be defined,
depending on the steam process the accumulator is
integrated into. The aim of the work is to provide a
dimensioning tool that enables to design the thermal
behavior of the steam accumulator.

References

[1] Goldstern, Walter Steam storage installations.
Springer-Verlag OHG, Berling / Göttingen / Hei-
delberg, 1970.

[2] Steinmann, W.D., Buschle, J. Analysis of thermal
storage systems using Modelica. Proceedings of
the 4th International Modelica Conference, Ham-
burg, March 7-8, pp 331-337, 2005.

[3] Cody, W. J. Rational Chebyshev approxima-
tions for the error function, Mathematics of
Computation, pages 631-638, 1969.

[4] Benson, D.K., Burrows, R.W., Webb, J.D. Solid
state phase transitions in Pentaerythritol and re-
lated polyhydric alcohols. Solar Energy Materials
13, pp 133-152, 1985.

242

J. Buschle, W.D. Steinmann, R. Tamme

The Modelica Association Modelica 2006, September 4th – 5th

An Enhanced Discretisation Method for Storage Tank Models within

Energy Systems

Dr.-Ing. Stefan Wischhusen
XRG Simulation GmbH

Kasernenstraße 12, 21073 Hamburg, Germany
wischhusen@xrg-simulation.de

Abstract

This article presents a new dicretisation function that
can be applied to flow models using Finite-Volume-
Method. The function is required since the com-
monly applied UPWIND disrectisation yields a low
accuracy when convection is small with regard to
volume size, e. g. for storage tank models. The new
approach is compared to measurement data and it
shows a much higher accuracy incorporating the
same number of control volumes so that the user
may decrease the problem size considerably.

Keywords: discretisation method; UPWIND; tank
model; cogeneration; energy system

1 Introduction

By means of simulation tools like HKSim [1] it is
possible to model complex energy supply system
layouts in order to find improvement potential in the
development or optimisation phase of a project.
HKSim integrates Dymola/Modelica for modelling
and simulation. It is used by Imtech Deutschland
GmbH & Co. KG and is currently extended by XRG
Simulation GmbH for performing simulation of
steam and compressed air systems.

Storage tanks are a necessary part of each cogenera-
tion and regenerative power supply system. Those
energy systems like shown in Fig. 1 have become
very popular for large but also small applications.
From the energetic point of view it is of big interest
to model the transient behaviour of such tanks in or-
der to determine temperatures in feed and return
lines precisely. Since control algorithms for such
plants rely on actual temperatures measured at dif-
ferent tank levels a correct temperature prediction
influences the result of a simulation for power sup-
ply, switch-on times, etc., strongly.

A hot water storage tank fulfils two functions at the
same time. First, hot water can be stored when de-
mand and supply is incoherent (e. g., in cogeneration
and regenerative applications). Second, a degree of
freedom is introduced to the hydraulic layout so that
pumps may operate independently for consumers and
heat suppliers. For example, the storage tank in Fig.
1 is charged with hot water when the mass flow rate
of water through the CHP is greater than that in the
return line (boilers are considered to be off) – this
happens when heat demand is low and power is re-
quired. On the other hand, a discharge is automati-
cally initiated when the CHP is switched off and
consumers are still fed. Due to the positive gradient
of the specific volume w.r.t. temperature (above
4°C) a very good separation of water with different
temperatures can be achieved when the tank is fed
with hot medium at top and colder medium at bottom
level. For that reason this kind of storage tank always
shows an aspect ratio which is greater in vertical di-
rection.

In general, a more or less sophisticated system con-
trol (cascade connexion) is implemented which
switches CHP and boiler with regard to the actual
heat demand and tank temperatures. At low heating
demand the tank outlet temperature will rise after a
period of time and therefore the CHP has to be shut-
down to prevent an overheat of the engine. Of course
a switch-on is possible again when heat demand rises
but the shutdown interval and the number of power-
up sequences influences the durability of the engine
(note, that the CHP’s are usually adapted from vehi-
cle engines which have an average lifetime of a few
thousands of hours). It is therefore of big interest to
decrease the number of (cold-)starts at a maximum
power output. An optimum performance can be
achieved by also defining the “right” tank size. This
can be done by means of the simulation tool HKSim.

243

An Enhanced Discretisation Method for Storage Tank Models within Energy Systems

The Modelica Association Modelica 2006, September 4th – 5th

~

Discharge

Tank

Boiler

Consumer

Natural gas supply

Charge

Combined
heat and power
(CHP)

Fig. 1: Simplified schematic of a cogeneration plant
with integrated hot water storage tank

2 Discretisation methods for thermo-
hydraulic system modelling

Physical systems are always described by partial dif-
ferential equations which consist of derivatives w.r.t.
time and space. Applying simulation tools like Dy-
mola/Modelica it is possible to model and solve the
dynamic part of those equations – but all derivatives
w.r.t. space have to be simplified using finite meth-
ods (e.g., Finite-Volume-Method or Finite-Element-
Method [2]).

The balance equations for an incompressible medium
with constant density (e.g. liquid water) can be de-
rived from volume integrals [3]. The mass balance is
rather simple due to constant density and constant
volume size.

0=−= outin mm
dt
dm

�� (1)

For the energy balance follows assuming low kinetic
energy (total energy � internal energy U):

�
ksource/sinheatconvection

soutoutinin Qhmhm
dt

dU �
��� ���� ��

�� +⋅−⋅= . (2)

For incompressible media the specific internal en-
ergy u = U/m is a function of temperature as well as
the specific enthalpy h (since the density is consid-
ered to be constant). Both variables are computed by
the specific heat capacity c which is equal to the de-
rivative of specific internal energy u w.r.t. tempera-

ture T. The heat capacity may be a function of tem-
perature or can be set constant which is a good ap-
proach for pure water in the usual range of operating
conditions.

TTcmU ⋅⋅=)((3)

Therefore one may simplify Eq. (2) to the following
term:

s

H

outout

H

inin QTcmTcm
dt
dT

cm

outin

�
�����

�
�����

�

��

+⋅⋅−⋅⋅=⋅⋅ . (4)

Usually, mass and energy balance equations are cou-
pled by a momentum balance but in the incompressi-
ble case the pressure is not a parameter for medium
properties.

If Eq. (4) has to be solved in order to receive an ex-
plicit differential equation one must determine the
outflow temperature (or outflow enthalpy) of the
volume applying known states calculated for the cen-
ter of each volume. That is the reason why a discreti-
sation method has to be applied.

Usually, for thermo-hydraulic models like pipes,
pumps and heat exchangers an UPWIND discretisa-
tion scheme is chosen since it is numerically robust
and easy to implement at the same time. Validation
reveals that such a discretisation is appropriate for
plant components which show a large mixing behav-
iour [4] (e.g., stirrer tanks). Pipes are modelled by a
number of serial control volumes which are con-
nected by the UPWIND discretisation (Fig. 2). The
equation for calculating state variables (like specific
enthalpy h, temperature T or density d) on down-
stream volume boundaries is simple:

dThdown ,,, =ΘΘ=Θ . (4)

But the numerical mixing behaviour of this method
shows a large diffusion (refer to temperature slope in
30th and 31st of Aug. in Fig. 3) of heat for tanks
which are designed to store hot water in vertical lay-
ers. In order to prevent this one has to model each
tank with a large number of control volumes (usually
more than 40 volumes) if UPWIND is applied.
Therefore, the tank model generates a high computa-

244

S. Wischhusen

The Modelica Association Modelica 2006, September 4th – 5th

tional effort when it comes to plant simulations for
one year simulation time.

n n+1

-1 n n+1

n-1

z

h

n

H

n n+1

-1 n n+1

n-1

z

n

m 0³

m < 0

h

H

Fig. 2: UPWIND-discretisation for an one-dimensional
flow and different directions of mass flow

Another very common discretisation method is the
linear interpolation of states between two volumes.
Unfortunately, this method results in an unstable or
even false solution when it comes to transient simu-
lations. Therefore, UPWIND is still widely used
even when storage tanks have to be modelled.

A typical outcome of such a simulation is shown in
Fig. 3. One can easily see, that the temperatures dur-
ing discharge (31st of Aug.) are not predicted very
well by the model which consists of 40 discrete vol-
umes. In fact, there is a strong deviation with regard
to time. In addition, the bottom temperature is rising
quicker than measured during charging periods (28th
of Aug.). Since the volume of the tank is known pre-
cisely, and the mass flow rate is available from
measurements the discretisation method remains as
one significant failure potential.

Another indication is following from control theory:
Calculating the transfer function of Eq. (4) and fur-
thermore carrying out a Fast Fourier Transformation
for a step response the following equation is yielded.

�
�
�

�
�
�
�

�
−⋅∆=−

−

=
m
mt

insteptoutout eTTT
�

1,0, (5)

The result of such a step response is visualised in
Fig. 4. It clearly shows that the state (e. g. tempera-
ture) of a finite volume immediately rises due to a
sudden change of enthalpy flow at the upstream
boundary. Therefore, the outgoing flow changes its
temperature at the same time the step or any change
occurs at the inlet boundary.

26.8 27.8 28.8 29.8 30.8 31.8 1.9 2.9
30

40

50

60

70

80

90

100

ϑ
top

 Sim
ϑ

top
 Mes

ϑ
bot

 Sim
ϑ

bot
 Mes

Date

[°C]

Fig. 3: Comparison of simulation (Sim) and measure-
ment (Mes) of hot water temperatures at bottom and
top level of a storage tank – Simulation is carried out
by using UPWIND method

0 10 20 30 40
40

45

50

55

60

65

70

75

80

Time in s

Te
m

p.
 in

 °
C

Inlet temp.
Center and outlet temp.

Fig. 4: Step response (Eq. 5) with a weight factor

mm /� = 0.3

3 An enhanced discretisation ap-
proach

The requirements for a new discretisation method for
storage tank models are listed below:

1. Most important, the approach shall deliver a bet-

ter prediction for enthalpy flows over control
volume boundaries w.r.t. time.

245

An Enhanced Discretisation Method for Storage Tank Models within Energy Systems

The Modelica Association Modelica 2006, September 4th – 5th

2. Standard interfaces which are used for UPWIND

models shall be compatible.

The main idea of the new discretisation method is to
achieve a gradient-dependent outflow state. There-
fore, the gradient between the adjacent upstream
control volume and the center state is taken as a cri-
teria for the interpolation between downstream and
center state. The interpolation function is chosen to
be of exponential type:

() down
a

downcenterout
centerupe Θ+⋅Θ−Θ=Θ Θ−Θ−

. (6)

This function is valid for both possible flow direc-
tions in one-dimensional flow modelling. While the
upstream gradient is not close to zero the outlet
boundary state is almost equal to the downstream
state. But when the upstream gradient is small the
exponential function turns zero and therefore the cor-
responding volume is considered to be “charged”.
From that point the outflow state will be equal to the
center state. By increasing the tuning parameter a it
is possible to decrease the numerical “diffusion” of
that method (see Fig. 5).

0 5000 10000 15000 20000
30

40

50

60

70

80

90

100

Time in s

Te
m

pe
ra

tu
re

 in
 °

C

a=10−4

a=10−5

a=0

Fig. 5: Discharge temperature of the storage tank
model shown in Fig. 6 for different tuning factors a

It has to be mentioned that the tank model also dis-
plays buoyancy effects (which are an important fea-
ture) and therefore the unstable case of different gra-
dient signs w.r.t. upstream and downstream direc-
tions is not resulting into problems. If this function
should be applied for modelling of other flow prob-
lems provisions in Eq. (6) should be made in order to
encounter those possible problems.

4 Validation of tank model

For the validation of the tank model measurement
data is available. It shows the flow rate through a
storage tank as well as the temperatures for top and
bottom duct. The tank model looks like displayed in
Fig. 6.

Return

Feed

Measurement...

k={1/3.6,1,1}

Gain

Measurement...

Storage_tank

V=80.0

T_oben

T_unten

L=1.0...

Top_duct

d_i=0...

t_u=2...

L=1.0...

Bottom_duct

d_i=0...

t_u=2...

Tank Top duct
Bottom duct

Measurement

Measurement

Fig. 6: Validation model for the storage tank model

The storage tank has a liquid volume of 80 m³ and
the thermal insulation can be considered to be ideal
(adiabatic conditions). Buoyancy effects in flow di-
rection (gravity vector is parallel to flow vector) are
taken into account. Since the mass flow rate is pro-
vided in terms of a volume flow rate a gain block
divides this input by 3.6 (conversion from m³/h to
kg/s for water). The measurement data was obtained
from the beginning of a heating period in September
and was recorded from a large cogeneration plant
with a time step interval of 15 min. The tank model
applies the new discretisation approach (a=10-4) for

4−n volumes. This means that the first two and last
two volumes refer to UPWIND-scheme.

An operation of one week is investigated.

Number of
volumes n 10 new 10 UPW 20 UPW 40 UPW

Non-
dimensional
simulation
time
σσσσsim [-]

2.60 1.00 3.92 11.82

Tab. 1: Effect of both discretisation methods and
number of volumes on non-dimensional simulation
time

246

S. Wischhusen

The Modelica Association Modelica 2006, September 4th – 5th

0 1 2 3 4 5 6
45

50

55

60

65

70

75

80

85

90

95

100

Time in d

D
is

ch
ar

ge
 te

m
p

in
 °

C

n=10 new
n=10
n=20
n=40
Mes

Fig. 7: Comparison of discharge temperature with
measurement data

First, the effect of a different number n of discrete
volumes is evaluated. The result is shown in Fig. 7.
One can see that the accuracy of the solution with
regard to the measurement of the top duct tempera-
ture is rising when the number of volumes is in-
creased. But with the number of control volumes
also the simulation time increases as Tab. 1 reveals.
Deviations for the top temperatures are high when
convection is small w.r.t. volume size (see day 6 to
7). But also the bottom temperature shows higher
deviations when the number of control volumes is
decreased (refer to peaks in Fig. 8 on 2nd, 3rd and 4th
day).

0 1 2 3 4 5 6

50

60

70

80

90

100

Time in d

B
ot

to
m

 te
m

p
in

 °
C

n=10 new
n=10
n=20
n=40
Mes

Fig. 8: Comparison of bottom temperature with meas-
urement data

Using the new discretisation it is possible to achieve
a much higher accuracy. Comparing Fig. 7 and Fig. 9
reveals that the top temperature is following the
measurement much better although just 6 volumes

(due to interface compatibility, note remark on pre-
vious page) are applying the new discretisation
scheme. This fact explains a visible deviation on 7th
day in Fig. 9 which is due to the two uppermost vol-
umes using UPWIND discretisation. Adapting hy-
draulic interfaces in order to enable a calculation of
the upstream gradient will lead to a better anticipa-
tion of the measurement.

0 1 2 3 4 5 6

50

60

70

80

90

100

Time in d

D
is

ch
ar

ge
 te

m
p

in
 °

C

n=10 new
n=Mes

Fig. 9: Comparison of new discretisation approach
with measurement data

In addition, also the bottom temperature is predicted
more precisely so that the temperature peaks ob-
tained with a discretisation of 10 or 20 volumes van-
ish (compare Fig. 8 and Fig. 10).

0 1 2 3 4 5 6

50

60

70

80

90

100

Time in d

B
ot

to
m

 te
m

p
in

 °
C

n=10 new
Mes

Fig. 10: Comparison of new discretisation approach
with measurement data

247

An Enhanced Discretisation Method for Storage Tank Models within Energy Systems

The Modelica Association Modelica 2006, September 4th – 5th

5 Evaluation for cogeneration plant

What are possible consequences of the discretisa-
tion’s implementation within a transient simulation
model of a typical cogeneration plant? As mentioned
before the purpose of a hot water storage tank is to
decouple power and heat supply. In case of a high
power requirement the tank will be charged until the
maximum capacity is reached. At this point CHP’s
heat production must be cut down or even com-
pletely shut down. Thus, possible power peaks can
not be decreased resulting in high power charges
(actually, it is not the energy rate which dominates in
such a case). So, from the energetic point of view
one could tend to integrate larger tanks in such
plants. But from the financial point of view this
strategy is obviously restricted to defined limits. Of
course, it is possible to integrate heat exchangers for
removing “waste” heat to ambience but this option is
not desirable from the energetic point of view.

In Fig. 11 a simulation model of a typical industrial
cogeneration plant is shown. Two CHP’s are in-
stalled for providing power (power priority control)
while the boilers are used in order to control the feed
temperature and backup heat production in case
CHPs are off. The heat consumers are represented by
a simple consumer model on the right side of that
figure. The profile of the heat consumption may
change dynamically and almost any signal source
from the Modelica.Blocks library may be used.

In this evaluation a simple constant power and heat
demand was applied while the power demand (1200
kWel) is larger than the heat demand (600 kWth) forc-
ing the tank (volume V = 30 m³) to be charged when
CHPs are on. A very ordinary flip-flop control is
used to prevent overheating at CHP’s hot water inlet.
Basically, both engines are switched off when a tem-
perature of 87 °C at the bottom level and 100 °C at
the top is exceeded. A restart is possible again when
top temperature drops below 90 °C. The tuning pa-
rameter adis was set to either 0 for UPWIND or 1e-4.

Results reveal that with the same tank volume but
different discretisation schemes the operational time
at the same power output is different. Actually, the
CHP models can be operated 15 to 20 % longer than
with UPWIND discretisation (see Fig. 12 and Fig.
13). The difference is depending on the supplied
CHP control logic. So, the chosen discretisation may
result in considerably smaller tank sizes when a cer-
tain operation time interval has to be guaranteed –
another evaluation reveals that the same mean con-
tinuous operation interval (time between switch on
and switch off) is reached with new discretisation
when tanks are approx. 25 % smaller in volume.
Also, it is important knowing the number of power-
up sequences during a certain period of time which
has to be lower than the requirement from the CHP
manufacturer when warranty conditions shall be re-
spected.

Fig. 11: Simulation model of a cogeneration plant with temperature dependent CHP control

Pufferspeicher

k

Feed

Tank

Consumer

CHPs

Boilers

Return

CHP Control

248

S. Wischhusen

The Modelica Association Modelica 2006, September 4th – 5th

For the simulation of one week the total number of
engine starts (for a single engine) was determined
with 37 for UPWIND and 31 for new discretisation
approach. For both simulations it must be pointed
out that the total power and heat production of all
moduls was basically equal indicating that the en-
ergy balance of the system was conservative (this
statement applies also for a simulation of one year
under the same boundary conditions).

0 6 12 18 24

40

50

60

70

80

90

100

Time in h

Te
m

p
in

 °
C

Top UPW
Bottom UPW
Top new
Bottom new

Bottom temp.

Top temp.

Fig. 12: Tank temperatures for both discretisation ap-
proaches

0 6 12 18 24
0

1

2

3

4

5

6

Time in h

N
um

be
r o

f e
ng

in
e

st
ar

ts

CHP switch UPW
CHP switch new

Fig. 13: Number of CHP engine starts

6 Conclusions

The new discretisation scheme enables a more accu-
rate modelling of storage tank models although far
less control volumes are required than for a conven-
tional UPWIND discretisation that yields almost
same results. Thus, computation times are reduced
considerably. Validation shows that temperatures at
standard positions for temperature measurements are
predicted with a very good agreement. Especially,

temperatures during slow discharge are displaying a
much sharper gradient than with UPWIND method.
It is possible that the new method may also be used
for other flow problems which show the same behav-
iour: convective flow and very low dissipation.
(sharp border front flow) like for example in some
kind of evaporators in cooling plants. The influence
of dissipation which is displayed in the gradient of a
step change is adjusted by a single parameter. This
tuning parameter can be changed so that mathemati-
cally the UPWIND method is applied. It must also be
stressed that the method is compatible with control
volume models which apply UPWIND. If this
method should be applied for every component
model the interfaces must be changed in order to ac-
cess downstream and upstream states for first and
last control volume in any component model.

With the new discretisation method it is possible to
obtain smaller tank sizes while assuming identical
boundary conditions. The result’s difference could
reduce investment costs when large plants are
planned by means of simulation tools. For example
the savings in acquiring a 30 m³ instead of a 40 m³
tank could be approx. 8.000 € [5].

References

[1] Lüdemann, B.; Wischhusen, S.; Engel, O.;
Schmitz, G.: Optimierte Energiesysteme,
BWK, Bd. 55, No. 9, Springer VDI-Verlag,
Düsseldorf, Germany, 2003.

[2] Casella F. and Schiavo F.: Modelling and
Simulation of Heat Exchangers in Modelica
with Finite Element Methods. In Proceedings
of 3rd Modelica conference, Linköping, Swe-
den, pp. 343-352.

[3] Wischhusen, S.: Dynamische Simulation zur
wirtschaftlichen Bewertung komplexer Ener-
giesysteme. Cuvillier Verlag, Göttingen,
Germany: PhD thesis, Department of Ther-
modynamics, Hamburg University of Tech-
nology, 2005.

[4] Mühlthaler, G. Anwendung objektorientierter
Simulationssprachen zur Modellierung von
Kraftwerkskomponenten, VDI Verlag,
Düsseldorf, Germany: PhD thesis, Depart-
ment of Thermodynamics, Hamburg Univer-
sity of Technology, 2001.

[5] KFServer – Online-Server for cost functions
of energy supply system components:
http://kfserver.kaiserstadt.de.

249

An Enhanced Discretisation Method for Storage Tank Models within Energy Systems

The Modelica Association Modelica 2006, September 4th – 5th

250

S. Wischhusen

The Modelica Association Modelica 2006, September 4th – 5th

HydroPlant – a Modelica Library for Dynamic Simulation of

Hydro Power Plants

Kristian Tuszynski, Jan Tuszyński, Karl Slättorp

Modelon AB, Datavoice HB, Tactel AB

kristian.tuszynski@modelon.se, jantuz@tele2.se, karl.slattorp@tactel.se,

Abstract

This paper presents a library for simulation of hydro

power plants. The library is designed to be an effec-

tive tool for commissioning, testing of new control

strategies and verifying complete hydro plants or

selected plant systems only.

Keywords: Hydro Power; Simulation; Turbine; Pen-

stock; Reservoir

1 Introduction

The hydro plant process is on first sight easy to un-

derstand and well documented. Development of new

control strategies could be accordingly based on that

knowledge verified through trial and error during the

commissioning. This traditional approach shows to

be time consuming and expensive. Plant models

available are often obsolete as they are simplified for

the narrow linear range of the working area and not

directly executable. Intuitive knowledge of the origi-

nal developers is practically not available. Real

plants are run under stringent economical demands

and thus not available for testing.

The library was initially designed to test control

strategies and make commissioning more efficient,

and it proved to be useful for evaluation of complete

plants (Figure 1).

Figure 1 Component Overview

The library structure builds on four main groups of

models: hydro components, electrical power system,

mechanical machinery and control components. This

paper covers mainly hydro components and hydro

turbines exemplifying mechanical machinery. Mod-

els of the electrical power system with generator and

grid address active power only and are more or less

conventional but still very useful for study of the

complete plant system.

2 Flow Transfer

2.1 Theory

The simulation of thermo hydraulic systems is based

on three equations of mass (1), energy (2) and mo-

mentum (3) conservation in a control volume:

_ _ _ (1)i o

dM
m dot m dot m dot

dt
= − =∑

_ _ (2)i i o o s

dU dV
m dot h m dot h q W p

dt dt
= − + + −

_ _ ()
(3)

()

i i o o i i o o f

i o

dG
m dot v m dot v A p A p F

dt

A g z zρ

= − + − −

+ −

where; m_dot - mass flow, h - specific enthalpy, q -

heat flow from (+) the environment, Ws - external

mechanical energy flow, p - the media pressure in

the control volume, G - the media momentum, v -

media velocity, A - intake/outtake area, Ff - the fric-

tion force, z - elevation of the intake/outtake. Indices

i, o symbolize entering or exiting flows to/from the

control enclosure.

Conservation principles were expressed initially as

partial differential equations for an infinitely small

control volume (local form) and then converted into

the above global formulation of differential equa-

tions of the physical enclosure modeled (Leibniz

rule).

251

HydroPlant – a Modelica Library for Dynamic Simulation of Hydro Power Plants

The Modelica Association Modelica 2006, September 4th – 5th

Pressure p, and temperature T, are selected as state

variables of the media in a control volume, allowing

calculation of all other media properties from tabu-

lated Modelica water properties.

2.2 Basic Structure of the Flow Transfer

The basic element of the flow structure is built of

two containers (control volumes) exchanging media

through a single connecting module. The thermody-

namic states, p and T, of control volumes are calcu-

lated from the mass and energy exchange through

connecting module and from/to the environment.

Figure 2. General concept of interconnected control

volumes and connecting modules

Considering length and complexity of the plant water

ways, modeling of the longitudinal pressure transfer

in an elastic media was found essential.

A basic element of two volumes was accordingly

expanded into a media transmission line developed

initially by Heaviside as telegraph line formulation.

Water conduits of the library are sliced into a num-

ber of interconnected volumes (Figure 2). Inductance

and resistance are represented by water inertia and

flow resistance (equation (3)), while capacitance is

represented by media elasticity in the control vol-

ume.

2.3 Modeling challenges. Nonlinearities

The well established theory of the models would im-

ply ‘green light’ for easy implementation in the hy-

dro plant library. In spite of that several modeling

challenges were met.

Vector of media flow velocity: Assuming control

volumes part of the water conduit requires comple-

tion of the enthalpy with the kinetic energy factor

v
2
/2. Transfer of that energy to the next segment of

the conduit depends on the direction of the velocity

vector. The problem was addressed by inclusion of

the ‘flow recovery’ parameter. An additional chal-

lenge of the flow velocity concerns mainly turbines,

where flow vortex is an essential part of turbine de-

sign.

Nonlinearity of forces acting on the water flow:

The momentum equation includes highly nonlinear

force components. These are mainly momentum

forces, ‘m_dot*v’, and friction forces, Ff, depending

on the flow direction and flow velocity (Reynolds

number) in laminar and turbulent regions. Library

models were based on forms presented in reference

[1].

Flow calculation in open channels/reservoirs: Flow

in open channels was modeled from the same mo-

mentum equation as for enclosed channels, subject to

the following:

• Pressure drop, the main force moving the mass,

is calculated from media level difference be-

tween the adjacent volumes. Level variations de-

pend strongly on the volume geometry.

• The main flow caused by the mass inertia is

completed by additional components as e.g. wa-

ter ‘sliding’ along the slopes of the waves.

• Friction calculation depends strongly on the

channel geometry, e.g. bottom and coast lines.

3 Basic Hydro Components

The library is built on two main types of hydro com-

ponents: containers, basic models representing con-

trol volumes in open and closed containers, and con-

necting modules, models representing media con-

duits.

Closed volumes represent a single container or an

enclosed water segment of a long media conduit.

Open volumes represent containers with free surface

between the media and the gas above allowing media

compressibility to be neglected.

Generally standard Modelica connectors are used,

but with FlowPort and MediaPort added. FlowPort

connects flows of mass and enthalpy, while

MediaPort carries vector of media property. Input

and output ports of both connectors are separated.

4 Hydro Subsystems

Hydro subsystems include a reservoir, penstock and

surge tank. All of those models are built of intercon-

nected segments of control volumes and connecting

modules. The number of segments is parameterized

allowing automatic segment interconnection into

complete subsystem. By increasing the number of

segments, higher flow/pressure frequencies can be

252

K. Tuszynski, J. Tuszynski, K. Slättorp

The Modelica Association Modelica 2006, September 4th – 5th

studied, but at the expense of simulation execution

time.

4.1 Reservoir

The library allows simple parameterization of reser-

voirs fulfilling almost any desired geometry.

Figure 3. Parameters for dimensioning of the reservoir

Main parameters are: middle and side shore-to-shore

width, height of each segment over a reference level,

start water level and temperature, maximum con-

tainer height and a contour factor that decides the

shape of the reservoir “coast line”. The contour fac-

tor k (Figure 4), represents coast line as a generalized

ellipse:

1=

+

kk

b

y

a

x
 (4)

Figure 4. Some examples of reservoir coastlines de-

pending on the contour factor k

Water inlets and outlets can be connected to any

segment of the reservoir, allowing study of the hydro

plants in cascade. Wave propagation through the res-

ervoir caused by transients in the upstream or down-

stream plant can be studied. Coordination of plants

can be tested to prevent the water level to exceed the

maximum level allowed.

Figure 5. Wave propagation in reservoir of 5 segments

and k = 1. The start level is 25m in all segments except

33m for the first one

4.2 Water ways. Penstocks and surge tanks

Water of the plant can be transported through en-

closed or open conduits. The latter are basically

identical to the reservoirs but of the suitable pro-

longed shapes. The main enclosed conduit is a pen-

stock model. Penstocks are sliced in segments as de-

scribed above and are treated by the system as flow

connecting modules. Surge tank models represent

vertical water columns with the upper end opened to

the ambient environment.

Figure 6. Example of the interconnected penstocks and

surge tank

Penstocks and surge tanks can be connected directly

(Figure 6), and different groups of penstocks can be

coupled through interconnecting volumes. In that

way almost any shape and configuration of the wa-

terways on both the inlet and outlet side of the tur-

bine can be modeled.

5 Electrical Power System

There are two modes of the generator modeling: un-

synchronized/no-load turbine-generator and genera-

tor synchronized to the grid, in load operation. The

first mode is basically non-electric, as the turbine-

generator represents only a speed-controlled rotating

mass. The second mode requires modeling of the

253

HydroPlant – a Modelica Library for Dynamic Simulation of Hydro Power Plants

The Modelica Association Modelica 2006, September 4th – 5th

active power of the grid, where the local turbine

governor reads whole grid frequency and power out-

put of the local generator. The frequency signal

represents dynamics of the whole grid, or the angular

speed of all rotating units of the grid.

Figure 7 introduces the main components of the

power grid. Generator and Synchronizer represents

rotating masses of the turbine-generator driven by

the power from the turbine shaft, and loaded/driven

by the balance of the grid production – grid load.

Synchronizing part of this model generates pulses for

adoption of the turbine-generator speed to the grid

frequency. The Main Circuit Breaker (MCB) models

switch between no-load to load operation allowing

simulation of load rejection and connection to the

grid after a synchronization phase handled by the

synchronizer.

Figure 7. Overview of the power grid

The load model, Grid Load, represents the active

power demand of the grid. The load of the grid is

divided into three groups: resistive, frequency de-

pendent and quadratic frequency dependent. The

number of units within each group is decided

through parameterization. The response to step

changes of the load is simulated by using first order

transfer functions.

As the grid load is constantly changing a normal dis-

tributed random number generator was added to the

load of each group. In addition to this there is also

the option to add a disturbance at any given time.

The Grid Production model is the representation of

all other production units connected to the grid. The

grid production units are divided into different

groups depending on their response time. This en-

ables simulation of different behavior depending on

the types of power plants connected to the grid.

6 Mechanical machinery

Models of mechanical machinery cover main types

of water turbines, Pelton, Francis and Kaplan. Tur-

bine models are complete with guide vanes and run-

ner angle actuators.

6.1 Actuators and servo motors

The actuators are

modeled as first order

transfer functions

with a time constant

representing the ac-

tuator response time.

Transfer functions are

complemented by

multiple speed limits

to allow simulation of

multi-step opening

and closing of the guide vanes and runner angles.

Adding play and hysteresis allows analysis of the

influence of obsolete equipment. The model of the

Kaplan servo motors includes a Kaplan Cam curve

adjusted for the actual head of the water.

6.2 Models of water turbines

The simple approach to models of water turbines

builds on the assumption that flow through the tur-

bine can be estimated the same as for orifices, i.e. QT

= Cv sqrt(∆pT), where Cv is the guide vane opening

factor. Power on the turbine shaft would be accord-

ingly PT = QT ∆pT η, where η is the total turbine effi-

ciency. The pressure drop over the turbine, ∆pT, is

available from the models of water ways. This sim-

ple approach could be satisfactory but only if there is

tabulated data of Cv and η available. Both factors are

functions of runner speed, water head, runner angle,

etc. The problem will complicate further in case

modeling interest is bound to phenomena of unusual

runner situations, as at the turbine start-up, shut-

down or load rejection. In reality such detailed in-

formation is not available or it would take a consid-

erably long time and cost to get it.

HydroPlant library provides models according to this

simple approach above or alternatively as detailed

Figure 9: Kaplan servo

Figure 8. Icon of detailed Kaplan model

254

K. Tuszynski, J. Tuszynski, K. Slättorp

The Modelica Association Modelica 2006, September 4th – 5th

models calculating water velocity vectors on the inlet

and outlet of the turbine runner.

The detailed model (shown schematically as Mode-

lica icon in Figure 9) covers three essential volumes

of the turbine; scroll case, guide vane and runner

(GVR) volume and draft tube. Flows are calculated

separately for guide vanes, for runner and for leak-

age through runner circumference from GVR-

volume to draft tube.

Vectors of water flow velocities are shown in Figure

10 (from ref [3]); u is the velocity of the runner (1:

inlet, 2: outlet), v is the velocity of the water flow in

relation to the runner, c is the external velocity of the

water entering (1) and leaving (2) the runner.

Figure 10: Angles of Kaplan water flow velocities

Power on the turbine shaft is now calculated from

the change of the momentum on the runner:

)(_ 2211 uuT crcrdotmP ⋅−⋅⋅⋅= ω (5)

Vectors cu = c cos(α), for α angle between c and u

vectors. One will ask naturally if information on all

angles required here is easier to get than for factors

Cv and η? This information is calculated automati-

cally by assuming the runner and guide vanes are

well designed; it means mainly the following:

• Maximum efficiency is assumed at the nominal

power at the nominal head and speed

• Vector v1 is assumed at the nominal conditions

to coincide with angle β1.

• Vector c2 at the nominal conditions enters draft

tube at α2 = 90
o

7 Control Challenges

The implemented controller is a standard PID turbine

governor, complete with a feed forward for power

change control. The error signal to the PI is:

(5)e f ep P= ∆ + ⋅ ∆

where ∆f is the frequency error, ∆P is the power er-

ror and ep is the speed regulation factor.

Setting of PID parameters depends on various con-

trol challenges.

Water level control: Each hydro power plant has an

assigned maximum water level allowed in the reser-

voir for environmental reasons. If this level is ex-

ceeded the hydro plant is normally fined. Since the

amount of water stored corresponds to stored energy,

the power plants will try to be as close to this level as

possible. Problems arise when the water reservoir

level is close to the max allowed level and the power

demand is low. In situations like this the plant will

be forced to let a certain amount of water through the

gates which is a waste of money for the plant and

produces environmental costs of dumping large

amount of water down the river. Tuning this kind of

control system takes a long time due to the long time

factor of a large reservoir which often results in set-

tings of the controller for the worst case scenario.

Using models to tune this kind of system would both

save time and improve the performance of the con-

troller.

Scheduling of turbine governor settings: Conven-

tional turbine governors have normally two sets of

PID parameters; one for no-load mode of operation

and one for the generator synchronized to the grid.

Digital governors allow a practically unlimited num-

ber of PID settings, but logic switching between

those settings will become complex, error prone and

difficult to verify. HydroPlant library was developed

initially for testing different methods of adapting

PID settings to the actual mode of operation, actual

water way configuration and to the actual system

load and dynamics. An adaptive approach requires

on-line identification of the dynamics of both the

power grid and the local plant.

Nonlinear plant behavior: Plants having complex

waterways can be difficult to control. It will change

dynamics depending on the power generated (nonlin-

earities). HydroPlant library will allow development

of the simplified real-time models of the plants al-

lowing continuous tuning of the PID settings.

Varying power grid: When tuning PID parameters or

developing alternative control schemes, it is of im-

255

HydroPlant – a Modelica Library for Dynamic Simulation of Hydro Power Plants

The Modelica Association Modelica 2006, September 4th – 5th

portance to know the dynamics of both the power

grid and the local plant simulated. Identification of

the grid is more complicated as the main grid infor-

mation is provided in frequency signal only. Identifi-

cation considers mainly grid size in relation to the

size of the local generator. If that relation is large,

the power plant will not affect the grid frequency

noticeably (stiff grid) and the PID settings can be

chosen more aggressively. But in the other case (soft

grid), precautions need to be taken. In this case over-

shoots and oscillations in the local plant will affect

the grid frequency and the PID settings should con-

sider mainly grid stability. The problem gets more

complicated as the grid changes, and the local gen-

erator works both on the stiff and soft grid. The Hy-

droPlant library facilitates development of tech-

niques for continuous, on-line, grid identification.

Schemes of joint control of plant units: The majority

of plants run several turbine-generator units on the

common water ways. There are serious control prob-

lems to be solved here to allow most efficient plant

operation or to avoid certain power divisions causing

vibrations, pressure oscillations or other forbidden

working situations.

8 Simulation Results

Simulation results from the example of a simple hy-

dro power plant (Figure 11) are briefly presented

here. For a more in-depth result analysis please refer

to [4], and to the HydroPlant manual [5].

8.1 No-load, synchronizing and loading

This example will illustrate a hydro power plant act-

ing under no load and when connected to the power

grid. Simulation starts when the grid load is increas-

ing and the grid frequency is falling below the nomi-

nal level (Figure 12).

The turbine starts and the governor (in no-load mode

of operation) controls turbine speed to the genera-

tor’s nominal frequency as it can be seen during the

first 110s of simulation.

After 110s synchronization is initialized, by sending

pulses to frequency set point in order to match the

generator frequency to frequency of the power grid.

After 300s the frequency of the generator is synchro-

nized to the grid frequency, the MCB is closed, the

power reference is set to 50MW and new set of PID

parameters is applied. Generator power output in-

creases until new load balance is reached.

Figure 12. Frequency of the grid and local generator

during start and synchronization

Figure 13: Loading of the local generator

8.2 Load Rejection

The particular shape of the turbine velocity profile

during load rejection is normally a guaranteed issue

and the ultimate test of turbine governor quality and

its settings.

Figure 15 presents opening of the MCB in 500s of

simulation. The speed rises but after approximately

100 sec is controlled back to normal. Behavior of the

guide vane and Kaplan angle servos can be studied

on Figure 16. As the guide vane servo is faster then

Figure 14: Pressure drops at the turbine runner due to

the water acceleration in the penstock.

Figure 11. Model of a complete hydro power plant

256

K. Tuszynski, J. Tuszynski, K. Slättorp

The Modelica Association Modelica 2006, September 4th – 5th

angle servo, a large combination error can be seen.
The combination error means a discrepancy exists

between optimum angles leading water through the

turbine, which affects the turbine efficiency drasti-

cally.

References

[1] Elmqvist, H, Tummescheit, H and Otter, M

(2003): “Object-Oriented Modeling of

Thermo-Fluid Systems”. Dynasim Sweden,

UTRC, USA and DLR, Germany.

[2] Roberson, Cassidy, Chaudhry (1998): “Hy-

draulic Engineering. Second edition” John

Wiley & Sons, New York, USA.

[3] Kjølle, A.: Hydropower in Norway. Me-

chanical Equipment. A survey
[4] Slättorp, K, Tuszynski, K (2005): “Model of

a Hydro Power Plant – New Algorithm for

Turbine Governors”, Master Thesis. Dept. of

Automatic Control, Lund Inst, of Technol-

ogy, Lund, Sweden

[5] HydroPlant Library. The Manual
(may be distributed on request)

Figure 15: Generator frequency at the load rejection

Figure 16: Guide vane position, Kaplan angle and an-

gle reference

257

HydroPlant – a Modelica Library for Dynamic Simulation of Hydro Power Plants

The Modelica Association Modelica 2006, September 4th – 5th

258

K. Tuszynski, J. Tuszynski, K. Slättorp

 Session 3b

The Modelica Association Modelica 2006, September 4th – 5th 259

Session 3b

Hardware in the Loop

Session 3b

The Modelica Association Modelica 2006, September 4th – 5th 260

The Modelica Association Modelica 2006, September 4th – 5th

Interacting Modelica using a Named Pipe for Hardware-in-the-loop
Simulation

Arno Ebner Anton Haumer Dragan Simic Franz Pirker
Arsenal Research

Giefinggasse 2, 1210 Vienna, Austria

phone: +43 50550 6663, fax: +43 50550 6595, e-mail: arno.ebner@arsenal.ac.at

Abstract

The paper presents a concept and an implementation
of Modelica simulation interaction using the operat-
ing system inter-process communication method of
the Named Pipe. The main aim of this presented
work is to implement a hardware-in-the-loop simula-
tion (HILS) environment based on Dymola which
runs on a normal Microsoft Windows Personal Com-
puter.
An energy storage test bench is connected by an ana-
logue and digital data input/output card with the Dy-
mola simulation computer. With this proposed sys-
tem, particularly long-time simulations with sample
rates up to 30 Hz can be executed very cost effective.
Typical applications are simulations of drive cycles
to test energy storage systems in electrified vehicles
such as batteries or fuel cells. Other application ex-
amples are the verification of battery models, ther-
mal management models or battery management sys-
tem (BMS) models.
In this paper all methods used for implementation are
described in detail. Especially the concept of inter-
process communication and the concept for real-time
and simulation time synchronization is discused.
An application example which uses the provided
concept is also shown at in this paper. In this exam-
ple a longitudinal simulation of a vehicle is pre-
sented. The startup phase of the internal combusting
engine model and a short drive cycle in combination
with a connected real battery is shown.

1 Introduction

The traditional approach for simulating technical or
physical systems is to describe real systems in
mathematical models. These systems are described
with discrete equations or with continuous algebraic
and differential equations. The simulation environ-
ment has a solver algorithm which generates a solu-

tion for the system model considering the initial val-
ues.
In some cases the user or other applications have to
interact with the simulation, for example to:
• Start or interrupt the simulation
• Change parameters or variables during the simu-

lation
• Communicate with other applications, for exam-

ple with another simulation environment
• Exchange data with an input/output-card or a pe-

ripheral communication interface
• Build up a hardware-in-the-loop simulation envi-

ronment

Hardware-in-the-loop (HIL) is the integration of real
components and system models in a common simu-
lation environment [1]. This means that some parts
of a system, which should be tested, are virtual and
other parts are real. HIL simulations are an important
method for the development of mechatronic systems.
An important advantage of HIL is that it allows func-
tion tests of mechatronic systems or components of
such systems under simulated real conditions. There-
fore HIL helps to save cost and time compared to
conventional test runs on a real prototype.
There are three important consideations for the im-
plementation of a hardware-in-the-loop simulation:
• The simulation of the dynamic system, in other

words the mathematical or physical models must
be processed in real-time.

• There must be synchronization between the time
in the real world (the so called real-time) and the
digital simulation-time of the simulation tool.

• The simulation tool must be able to communicate
e.g. with others applications or an I/O communi-
cation interface.

The Monitoring, Energy and Drives division at Ar-
senal Research does research and development on
components for Hybrid Electric Vehicles (HEV`s)
and electrified auxiliaries for vehicles. For that they
acquire know-how in the simulation of electric

261

Interacting Modelica using a Named Pipe for Hardware-in-the-loop Simulation

The Modelica Association Modelica 2006, September 4th – 5th

drives, of energy storage systems and in vehicular
simulations. A great deal of simulation models was
built up in Modelica and simulated with Dymola [2],
[3]. In order to verify and validate the implemented
models and the developed system components, a
connection to a hardware-in-the-loop simulation en-
vironment has to be implemented.
In that way in the provided paper an interaction of a
Modelica/Dymola simulation with components out-
side of the simulation tool is shown. At this proposed
HIL system the Dymola application runs on a stan-
dard Microsoft Windows Personal Computer. Actu-
ally two important processes run on the simulation
PC: one process is the Dymola application and one
process provides the input and output functionality
for the peripheral card. Details on implementation
for both tasks, first for the Dymola application using
external functions and furthermore for the peripheral
card application are given below.
This two processes communicate together using the
inter-process communication (IPC) methods pro-
vided by the operating system. In the proposed case
the tasks communicate via a so-called Named Pipe
mechanism. Through the first-in first-out behavior of
the Named Pipe communication method there is an
implicit synchronization between the two processes.
In this paper is described how to create and to open,
how to write to and how to read from the Named
Pipe and how to close it.

2 Inter-process Communication with
Named Pipes

The IPC method that is used in this work is the so-
called Named Pipe mechanism. This IPC method is
available both on UNIX systems and on Microsoft
Windows systems. The semantic and the function
calls differ in the operating systems but the concepts
are the same [4], [5]. Only the implementation on a
Microsoft Windows operating system is shown in this
paper.
Named Pipes are designed for the communication
between the pipe server and one or more pipe clients.
They have first-in first-out behavior and can be ac-
cessed like a file.
Stdio.h standard C library functions for file handling,
such as fopen(), fclose(), fread() or fwrite() can be
used to deal with Named Pipes. However, the usage
of Microsoft Windows Software Development Kit
(SDK) functions gives a more powerful access on the
functionalities of Named Pipes. Specifically, using
the SDK a pipe server calls the CreateNamedPipe()
function to create an instance of a Named Pipe. The

client calls the CreateFile() or CallNamedPipe()
function to connect to an instance of the Named
Pipe. ReadFile() and WriteFile() functions allow
reading and writing to a specified Named Pipe.
In the presented work the Dymola process corre-
sponds to the server process, which generates the
pipe and waits for a connection with a client (for in-
stance the I/O process). This process then executes
the simulation steps, puts data in the communication
pipe and gets data from the client process.

3 Implementations in Modelica and
Time Synchronisation

The described mechanism of inter-process commu-
nication is implemented as an external function writ-
ten in ANSI/ISO C. At Arsenal Research two main C
functions for the communication of Modelica with
other processes using Named Pipes are developed.
The AllocateResources() function creates and con-
nects a Named Pipe. The function PipeIO() com-
putes a string from the simulation variables array
calculated by Dymola and writes this string in the
Named Pipe. Then the function gets the data string
from the Named Pipe and computes an array of Real
variables for the Dymola simulation solvers.
In Figure 1 the flow chart of the functionalities of the
server process is shown. Specifically, the function
AllocateResources() and the function PipeIO() are
described. For these functions a static library is
build. This library is linked to the model using the
function definitions. In Dymola a wrapper function
to convert the external C function to a Modelica
function is defined.
For a working HILS it is important, that the simula-
tion time in the simulation application is synchro-
nized with the real time. This synchronisation in
Modelica is achieved by using the when clause in an
algorithm statement:
...

when (time >= SimuNext) then

 (SimuNext, input) := PipeIO(time, output);

end when;

In this short code fragment time means the simula-
tion time in Dymola and SimuNext means the real-
time. input means an array of Real variables taken
from external C code to Modelica and output means
an array of Real variables taken from Modelica to
external C code.

262

A. Ebner, A. Haumer, D. Simic, F. Pirker

The Modelica Association Modelica 2006, September 4th – 5th

Figure 1: Flow chart of the server process, which
runs as an external function call of Dymola.
The simulation process gets the real-time informa-
tion from the client process via the Named Pipe IPC.
As long as the real-time is greater than the simula-
tion time in Dymola a new inter-process communica-
tion cycle get processed and the function PipeIO()
gets called. As long as the real-time is smaller than
the simulation time new simulation steps of the Dy-
mola solver get executed.
In figure 2 the client process of Named Pipe IPC is
shown. In this process the data in- and output func-
tions and the calculation of real-time information for
the simulation application using functions from the
ANSI/ISO C library time.h are executed.

Figure 2: Flow chart of the client process.

Figure 3: Icon and parameter settings of the Pipe
block.

All inter-process and simulation time synchroniza-
tion functionality are combined in the so called Pipe
block. This block is shown in figure 3.

4 Application Example: Hardware-
in-the-loop Energy Storage Test
Bench

The HILS environment presented in this paper is a
very cost efficient system which is based on a nor-
mal Windows PC platform.
The communication between the simulation PC and
the energy storage test bench is realized by an ana-
logue inputs and outputs card. Specifically, a com-
mercial data acquisition (DAQ) Card from National
Instruments (NI) was used for the implementation.
By using the DAQ functions from NI the simulation

263

Interacting Modelica using a Named Pipe for Hardware-in-the-loop Simulation

The Modelica Association Modelica 2006, September 4th – 5th

tool can communicate with the interface card [6].
The main components of the energy storage test
bench are a stack of electronic power supplies and a
stack of electronic loads.
The technical data of the energy storage test bench
is:
• Voltage: 0V-600V
• Current: 600A charge and 750A discharge
• Peak Power: 96 kW

The target applications of this HIL-test bench are the
development and the test of energy storage, thermal
management and battery management models.
The concept diagram for this HILS-environment is
shown in Figure 9. In this application example the
vehicle model calculates the loads for the battery.
During the simulation the instantaneous real battery
conditions (Voltage, Current, and Temperatures) are
considered by Dymola. The electric drives are mod-
elled using the SmartElectricDrives library [7], [8].
The following simulation results show the first 30
seconds of the New European Drive Cycle (NEDC)
of a conventional vehicle. After 2 second the internal
combustion engine of the vehicle is started for 2 sec-
onds, which is illustrated in Figure 4. Figure 5 shows
the shaft speed of the ICE. It appears that the motor
is running with idle speed after 4 seconds. During the
starting process the starter motor has a defined cur-
rent demand for the battery. In figure 6 this current
demand is shown. At time t=4s the ICE is running in
idle speed and at time t=10s the vehicle begins to
drive following the NEDC. In these phases the alter-
nator produces electrical power, which charges the
battery of the vehicle.
With the proposed HIL interface the electronic load
creates a real electric current drain for the real bat-
tery. The electronic power supply generates a real
charging current for the real battery connected to the
energy storage test bench. In figure 7 the measured
current in the battery pins and in figure 8 the real
voltage at the battery pins is shown.

Figure 4: Starting the ICE after 2 seconds for 2 sec-
onds and simulate first 30 seconds of the NEDC

Figure 5: Simulation result, shaft speed of the ICE

Figure 6: Reference current for battery – output of
the HIL simulation

Figure 7: Real current in battery– input of the HIL
simulation

Figure 8: Real voltage at battery– input of the HIL
simulation

This HIL simulation experiment was executed on a
MS Win32 PC with Intel Pentium Mobile processor
with 1.8 GHz clock. In Dymola the Dassl integration
method is used with a tolerance of 0.001. 25Hz In-
put/Output communication frequency was chosen.

264

A. Ebner, A. Haumer, D. Simic, F. Pirker

The Modelica Association Modelica 2006, September 4th – 5th

Figure 9: Application example, functional diagram of the HILS energy storage test bench

5 Conclusions

The Modelica hardware-in-the-loop simulation
approach using Named Pipes inter-process com-
munication methods was shown in this paper. This
proposed system does not need an expensive
“true” real-time platform. It bases on a normal
Windows PC with a Dymola simulation environ-
ment and a communication interface card for in-
puts and outputs. Complex models can be simu-
lated with an in-/output sample rate up to 30 Hz.
The HIL energy storage test bench which was
proposed as application example in this paper is
under operating conditions at Arsenal Research
since the begin of 2006. With this HIL test plat-
form particularly long-time simulations such as
drive cycles test of energy storage systems or veri-
fications of battery models, thermal and battery
management models was done.
As future work Arsenal Research will implement
the proposed inter-process communication algo-
rithm also on a Dymola application which runs on
a Linux PC.

Abbreviations

BMS Battery Management System
DAQ Data Acquisition
HEV Hybrid Electric Vehicle
HIL(S) Hardware-in-the-Loop (Simulation)
ICE Internal Combustion Engine
I/O Input/Output
IPC Inter-process communication
NEDC New European Drive Cycle

References

[1] Verein Deutscher Ingenieure, VDI Richt-
line 2206, Entwicklungsmethodik für me-
chatronische Systeme – Design methology
for mechatronic systems, June 2004.

[2] Dymola, Dynamic Modeling Laboratory,
User’s Manual, http://www.Dynasim.com:
Dynasim AB, 2004.

[3] P. Fritzson, Principles of Object-Oriented
Modelling and Simulation with Modelica
2.1. Piscataway, NJ: IEEE Press, 2004.

[4] Microsoft MSDN Library, – Interprocess
Communication – Named Pipes,
http://msdn.microsoft.com/library/en-
us/ipc/base/named_pipes.asp, 2006.

[5] Elmenreich W., Systemnahes Program-
mieren – C Programmierung unter Unix
und Linux, 2002.

[6] National Instruments Document, DAQ -
Traditional NI-DAQ User Manual, Ver-
sion 7.0, April 2003.

[7] D. Simic, H. Giuliani, C. Kral and F.
Pirker, Simulation of Conventional and
Hybrid Vehicle including Auxiliaries with
Respect to Fuel Consumption and Exhaust
Emissions, SAE World Congress, Detroit,
2006.

[8] H. Giuliani, C. Kral, J.V. Gragger, F.
Pirker, Modelica Simulation of Electric
Drives for Vehicular Applications - The
Smart Drives Library, ASIM, Erlangen,
2005.

265

Interacting Modelica using a Named Pipe for Hardware-in-the-loop Simulation

The Modelica Association Modelica 2006, September 4th – 5th

266

A. Ebner, A. Haumer, D. Simic, F. Pirker

The Modelica Association Modelica 2006, September 4th – 5th

Parametrization of Modelica Models on PC and Real time platforms

Matthias Kellner Martin Neumann Alexander Banerjee Pritesh Doshi

ZF Friedrichshafen AG

Graf-von-Soden-Platz 1, D-88046 Friedrichshafen, Germany

matthias.kellner@zf.com martin.neumann@zf.com alexander.banerjee@zf.com

Keywords: model based development, dynamic

model parametrization, SW-Tests, ZBF-Parameter,

Realtime

1 Introduction

Throughout the development process of control units

for new transmission system, computer models are

needed to perform different tasks, such as concept

evaluation and the design and testing of controllers

in MiL, HiL and SiL environments. These models

will be used within different CAE-tools and different

environments. To avoid redundancies and sources of

errors the parametrization of these models using the

same set of parameters is preferred, since these will

change during the development process. Further-

more, the parameters will be kept within at one loca-

tion. The only possibility to deal with this problem is

to keep models and parameters separated, which

means that models have to be parameterized using a

set of files. Unfortunately, some environments do not

allow file I/O operations. Even though no file I/O

operations are available, for example on Real time

platforms, there is still a strong need for flexible pa-

rametrization. Several approaches have been devel-

oped to overcome these challenges, especially for

Dymola/Modelica models which will be presented

within this paper.

In the following chapter the integrated use of vehicle

models within ZF electronics development will be

introduced. In chapters 3 and 4 the ZBF-parameter

format will be discussed as well as the different pa-

rametrization approaches. With the help of an exam-

ple the use of one of the approaches will be illus-

trated. Finally the results will be summarized and

open questions will be addressed.

2 Integrated use of powertrain mod-

els within ZF electronics develop-

ments

Within this chapter the use of simulation models

within the ZF electronics development will be illus-

trated, concentrating on passenger car applications.

The focus will be an integrated use of these models

from specification phase up to series application. The

use of Dymola models within Hardware in the Loop

(HiL)-simulation requires some adaptations within

Dymola for parametrizing models on real time plat-

forms.

Rising demands for better comfort, more power and

lower fuel consumption as well as increased integra-

tion of different systems lead to a higher weighting

on software developement. Although the develop-

ment period has to decrease, the quality of the soft-

ware and the level of customer satisfaction have to

be continuously improved. For validation and verifi-

cation purposes almost 40% of the total budget for

software development has to be invested [1].

Figure 1: Test Expenditure of Transmission Soft-

ware

Quality and scope of software

Test
expenditure

� ReUse
� Automation
� Optimization

Quality and scope of software

Test
expenditure

� ReUse
� Automation
� Optimization

267

Parameterisation of Modelica Models on PC and Real Time Platforms

The Modelica Association Modelica 2006, September 4th – 5th

As can be seen in Figure 1 the necessary testing ex-

penditures increase disproportionately due to higher

quality requirements. These ever increasing de-

mands, which are closely linked to costs, can only be

taken care of by improving efficiency. The applica-

tion of ReUse, automation and optimization of test-

ing processes can reduce the testing expenditures up

to about 30% [2].

In order to reduce the time used for developing a

new product the parallelization and decoupling of

mechanic, electronic and software development is

needed. By reusing models within different testing

environments the service expenditures can be re-

duced. Testing at an early stage in development will

also lead to a decrease in development expenditures.

Figure 2: Testing as part of the software

development process

To ensure a development of software in parallel and

independently, appropriate environments for devel-

opment and testing are needed. These should also

include simulation capabilities. In order to service

the software development process, different simula-

tion and development tools are in use, which allow

the simulation of complex full vehicle models as

well as for testing control units on HiL test rigs. All

tools have to be suitable for an integrated model

based development process orientated along the V-

model approach and also must provide thorough

analysis possibilities which can facilitate the finding

of errors at an early stage. For the modelling of pow-

ertrains the software tool Dymola is thought to be the

standard.

The electronic development simulation models are

primarily in use for testing the functionality and suit-

ability for the series application of control unit soft-

ware [4]. These tests are an essential part of the

software development process.

Dynamic models are needed to test software inde-

pendently without involving the mechanic and elec-

tronic hardware. With the help of different testing

environments the software can be tested at each level

of maturity.

Figure 2 shows the development phases and the ad-

joined testing environment and methods. The testing

environments Model-in-the-Loop (MIL), Software-

in-the-Loop (SIL) and HIL cover the whole process

of software development. Hence models are not only

needed in the conceptual phase, the left part of the

V-model, but rather in the testing phase, presented

on the right side of the V-model. In order to mini-

mize service expenditures a unitary use of simulation

models within all testing environments must be

stipulated. The consequent application of the ReUse-

concept does not only reduces the service expendi-

tures for about 50%, but also reduces expenditures

for integrating these models in the development

process while heavily simplifying the version man-

agement.

Since in reality the integration of ZF products

strongly varies among the different customer appli-

cations, a vast amount of different models are

needed. One major objective is then to generate a

universal model that can be configured for the ap-

propriate customer application by solely changing

model parameters.

One major disadvantage of Modelica is the inability

to easily parametrize models for different develop-

ment platforms. Therefore, an approach has been

developed in ZF that has the ability to separate mod-

els from the parameters. The model parameters are

stored within standardized ZF-ASCII-files, which

will then be loaded at initialization [3]. In order to

ensure a parametrization of models with ZBF-data

on platforms without file I/O, e.g. dSPACE, modifi-

cations and adaptations within Dymola have been

done. These procedures will be described in the fol-

lowing chapters.

3 ZBF-Format and Parametrization

of models on platforms With File

I/O

The ZBF-Format will be discussed in chapter 3.1,

with an emphasis on its advantages in comparison to

other parameter formats. In the following paragraphs

an approach will be discussed which enables a pa-

rametrization of models by using ZBF-data within

environments with File I/O.

268

M. Kellner , M. Neumann, A. Banerjee, P. Doshi

The Modelica Association Modelica 2006, September 4th – 5th

3.1 ZBF-Parameter

As stated in the previous chapter, there is a strong

need to separate models from parameters. A detailed

description of the ZBF-format can be found in [3].

For the sake of completeness an example of the

ZBF-format is included in Figure 3.

Figure 3: Parameterization with File I/O

ZBF originated from the strong need for exchange of

formatted data between different Excel-programs.

Thereinafter a broad use has been promoted for C

und C++ calculation programs. It has been finally

declared as a standard within ZF.

A big advantage of the ZBF-format is that it allows

the provision of parameters which do not comply

with SI-units, something usual for transmission de-

sign (e.g. [rev/min] instead of [1/s]) New approaches

such as XML are not in use, since a large amount of

programs are already able to read ZBF-data files.

Furthermore, it is quite simple to transfer ZBF-data-

files to Excel and edit these data files by using sim-

ple test editors.

With the help of an easy example, the differences of

these different formats can be illustrated. A scalar

parameter in ASCII such as the moment of inertia of

the engine can be given as:

ZBF:
JMot [kgm/s^2] 1.5

XML:
<Identifizierer>
<name>JMot</name>
<einheit>kgm/s^2</einheit>
<wert>1.5</wert>
</Identifizierer>

NetCDF:
netcdf motor{
dimensions:
One = 1;
variables:
float JMot(One);
JMot:long_name = "Motor-
trägheitsmoment";
JMot:units = "kgm/s^2";
data:
JMot = 1.5;
}

3.2 Parametrization of models on platforms

with File I/O

For the development of control function, models are

used by CAE-tools running on PC-platforms with a

file I/O operating system. A description of the ap-

proach on how to parameterize models on platforms

with file I/O has been given in [3]. A short summary

of the approaches in the forthcoming chapter, to-

gether with the necessary terms, will be presented

next.

The parameters which are usually scalars, vectors

and matrices are stored separately form the model at

a central location (Figure 4). In order to read these

data files, an appropriate parser will be linked to the

model at the time of compilation. With the help of

the parser, the model then reads all the necessary

data at initialization and all parameters will be stored

within a special data structure.

Figure 4: Parameterization with File I/O

The use of self developed C-Functions which will be

linked to the model during compiling help to find the

parameter and assign it to the component. Hence the

model can be implemented within different CAE-

applications, which run on an operating system with

file I/O. The big advantage is that there is no need to

modify the parametrization process based on what is

required for the present application.

Model Parser Para-
meter

I/O

J1 [kgm^2] 0.1

; scalar parameter

InU [-] 0 1 2

OutY [-] 0 1 2

; two vectorial parameters

Test_Table2D[

[-] U1 [-] 0 1 2

2 Y [-] -2 -1 0

1 Y [-] -1 0 1

0 Y [-] 0 1 2

Test_Table2D]

; Two-Dimensional-Table

269

Parameterisation of Modelica Models on PC and Real Time Platforms

The Modelica Association Modelica 2006, September 4th – 5th

4 Parameterization of models on

platforms Without File I/O

For controller testing, Dymola models have to be

implemented in environments, such as SiL and HiL,

with programs that do not allow for file I/O opera-

tions, such as dSPACE. Therefore another method

has to be used. Moreover, the strong need for rapid

prototyping calls for flexible parameterization within

these environments. In the following chapter two

realizations will be discussed. The first one will be

referred to as “static parameterization” and the sec-

ond “dynamic parameterization”.

4.1 Static Parameterization

Within environments that do not allow file I/O op-

erations one straight forward approach is to attach

the parameter files to the existing Code. This will be

done by converting the ZBF-files into C-code files

and storing the parameters in a single character-

string. Afterwards, these files will be linked to the

model including the Parser throughout compilation

(Figure 5).

Figure 5: Static Parameterization

A slight extension of the existing Parser algorithm

allows for proper parsing of the string and hence

parameterization of the model at initialization. This

approach is very useful in situations where parame-

ters do not change very often or the model has to be

exported as a single binary source.

4.2 Dynamic Parameterization

In order to test the robustness of a controller for

various model settings, the static approach can be

extended. This is done by changing the parameters

directly within the code. Therefore a method is used

which has been applied in dSPACE for easy re-

parameterization of models on their hardware.

For this purposes the Dymola model will be im-

ported into Matlab/Simulink as an S-Function. An

extra parameter will be added to the S-Function dur-

ing its generation by modifying the SimStruct to

Dymola interface file ss2dym.c. Using this additional

parameter the new set of ZBF parameter files can be

passed on to the model in the form of an array of

double values. An array is generated by Matlab from

the default set of parameter in order to locate the pa-

rameter memory which will be needed later for re-

parameterization (Figure 6).

Figure 6: Dynamic Parameterization

The model with the additional S-function parameter

(Figure 7) is exported into the dSPACE Real-Time

platform using the Matlab RTI workshop. While ex-

porting the model into dSPACE, the double array is

converted into C-Code and subsequently linked to

the model. This guarantees that the appropriate

memory space can be accessed for dynamic re-

parameterization. An SDF-file for dSPACE simula-

tor is generated as well.

Finally the parameters can be transferred from the

PC to the computer with the RT-OS with the help of

Control-Desk. Fortunately, the re-parameterization

can be done outside of Matlab. With the help of a

python script the model parameter files will be re-

parsed on the PC-platform with a regular file I/O,

where the parameters will be converted into a double

array of the same structure as the one for exporting

purpose.

Model Parser Parameter Parser

Model Parser
Parameter
Memory

Parser

Para-
meter

dSPACE

Python-
Script

with RT-OS

PC
with
Win-OS

270

M. Kellner , M. Neumann, A. Banerjee, P. Doshi

The Modelica Association Modelica 2006, September 4th – 5th

Figure 7: Additional S-Function Parameter

In order to “reload” the new parameters, the default

parameters within the Real-Time model are accessed

by another python script using the read/write rou-

tines from rtplib and ControlDesk. The length of the

array is matched with that of the default array and

the default parameter in the model is overwritten

with new one. Finally, the initialization flag is acti-

vated and the model is re-initialized.

5 Dynamic ZBF-Parametrization of a

passenger car model on dSPACE-

HIL-Simulator

For Dymola vehicle models at ZF, all relevant me-

chanical, electrical and hydraulic modules needed for

software development and HiL testing have been

modelled.

Figure 8: Modelica Libraries for HIL Tests

With the help of commercialized model packages,

for example PowerTrain and MultiBody, as well as

ZF-specific packages, as ZFLib, Hybrid and CarSim,

powertrain models can be developed for different

testing purposes (vgl.Figure 8).

In Figure 9 a vehicle model is shown as it is used for

HIL-Simulation at ZF. It consists of the following

sub-modules: engine, alternator, torque converter

with torque converter clutch, ZF automatic transmis-

sion, rear axis, simple vehicle model with brakes,

Control units (electrical/hydraulical), signal bus and

I/O-interfaces.

Figure 9: Dymola-Vehicle used in MIL, SIL and

HIL environments

The degree of detail in the powertrain modules has to

be adapted according to the field of application.

Models which are used for testing purposes require a

thorough consideration of internal interactions. For

example the interaction of a set of clutches while

doing a change in ratio requires a detailed applica-

tion of system hydraulics modelling. Whereas the

vehicle module has been simplified to a minimum

and the engine has been represented by look-up ta-

bles in order to guarantee real time capability.

Due to the fact that ZF products will be implemented

in different vehicle settings there will be a vast vari-

ety of models. The only possibility for dealing with

this situation is following a modular approach, stor-

ing modules in libraries and separating models from

data. The models can be parametrized by using data

sets which relate to a specific version of vehicle set

up. The basis for the parameter format is the ZBF-

format, which has been described in chapter 3.1. The

parametrization process of a vehicle model which is

used for HiL-testing of a control unit on a dSPACE

is explained in the following section.

The parameters have to be stored in ZBF-data files

as well as an appropriate allocation within the model

has to be done. Afterwards the model will be in-

271

Parameterisation of Modelica Models on PC and Real Time Platforms

The Modelica Association Modelica 2006, September 4th – 5th

cluded in a Simulink block. For the first time gener-

ating the model S-function the parameters will be

read from file and stored in a double array within

Matlab. At the same time the S-function will be sup-

plemented by an additional parameter, which most

often is referred to as the third parameter. This pa-

rameter is the essential link to the double array.

Whenever the model is transferred to dSPACE by

applying the RTI-Workshop the double array will be

converted into a C-File and afterwards linked to the

model. All described steps will be done automati-

cally.

With the help of the described dynamic parametriza-

tion approach (see chapter 4.2) model parameters can

be changed on the dSPACE-simulator. This is done

by applying appropriate Python-scripts which allow

for an easy change of parameters without starting the

implementation process once again. This approach is

quite essential, since not all dSPACE-HiL-simulators

at ZF provide a Matlab development environment.

Bild 10: ControlDesk Interface

Appyling ControlDesk a graphical I/O user interface

is set up, which interactes with the model on the

dSPACE board. All necessary inputs and outputs of

the testing environment can easily be monitored or

changed. Typically the hardware configuration, e.g.

the control unit variant and CAN-Bus-system can be

selected. All control inputs of the Dymola-model

such as ignition, selection of gear ratio, throttle and

brake pedal position can be changed manually or

automatically.

Finally by applying the mentioned Python-scripts

within the windows-OS the appropriate set of ZBF-

parameters of a vehicle variant will be read from file.

By activating the third parameter within the model-

SDF-file, parameters will be mapped into the allo-

cated memory space of the model which is imple-

mented on the dSPACE platform. Hence parameters

can easily be changed while the model is operating at

running time.

6 Summary and Outlook

In order to use models within different tools and en-

vironments models and parameters have to be kept

separate from each other. Within ZF these parameter

files are set up according to a standardized descrip-

tion referred to as ZBF. Approaches have been de-

veloped which enable a uniform and unanimous use

of these files on all simulation platforms independent

of whether they provide file I/O routines or not. For

environments with file I/O, typically PC platforms,

an approach based on linking a Parser algorithm to

the model has been outlined in [3]. For environments

without file I/O two realizations referred to as static

and dynamic parameterization have been developed,

where the latter allows for flexible parameterization.

The static method generates a single source from

model, parser and parameters. The dynamic method

utilizes the method used by dSPACE. With the help

of a Python script, the parameters will be read from

ZBF files and directly mapped into the parameter

memory of the model, hence facilitating the modifi-

cation of parameters on Real-Time platforms.

Future work includes the issue of overruns occurring

at initialization, presenting opportunities for im-

provements, especially for some specific environ-

ments which do not allow for overruns even at ini-

tialization. The optimization of code can also be pos-

sibility by applying the parameter evaluation feature

within Dymola, which changes parameters into

numbers and hence simplifies the code. Presently,

his is not possible whenever parameter-files are in

use. An extension which allows for optimization

even when parameter files are in use can be very

helpful if a more efficient Dymola code is to be de-

veloped.

272

M. Kellner , M. Neumann, A. Banerjee, P. Doshi

The Modelica Association Modelica 2006, September 4th – 5th

7 References

[1] G. Bauer, M. Gromus, M. Neumann

and C. Tapia. Model-based software

development in production applica-

tions with a closed-loop controlled

lockup clutch in a ZF 6-speed trans-

mission, Fisita 2004

[2] H. Deiss, B. Aumann, T. Schober

Time to Market in der Softwareent-

wicklung - Reuse und Standardisie-

rung bei Getriebesteuerungen - E-

lektronik im Kraftfahrzeug, Baden-

Baden 2000, Germany

[3] J. Köhler and A. Banerjee Usage of

Modelica for transmission simula-

tion in ZF, pp. 587-592, Gerhard

Schmitz, Editor, Proceedings of the

4
th
 International Modelica Confer-

ence, Hamburg March 7-8, 2005,

Germany

[4] R. Gonzelez-Ramos, M. Neumann,

A. Banerjee and J. Köhler Standard

drive train models for increased

Testing Efficiency, pp. 243, Pro-

ceedings of the 4
th
 IAV Symposium,

Berlin Juli 9-10, 2005, Germany

273

Parameterisation of Modelica Models on PC and Real Time Platforms

The Modelica Association Modelica 2006, September 4th – 5th

274

M. Kellner , M. Neumann, A. Banerjee, P. Doshi

The Modelica Association Modelica 2006, September 4th – 5th

Synchronising a Modelica R© Real-Time Simulation Model with a
Highly Dynamic Engine Test-Bench System

Dietmar Winkler Clemens Gühmann
Technische Universität Berlin

Department of Electronic Measurement and Diagnostic Technology
Sekr. EN13, Einsteinufer 17, 10587 Berlin

{Dietmar.Winkler,Clemens.Guehmann}@TU-Berlin.de

Abstract

The modeling language Modelica R© is widely used
by the automotive industry. In connection with
Hardware-in-the-Loop (HiL) testing it can accelerate
the development process enourmously. This paper
presents the application of Modelica R© models for a
Hardware-in-the-Loop simulation using a highly dy-
namic engine test-bench system. Certain steps have
to be taken to be finally able to connect the real-time
Modelica R© model to the test-bench system. One of the
most important issues when connecting a simulation
model to a hardware device is the synchronisation pro-
cess between them. This includes the determination of
interface signals, the adaption of the models according
to existing interfaces, and the actually online test of
the new real-time adjusted model. All these parts shall
be explained in this paper.
Keywords: Hardware-in-the-Loop simulation, real-
time, RT-LAB, engine test-bench system

1 Introduction

Nowadays the car manufacturers try to reduce the de-
velopment times of new cars in order to cut the costs
and therefore stay competitive. At the same time the
manufacturer is interested in the potentials of new
engine developments in terms of fuel efficiency and
exhaust-gas emissions. This results in engine tests be-
ing carried out on so-called engine test-benches in-
stead of using roller test-benches or expensive test
drives. The advantage of an engine test-bench is that
one does not need a prototype car into which the en-
gine has to be mounted. A detailed model of the
cars drive-train is sufficient to yield fuel saving and
exhaust-gas emissions measurements from the engine
test-bench. Engine calibrations can be carried out at

a very early development phase using an engine test-
bench for example.
Because of a cooperation of our Department of Elec-
tronic Measurement and Diagnostic Technology of the
Technische Universität Berlin with the IAV GmbH
Berlin, our department has access to a highly dy-
namic engine test-bench system. This test-bench sys-
tem is used in connection with the model based cal-
ibration of electronic control units (ECU) of engines
and transmissions [1]. As a next step object-oriented
Modelica R© models1 will now be used to simulate the
behaviour of all parts of the vehicle except the engine.

2 Hardware-in-the-Loop system

This section provides some more details about the ap-
plied HiL system.
The HiL system consists of a highly dynamic engine
test-bench and a HiL simulator. The principle setup is
depicted in Fig. 1.

D
ri
ve

D
at

a

ac
qu

is
it
io

n

P
hy

si
ca

l
I/

O
V
ir
tu

al
I/

O

Schedule

C
on

tr
ol

lo
op

s
&

L
im

it
s

Model of vehicle

HiL
Simulator

PC WorkstationControl System

TCP/IP

Dynamometer Control

Speed

Torque

PVS

DynamometerEngine

Figure 1: Principle setup of the highly dynamic engine
test-bench system – “Test-Bench of the Future”

1Modelica R© is a free modelling language developed by the
Modelica Association→ www.modelica.org

275

Synchronising a Modelica Real-Time Simulation Model with a Highly Dynamic Engine Test-Bench System

The Modelica Association Modelica 2006, September 4th – 5th

2.1 Test-bench system

The highly dynamic engine test-bench system consists
of a combustion engine which is directly coupled with
an electric Dynamometer which in turn is controlled
by a power electronic converter (Drive). In addition to
that a Control System is needed to supply the needed
control signals (e.g. Pedal Value Source α for the en-
gine, Dynamometer Control for the Drive) and to ac-
quire the measurement data (e.g. speed and torque
signals of the shaft). All this is done by the physi-
cal input/output cards (i.e. Analogue/Digital and Dig-
ital/Analogue cards).

2.2 Real-time system

The real-time system consists of a standard PC hard-
ware running the real-time operating system QNX R©2

and the real-time software RT-LAB3. This HiL Sim-
ulator is connected with the Control System via an
ether-net (UDP/IP) connection. To guarantee loss-less
communication a watchdog is implemented in the sim-
ulation model.

2.3 PC Workstation

The PC Workstation is also a standard PC. On this
PC the Modelica R© simulation models are created with
Dymola R©4. These models are not suitable for real-
time yet.
In order to adjust them for real-time the Dymola R©

model has to be included in a MATLAB R©/Simulink R©

model5 (this is done by using the DymolaBlock). The
real-time software RT-LAB then automatically trans-
lates the resulting model with the RealTimeWork-
shop R©5, transfers the C-code to the HiL Simulator via
FTP and starts the compilation process. For another
example of how to use Dymola R© in connection with
RT-LAB see [3]. Once that is finished the compiled
model can be loaded and executed via the RT-LAB
main control panel on the PC Workstation.

3 Simulation models

To demonstrate the synchronisation of a Modelica R©

model, we choose a standard 6-gear automatic

2QNX R© Software Systems→ www.qnx.com
3RT-LAB is a real-time software of Opal-RT

→ www.opal-rt.com
4Dymola R© is a dynamic modelling software of Dynasim AB

→ www.dynasim.se
5MATLAB R©/Simulink R©/RealTimeWorkshop R© is a simula-

tion package of The Math Works, Inc. → www.mathworks.com

transmission drive line model of the Power Train

Library [4] (see Fig. 2).

Figure 2: Graphical presentation of the drive line
model

As driving cycle an excerpt of the New European Driv-
ing Cycle (NEDC) was used (The only reason for not
using the whole NEDC was to speed up the simula-
tion work, since for this work no additional informa-
tion could be gained by using the complete NEDC.).
Figure 3 shows the velocity in km/h over time of the
NEDC excerpt when simulated offline with Dymola R©.
The standard Modelica R© model has no input and out-
put connectors so far. These connectors are needed
when integrating the model into Simulink R©. In a next
step we have to define which signals the test-bench
system needs and which signals the Modelica R© model
needs in order to function correctly as a unit. Also the
exact mode of interaction of the simulation model and
the test-bench system has to be defined.

3.1 Requirements for test-bench application

In our application we came across four main issues to
clarify:

1. Which parts are simulated and which exist as
“hardware”?

2. What control strategy is used?

3. How to synchronise the model and the test-
bench?

4. What interface signals are needed depending on
the control strategy?

3.1.1 Used hardware

The answer to the first question is quite simple. We
want to simulate a drive line model in connection with

276

D. Winkler, C. Gühmann

The Modelica Association Modelica 2006, September 4th – 5th

Figure 3: Excerpt of NEDC

engine test-bench system. Therefore our “hardware”
device is the engine. So the parts which will be simu-
lated in real-time on the HiL simulator will be:

• Driver (modified)

• fake Engine (modified)

• Transmission

• Axle (modified)

• Car

Some more details on the kind of modification applied
will be given later in Section 3.2.

3.1.2 The “right” control strategy

The second question is bit harder to answer. Depend-
ing on the used test-bench system there might differ-
ent control strategies available. A control strategy de-
fines the kind of signals with which the test-bench
system is controlled. In our case we have the choice
of controlling the dynamometer with either a torque
signal (M for moment of torque) or a speed signal
(n). The engine is always controlled via the pedal
value source (α). These control strategies are there-
fore called M−α- or n−α-control. Depending on the
operation mode one is more preferable to the other.
In our case the drive line simulation model includes an
automatic gear transmission with a torque converter.
This hydraulic torque converter connects the engine
outlet (pump) with the transmission inlet (turbine). A
speed difference of the pump and the turbine of the
converter yields a transfer torque and vice-versa. So
whenever there is a torque on the load side (transmis-
sion) the inlet speed of the torque converter can be
computed. So we can use the speed signal to control
the test-bench system (the dynamometer to be more
precise) at all times of simulation.

If we would use a manual shift gearbox a speed signal
for controlling the dynamometer of the test-bench can
not be obtained so easily for certain modes of opera-
tion. One of these modes being the shifting of the gear.
When a gear is shifted the clutch (which is located
between the engine and the transmission) is opened.
When the clutch is opened it is difficult to determine
the speed of the “free spinning” engine side of the
clutch. To do this correctly some parameters such as
the internal friction and the inertia of the engine have
to be known in detail. Obtaining these parameters is
not very easy (if not sometimes impossible) and comes
with a lot of measureing effort. On the other hand the
applied load torque of the engine side of the clutch dur-
ing gear shift is known to be zero (this is true when ne-
glecting the inertia of the clutch for now). So by using
the M−α-control strategy whilst shifting the gear we
can overcome the uncertainties of not knowing the cor-
rect control speed (as needed by n−α-control). Now
the reader may ask why not using M−α-control dur-
ing all states of operation?
One reason for this is the safety issue that it is always
good to know and to check the speed set-point rather
than handing over a torque set-point from which a ac-
celeration or deceleration will result. A too big torque
request and hence a too big acceleration might lead to
speed too high for the test-bench system even before
the system itself can react. Obviously things like this
can be avoided by an appropriate design of the test-
bench system. But in most cases this leads to a very
complicated control structure. So in practice one uses
the M− α control strategy for modes where n− α-
control is not suitable. See [1] for more on this topic.

3.1.3 How to synchronise

Section 2.2 described in short the coupling between
the test-bench system and the real-time computer on
which the drive line model is running. We will give a

277

Synchronising a Modelica Real-Time Simulation Model with a Highly Dynamic Engine Test-Bench System

The Modelica Association Modelica 2006, September 4th – 5th

short example to get a better understanding of how the
whole synchronisation process between the test-bench
system and the drive line model works.
At first the the test-bench engine is started and put
into idle mode (this can differ if someone is interested
in measurement results of a “cold-start and run” cy-
cle). In our example the engine is now running in
idle speed and controlled by the control software of
the test-bench system. In the meantime the drive line
simulation model was loaded into the HiL-simulator
(see again Fig. 2). For now both the test-bench sys-
tem and the HiL-simulator are already communicating
with each other via UDP. But until now they are just
“listening” to each other. The next step would be to
connect the simulation model to the test-bench system
so that the drive line model controls the pedal value
source α of the real engine and the set-point of the
torque or the speed (depending on the control strategy)
of the dynamometer. But before this connection can be
made the difference of the control signals (i.e. α,n,M)
between the measured values of the test-bench system
and the calculated values of the simulation model may
not exceed a certain boundary. To ensure this we use
the Boolean signal syncTBS6 which when activated
forces the drive line model to accept the engine torque
and engine speed as input set-point for the torque con-
verter (or clutch in case of a manual shift transmis-
sion). This way the drive line model is running at the
same speed like the engine regardless of the measured
input torque from the engine.
Once the engine and the drive line model are running
at the same speed the drive line model can take over
the control of the engine. This is done by a soft-
ware switch of the test-bench system. After setting the
syncTBS signal to “false” the HiL simulator controls
now the engine via the pedal value source α and the
speed signal n or the torque signal M, depending on
the control strategy.

3.1.4 Interface signals

Up to now we should have identified all necessary in-
terface signals. These depend also on the used con-
trol strategy. To keep a certain degree of freedom in
terms of which control strategy is used, we choose to
supply interface signals suitable for both, M−α- and
n−α-control. We also need some extra signals to con-
trol the Dymola R© model embedded in the real-time en-
vironment. These extra signals are the signal to start
the driving cycle, the signal to switch between the two

6= synchroniseTestBenchSystem

control strategies and the signal to switch the drive line
model into synchronisation mode.
It follows a list of the the inputs used (extra signals are
marked with ‘*’).

Inputs to the simulation model:

• speed of the test-bench engine [rpm]

• torque of the test-bench engine [Nm]

• start of driving cycle [boolean]*

• n−α-control active [boolean]*

• synchronize model to test-bench [boolean]*

As outputs again we needed some additional signals to
display the current state of the simulation model (again
marked with ‘*’). These are optional and not required
by the test-bench system.

Outputs to the test-bench system:

• drive line speed [rpm]

• drive line torque [Nm]

• pedal value source α [p.u.]

• vehicle speed [km/h]*

• cycle speed set-point [km/h]*

• selected gear*

3.2 Modification of simulation models for
HiL

The previous section showed the interface signals nec-
essary to couple the HiL simulator(drive line model)
to the test-bench system. Now this section will give
some more more details in which way the drive line
model had to be adapted in order to be able to provide
the interface signals or to react accordingly to them.
The Driver, the Engine and the Axle models had to
be modified:

3.2.1 Modifications to the driver model

The Boolean signal startCycle had to be added
in order to start the driving cycle at a given time.
This means that the original CombiTimeTable block
from the Modelica Standard Library (MSL 2.2.1)
had to be replaced by the two blocks Timer and
CombiTable1Ds (see Fig. 4).

278

D. Winkler, C. Gühmann

The Modelica Association Modelica 2006, September 4th – 5th

Figure 4: Picture of TriggerdDriver model

Finally the driving cycle table had to be adjusted as
well because CombiTable1Ds only accepts monoton-
ically increasing data vectors. The Timer block on the
other hand accepts two different function values at one
time instant.

3.2.2 Modifications to the engine model

Since the engine exists as hardware part within our
HiL simulation we only need some kind of “fake” en-
gine. This “fake” engine will be used as interface to
the torque or speed signal coming from the test-bench
system. We did not want to break with the drive line
architecture of the Power Train Library. There-
fore a FakeEngine model was created based on the
PowerTrain.Engine frame (see Fig. 5).
The governor had to be removed since the test-bench
system includes an idle-speed control of its own. Also
the torque measurement of the drive line torque is done
in this model.
The FakeEngine model includes the subcompo-
nent TBSsyncEngineMalphaN instead of the original
BaseEngine subcomponent (see Fig. 6).
In the model TBSsyncEngineMalphaN all the syn-
chronisation and control strategy functions are imple-
mented.
When the signal syncTBS is active both coupling
clutches Malpha and Nalpha are closed making sure
that the drive line synchronises to the test-bench sys-
tem. When the synchronisation process is complete
the syncTBS signal can be deactivated. Depending

Figure 5: Picture of the FakeEngine model

Figure 6: Picture of the TBSsyncEngineMalphaN

model

on the state of the signal nAlphaActive either the
Malpha or the Nalpha clutch stays closed after deac-
tivating syncTBS. To avoid sudden changes (which in
turn can cause instabilities) the closing and opening
process of the clutches is done via triggered ramp sig-
nals.
The engineTorque signal is multiplied with zero as
long as the M−α control strategy is activated. This
is to avoid a constant speed-up of the left hand side of
the then open n−α coupling clutch.

3.2.3 Modifications to the axle model

When simulating the drive line model with the
CarResistance2 component of the Power Train

Library included we noticed a phenomenon. At
the beginning of the simulation the CarResistance2

model calculates a small erroneous torque which is ap-
plied at the axle flange. This in turn causes a small de-
celeration of the vehicle model (i.e.the car rolls back-

279

Synchronising a Modelica Real-Time Simulation Model with a Highly Dynamic Engine Test-Bench System

The Modelica Association Modelica 2006, September 4th – 5th

wards). This backward rolling behaviour causes the
real-time HiL model to become unstable. A quick so-
lution to avoid this was to activate the brakes as long
as the driver is not starting to drive (see Fig. 7).

Figure 7: Picture of the ModifiedAxle model

4 HiL simulation results

Finally after all necessary interface signals have been
defined and the modification to the drive line model
has been done it is time to test the model with the test-
bench system. In order to generate real-time capable
code the Dymola R© model is included in a Simulink R©

model as a wrapper using the DymolaBlock. The re-
sulting Simulink R© model is then arranged to fit the
real-time structure of RT-LAB R©. More on one how
to do a real-time simulation using Dymola R© in con-
nection with RT-LAB R© can be found in [5].
Figure 8 shows the velocity in km/h and the engine
speed in rpm over time of the NEDC excerpt when
simulated online. By online we mean the Dymola R©

model runs in real-time on the HiL simulatorand com-
municates with the test-bench system via the UDP/IP
interface. Since we are using a automatic gear trans-
mission the n−α control strategy was used during the
simulation (i.e. nAlphaActive=true).

4.1 Synchronisation

To demonstrate the synchronisation process a plot of
roughly the first 30 seconds is displayed in Fig. 9.
Prior coupling the HiL simulator and the test-bench
system together we need the drive line speed of the
simulation model and the engine speed of the test-
bench to be the same. We can divide process in Fig. 9
into three phases.

0 50 100 150 200 250 300 350 400 450 500
−50

0

50

100

150
Online HiL simulation of NEDC (excerpt)

time [s]

ve
hi

cl
e

sp
ee

d
[k

m
/h

]

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

time [s]

en
gi

ne
 s

pe
ed

 [r
pm

]

Figure 8: Online simulation of NEDC cycle (excerpt)

Phase 1: At the start the syncTBS signal is false.
This means that the drive line model receives
the torque signal of the test-bench engine. As
mentioned before the test-bench engine is idling
at the beginning. The torque is something near
zero Nm. This small torque causes now the
free-spinning torque converter (control lever po-
sition is still “Neutral”) to accelerate slightly (see
driveLineSpeed in Fig. 9).

Phase 2: After about 10 seconds the syncTBS signal
is activated. Now the drive line model is forced
to the speed of the test-bench engine. Within
this phase the test-bench engineer also activates
a switch on the test-bench system to hand over
the control to the HiL simulator (i.e. the coupling
process is completed and n and α are now pro-
vided by the drive line model).

Phase 3: We can now deactivate the syncTBS sig-
nal once the two systems are coupled. Every-
thing is now ready to start the driving cycle (i.e.
startCycle=true). The synchronisation pro-
cess is therefore complete.

5 Conclusions

In this paper we have demonstrated the process of syn-
chronising a standard Modelica R© model to a highly
dynamic engine test-bench system. Different inter-
face signals had to be added to the original simulation
model so it can communicate with the test-bench sys-
tem. This led to an adaptation of the simulation models

280

D. Winkler, C. Gühmann

The Modelica Association Modelica 2006, September 4th – 5th

5 10 15 20 25 30

600

800

1000

time [s]

sp
ee

d
[r

pm
]

Process of synchronisation

5 10 15 20 25 30

false

true

false

true

driveLineSpeed
engineSpeed

syncTBS

startCycle

Figure 9: Synchronisation process in detail

which was presented in detail. In the end the simula-
tion results of a working synchronisation process were
shown.
The test-bench system can be used to simulate a vari-
ety of drive line models. Starting from conventional
drive lines up to drive lines with a double-clutch trans-
mission and even a hybrid electric vehicle (HEV) drive
line. At all times the switching between the two dif-
ferent control modes (i.e. n−α and M−α) is a very
delicate issue especially when done “online”.
Our Department will continue to investigate the chal-
lenges of HiL simulation in connection with the
engine-test bench. The focus lies hereby on the sim-
ulation of hybrid electric vehicles power trains. The
test-bench system gives here the opportunity to gain
measurement data of fuel consumption and exhaust-
gas emissions for different HEV applications.

References

[1] D. Winkler, C. Gühmann, B. Barzantny, and
M. Lindemann, “Model Based Calibration of

ECUs Using a Highly Dynamic HiL Test Bench
System,” in Design of Experiments (DoE) in En-
gine Development II (K. Röpke, ed.), vol. 49 of
Haus der Technik Fachbuch, (Berlin), pp. 268–
277, Haus der Technik Essen, expert verlag, June
2005.

[2] Modelica Association, “Modelica is a free mod-
elling language.”

[3] H. Elmqvist, S. Mattsson, H. Olsson, J. Andreas-
son, M. Otter, C. Schweiger, and D. Brück, “Real-
time Simulation of Detailed Automotive Models,”
in Proceedings of the 3rd International Modelica
Conference, pp. 29 – 38, 2003.

[4] M. Otter, C. Schweiger, and M. Dempsey, Pow-
erTrain Library 1.0. German Aerospace Center
(DLR), Oberpfaffenhofen, 1.0 ed., 2002.

[5] Dynasim AB, Dymola 5 - User Manual. Lund,
2004.

281

Synchronising a Modelica Real-Time Simulation Model with a Highly Dynamic Engine Test-Bench System

The Modelica Association Modelica 2006, September 4th – 5th

282

D. Winkler, C. Gühmann

 Session 3c

The Modelica Association Modelica 2006, September 4th – 5th 283

Session 3c

Language, Tools and Algorithms 3

Session 3c

The Modelica Association Modelica 2006, September 4th – 5th 284

The Modelica Association Modelica 2006, September 4th – 5th

A Numeric Library for Use in Modelica Simulations with
Lapack, SuperLU, Interpolation and MatrixIO

Anders Sandholm\,],∗ Peter Bunus\,† Peter Fritzson\,‡

\ PELAB - Programming Environment Lab
Dept. Computer Science, Linköping University

S-581 83 Linköping, Sweden

] eHealth Institute
Dept. Health and Behavioural Sciences, University of Kalmar

Kalmar, Sweden

Abstract

This paper introduces a numerical Modelica library
that provides access to some of the most well-known
powerful libraries for numerical methods. Our ap-
proach has been to develop wrappers that allow Mod-
elica users easy access as functions both from textual
and graphical Modelica environments [9], [10]. This
library also includes additional external functions with
corresponding Modelica wrappers to interpolate data
and to read/write matrix data from/to files.
Keywords: Matrix, Lapack, SuperLU, Matrix Market
File Format, Harwell-Boeing Matrix Format, Interpo-
lation

1 Introduction

One important area of research is developing and im-
plementing fast numerical methods that can be used
to simulate physical phenomena. Researchers who
are working with simulation usually do not want to
spend time and resources implementing, debugging,
and maintaining new numerical libraries. Instead they
want to use existing libraries that are recognized as sta-
ble and efficient.
Numerical methods can be divided into different areas
such as: optimization, solution of ordinary and partial
differential equations, mesh generation, numerical in-
tegration, solution of nonlinear equations, solution of

∗andsa@ida.liu.se
†petbu@ida.liu.se
‡petfr@ida.liu.se

linear equations, eigenvalue problems, curve and sur-
face fitting, interpolation, etc. Finite element methods
is a well-known group of methods for solving PDE
problems, which typically are rather computation in-
tensive.
This paper introduces a new wrapper library called
Numeric intended for Modelica users who want to use
standard common numeric libraries as well as methods
and routines for saving and loading matrixes to/from
files.

1.1 Small Example of Using the Library

Assume that the user wants to calculate the eigen-
values for an N-by-N real nonsymmetric matrix
stored in the Matrix Market file format. The first
task would be to load the matrix file, here called
matrix.mtx. This is done by using the functions
getMatrixSize and getMatrixFile where the first one
returns the size of the matrix and the other one re-
turns the matrix data, both taking the file name as
a string argument. Functions for loading and sav-
ing matrices in Matrix Market is located in package
Numeric.MatrixIO.MatrixMarket along with other
Matrix Market functions.
Below Modelica pseudo code is shown for loading the
matrix.

Integer n = getMatrixSize("matrix.mtx");
Real A[n,n];
A=getMatrix("matrix.mtx");

More information about loading and saving data can
be found in the MatrixIO section. For the calculation
of eigenvalues Lapack [2] containsa function dgeev

285

A Numeric Library for Use in Modelica Simulations with Lapack, SuperLU, Interpolation, and MatrixIO

The Modelica Association Modelica 2006, September 4th – 5th

that calculates the eigenvalues along with the left and
right eigenvectors of a general matrix. The dgeev rou-
tine uses double precision but the Lapack library also
contains a corresponding function for single precision
calculations, named sgeev.
In the library outlined in this paper all Modelica wrap-
per functions for Lapack are stored in subpackages.
The wrapper for the dgeev function is located in
Numeric.Lapack.SimpleDriver, for further detail se
the section dealing with the structure of the library.
Below Modelica pseudo code is shown that outlines
the call to the calcEigenValGeneralMatrix dgeev
which uses the Lapack dgeev function for the calcu-
lations of the eigenvalues.

Real eigenvReal[size(A, 1)];
Real eigenvImag[size(A, 1)];
Real eigenVectors[n,n];
(eigenvReal, eigenvImag,
eigenVectors) =
calcEigenValGeneralMatrix_dgeev(A1);

The Modelica wrapper function
calcEigenValGeneralMatrix dgeev allows the
user to specify more input data and receive more
information from Lapack than is shown here, which is
further outlined in the Lapack section.

2 Structure of the Numeric Library

The design of this library focuses on two major issues:

• It should be easy to locate libraries and functions

• The package should be easy to maintain with all
the external library dependencies

• The package structure should allow easy addi-
tion of new external libraries and native Modelica
functions

This library contains both functions that are imple-
mented natively in Modelica and functions that act as
wrappers to C and FORTRAN 77 functions [9],[1].
The top level structure of the Numeric library can be
seen in Figure 1 with the subpackages Lapack, Su-
perLU, MatrixIO, and Interpolation

2.1 The Structure of the Numeric Package

The subpackages Lapack and SuperLU contain Mod-
elica wrapper functions that call corresponding exter-
nal functions in each external library. The MatrixIO
subpackage is further divided into subpackages that
implement different matrix file formats for saving and

Numeric

Lapack SuperLU MatrixIO Interpolation

Figure 1: Structure of numeric package

loading matrix data. The Interpolation subpackage
contains subpackages with methods both developed
natively in Modelica code but also Modelica wrapper
functions to interpolation library routines.

2.2 Structure of the Lapack Subpackage

Lapack

SimpleDriver ExpertDriver ComputionalDriver Examples

Figure 2: Structure of the Lapack subpackage and it
subpackages

The Lapack subpackage can be seen in Figure 2. This
package contains four subpackages, SimpleDriver, Ex-
pertDriver, ComputionalDriver and Examples. For
more information about SimpleDriver, ExpertDriver
and ComputianalDriver se the Lapack section. In the
Examples library different examples have been im-
plemented which explain how the Lapack subpackage
can be used in Modelica code. These examples are
mostly constructed for users who know the Modelica
language but are new to the Lapack library.

2.3 Structure of SuperLU package

The SuperLU subpackage has been divided into li-
brary subpackages, Driver, Computation, Utility as
well as a section called Examples that has been added.
The packaged structure can be view in Figure 3. For
detailed information about the Driver, Computation
and Utility subpackages se the SuperLU subpack-
age. In the Example subpackage to SuperLU different
Modelica examples have been implemented that show
how the SuperLU library can be used

286

A. Sandholm, P. Bunus, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

SuperLU

Driver Computation Utility Examples

Figure 3: Structure of Lapack package with its sub-
packages

2.4 Structure of MatrixIO package

MatrixIO

MatrixMarket HarwellBoeing Examples

Figure 4: Structure of Lapack package

The MatrixIO packages implement support for differ-
ent matrix file formats. Currently the Matrix-Market
and the Harwelll-Boeing subpackages are supported
with functions for saving and loading dense and sparse
matrix data. An overview of the MatrixIO package can
be viewed in Figure 4. For more detailed information
about the Matrix Market and the Harwell-Boeing se
corresponding sections. Examples that show how ma-
trix data can be loaded and saved are implemented in
the Examples subpackage.

2.5 Structure of the Interpolation subpack-
age

Interpolation

CubicSpline Examples

Figure 5: Structure of the Interpolation subpackage

The Interpolation subpackage is designed with the
same idea as the other packages. Currently the sub-

package is divided into two subpackages, CubicSpline
and Examples, se Figure 5. The CubicSpline subpack-
age contains both native Modelica function implemen-
tations and Modelica wrapper functions for use of ex-
ternal cubic spline function implemented in C code.
The Examples subpackage contains easily understand-
able examples that show both how the Modelica imple-
mented versions and the external version can be called
from Modelica code.
For further details about cubic spline se the Interpola-
tion subpackage section.

3 Library Design Issues

As already mentioned, the main idea is to create a
Modelica package where different numerical methods,
format handling functions, and solvers can be readily
available for use from Modelica. Several design issues
have been addressed on how to handle documentation
from the external libraries and variable nameing in the
external functions. Without the library documentation
the package would be hard to use and a user who
is familiar with the corresponding non-Modelica
package will be confused if the input/output variable
has changed name in the Modelica wrapper function.

3.1 Naming Conventions

The Modelica Numeric library uses function and vari-
able names from the original package as a postfix part
of the name along with a more explanatory Java-style
name comprising the beginning of the name. This will
give new users more understanding of functions and
variables, without reading the detailed documentation
for each variable. Users who are familiar with the
corresponding non-Modelica libraries will recognize
functions and variables due to the postfix part of the
name.
An example is the Modelica wrapper function
calcEigenValGeneralMatrix dgeev which is intro-
duced in the Introduction part of this paper. The first
part of the function name tells the user that it calculates
the eigenvalues for a general matrix and the postfix
part specifies that the dgeev function is used. The same
naming convention is used for variables. The dgeev
function has a variable named JOBVL that specifies
it the left eigenvalues should be calculated or not. In
the Modelica wrapper function this variable is named
calcLeftEigenV_JOBVL which are a more self
explanatory Java-style name along with the Lapack

287

A Numeric Library for Use in Modelica Simulations with Lapack, SuperLU, Interpolation, and MatrixIO

The Modelica Association Modelica 2006, September 4th – 5th

variable name as a postfix part of the name.

3.2 Documentation

The issue about documentation has been ad-
dressed by including the external function docu-
mentation into the Modelica wrapper function doc-
umentation node. Below the first part of the
documentation for the Modelica wrapper function
calcEigenValGeneralMatrix dgeev is shown.
First in the documentation comes a specification of
the difference between the native function call and
the Modelica wrapper function call. In the Modelica
wrapper function the LDA, LDVL and LDVR vari-
ables are not needed, and therefore have been removed
from the Modelica interface. After the library anno-
tation the Fortran function declaration follows along
with version and argument documentation. Further
down comes the purpose and argument documenta-
tion. In this example only four arguments are shown.

annotation(Documentation(info="Lapack

Numerical Library annotation
Variables that has been excluded
in Numerical Library

LDA = size(A,1);
LDVL = size(A,1);
LDVR = size(A,1);

#####################################

SUBROUTINE DGEEV(JOBVL, JOBVR, N, A,
LDA, WR, WI, VL, LDVL, VR,
LDVR, WORK, LWORK, INFO)

-- LAPACK driver routine (version 3.0)
Univ. of Tennessee, Univ.
of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National
Lab,and Rice University
December 8, 1999

.. Scalar Arguments ..
CHARACTER JOBVL, JOBVR
INTEGER INFO, LDA, LDVL, LDVR,
LWORK, N
..
.. Array Arguments ..
DOUBLE PRECISION A(LDA, *),
VL(LDVL, *), VR(LDVR, *),
WI(*), WORK(*), WR(*)

..

Purpose

=======

DGEEV computes for an N-by-N real
nonsymmetric matrix A, the
eigenvalues and, optionally,
the left and/or right eigenvectors.

The right eigenvector v(j) of A
satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate
of u(j).

The computed eigenvectors are
normalized to have Euclidean norm
equal to 1 and largest component real.

Arguments
=========

JOBVL (input) CHARACTER*1
= ’N’: left eigenvectors of
A are not computed;
= ’V’: left eigenvectors of
A are computed.

JOBVR (input) CHARACTER*1
= ’N’: right eigenvectors of
A are not computed;
= ’V’: right eigenvectors of
A are computed.

N (input) INTEGER
The order of the matrix A. N >= 0.

A (input/output) DOUBLE PRECISION
array, dimension (LDA,N)
On entry, the N-by-N matrix A.
On exit, A has been overwritten.

4 Lapack

Lapack is one of the most widely used libraries for
solving many common numerical problems in lin-
ear algebra. The library includes routines for solv-
ing systems of simultaneous linear equations, find-
ing least square solutions of overdetermined sys-
tems of equations, solving eigenvalue problems, and
solving singular value problems [2]. The Modelica
Numeric.Lapack sublibrary is divided into three dif-
ferent parts: Basic Routines, Advanced Routines and
Computational Routines.

288

A. Sandholm, P. Bunus, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

• Basic Routines solves a specified problem with a

few options. Examples of functionality in basic
routines are finding the eigenvalues of a matrix
or solving a set of linear equations.

• Advanced Routines allows the user to control the
calculations more by taking more options and re-
turning more information than the simple driver
routines. An example can be calculation of error
bounds or normalizing matrices to improve accu-
racy.

• Computational Routines shall more be seen as
routines designed to perform a specific task, such
as a LU factorization or reduction of a real sys-
tem matrix to tridiagonal form. Usually these
functions are used to construct more advanced
functions in the Basic and Advanced routines li-
braries. The routines are categorized in systems
of linear equations, eigenvalue problems, orthog-
onal factorization, and singular value decomposi-
tion.

4.1 Example

An example of the simple driver routines is the dgeev
function that calculates right and left eigenvalues and
eigenvectors for an N-by-N real nonsymmetric matrix.
This calculation can be described as finding the eigen-
values λ and corresponding eigenvectors z6=0 as equat-
tion (1) and (2) describe.

Az = λz (1)

A = AT where A is real (2)

When all eigenvalues and eigenvectors have been cal-
culated equation (3) is solved.

A = ZΛZT (3)

Where Λ is a diagonal matrix whose diagonal elements
are the eigenvalues, Z is an orthogonal matrix whose
columns are the eigenvectors [3].
As described previously the Model-
ica wrapper function for dgeev is called
calcEigenValGeneralMatrix dgeev and is shown be-
low, where the documentation part has been removed
in this example.

function calcEigenValGeneralMatrix_dgeev

input Real A[:, size(A, 1)];
input String calcLeftEigenV_JOBVL = "N"

"Left eigenvectors of A
are not computed";
input String calcRighEigenV_JOBVR = "V"
"Right eigenvectors of A
are computed";
output Real eigenReal_WR[size(A, 1)]
"Real part of eigenvalues";
output Real eigenImag_WI[size(A, 1)]
"Imaginary part of eigenvalues";
output Real leftEigenVectors_VL
[size(A, 1),size(A, 1)]
"Left Eigenvectors";
output Real reightEigenVectors_VR
[size(A,1), size(A,1)]
"Right Eigenvectors";
output Integer INFO
"=0 successful computation";

protected
Integer N=size(A, 1)
"The order of the matrix";
Integer LWORK=10*N
"MAX size if JOBVL = V or
JOBVR = V LWORK >= 4*N";
Real WORK[LWORK];

external "Fortran 77" dgeev(
calcLeftEigenV_JOBVL, calcRighEigenV_JOBVR,
N, A, N, eigenReal_WR, eigenImag_WI,
leftEigenVectors_VL, N,
reightEigenVectors_VR, N,
WORK, LWORK, INFO)
annotation (Library="lapack");

end calcEigenValGeneralMatrix_dgeev;

The first argument is the Matrix A which the eigenval-
ues and eigenvectors are to be calculated for. The fol-
lowing two arguments, calcLeftEigenV JOBVL and
calcRighEigenV JOBVR, determine if the right or/and
left eigenvalues/eigenvectors are to be calculated. In
the default setting only the right eigenvalues are calcu-
lated.
In the output section the eigenvalues variable comes
first then the left and right eigenvectors and last an in-
formation flag that tells if the calculation could be per-
formed.
Variables that don’t add to the functionality of the
Modelica wrapper function but are needed for the La-
pack implementation have been placed in the protected
section. For the function outlined above the working
variables LWORK and WORK have been placed here,
along with the variable N that specifies the order of the
matrix.

289

A Numeric Library for Use in Modelica Simulations with Lapack, SuperLU, Interpolation, and MatrixIO

The Modelica Association Modelica 2006, September 4th – 5th

5 SuperLU

For solving large, sparse, nonsymmetric systems of
linear equations the SuperLU library is commonly
used [11]. The SuperLU library is available either in C
or in Fortran code. Here our Modelica implementation
uses the Fortran interface for maximum performance.
The SuperLU library starts by performing an LU
decomposition [15] with partial pivoting and trian-
gular systems solved through forward and backward
substitution.
The LU decomposition can handle non-square matri-
ces, but it is only for square matrices the triangular
solver is used. For improving backward stability
interactive refinement subroutines are used. The
library also contains routines provided to equilibrate
the system, estimate the condition number, calculate
the relative backward error and estimate error bounds
for re-fined solutions.
The SuperLU subpackage is divided into three parts:
Driver, Computation, and Utility. In the Driver
subpackage functions for solving systems of linear
equation are provided. In the Computation subpack-
age specified computational routines are provided
instead of a complete driver as in the Driver package.
Using this pack-age the user can develop a new com-
putation driver in the Modelica environments. The
last package is the Utility subpackage that supplies the
user with routines for creating and destroy SuperLU
matrices.

5.1 Examples

Take the function dgstrf as an example in the
Numeric.SuperLU.Computational sublibrary. It
performs a LU factorization of a general sparse m-
by-n matrix, A, using partial pivoting with row inter-
changes. Factorization has the form of equation (4)

Pr ∗A = L∗U (4)

where Pr is a row permutation matrix, L is lower tri-
angular with unit diagonal elements and U is upper
triangular. The documentation for the function call
dgstrf can be found in the SuperLU documentation
[11], [12].

6 Interpolation

In many engineering and science areas data is gath-
ered either from sampling real observations or by sim-

ulations where data is created at certain time intervals.
Interpolation is a technique which uses the sequence
of known values to estimate the value of an unknown
point [14]. Given a sequence of known sample points,
xk, and the corresponding values, yk, the interpola-
tion tries to fit a function, f , that which when given
an value in xk, returns the corresponding value in yk,
shown in equation (5).

f (xk) = yk where k = 1,2,3,n (5)

This method of trying to find f is commonly known as
curve fitting and the function f is then called the inter-
polant.
When calculating a value for an unknown data point,
α, a control has to be made that ,α, lies inside the se-
quence of known values, se equation (6).

min(xk)≤α≤max(xk) (6)

No interpolation can be performed if the data point is
lying outside the sequence xk. To calculate the inter-
polated value the point is inserted in the interpolation
function, f (α) and the function is evaluated. In the
Numeric package a cubic spline interpolation scheme
has been implemented both in native Modelica code
and by using external library. The external library can
be reached through a Modelica function that acts as a
wrapper.

6.1 Cubic Spline

A cubic spline is a function that is defined as a piece-
wise third-order polynomial function which passes
through a set of points. To create a solvable system a
boundary condition is commonly placed on the second
derivate of each polynomial end point. If the bound-
ary condition is that the second derivative is equal
to zero the spline is commonly called a natural cu-
bic spline which gives a tridiagonal system that eas-
ily can be solved. Different boundary conditions can
be used for creating other spline interpolation scheme
[4] [7]. Suppose that the function f is to be inter-
polated, given by the data (xi, fi), i = 0,,N where
fi = f (zi) and zi form an order of sequence such as
a = x0 < x1 < ... < xN = b. From this the cubic inter-
polation function S∈C2[a,b] can be described for each
interval [xi,xi+1] as equations (7) and (8) along with
the fact that the polynomials are smoothly adjusted
(10) and that the interpolation condition (13) is sat-
isfied [13].

290

A. Sandholm, P. Bunus, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

S(x)≡Si(x) (7)

Si(x) = ai,0 +ai,1(x− xi)

+ai,2(x− xi)2 +ai,3(x− xi)3 (8)

for x∈[xi,xi+1] , i = 0,,N−1 (9)

Sr
i−1(xi−0) = Sr

i (xi +0) (10)

i = 1, ...,N−1 (11)

r = 0,1,2 (12)

Sr
i−1(xi−0) = Sr

i (xi +0) (13)

i = 1, ...,N−1 (14)

r = 0,1,2 (15)

7 MatrixIO

While working with numerical applications the ability
to save and load matrix data in an efficient file format
is often needed. Here we decided not to create our
own file format but rather to build in support for the
most common formats. This gives the user the ability
to work with existing data and to easier exchange data
with other users. We have chosen to support the Matrix
Market [6] [5] and Harwell-Boeing [8] formats.

7.1 Harwell-Boeing Matrix Format

The Harwell-Boeing format is today one of the most
popular text-file exchange formats for sparse matrixes.
The file format starts with a header block where the
first line contains the title and an identifier. The sec-
ond line contain the number of lines for each of the
data blocks and the total number of lines in the file,
excluding the header. The third line contains a three
character string denoting the matrix type and the num-
ber of rows and column entries. The fourth line con-
tains the variable Fortran format for the following data
block and the fifth line is only present if there is a right
hand side of the matrix. The data is stored in an 80-
column, fixed length format where each matrix begins
with a multiple line header block, which is followed
by two, three or four data blocks.
Using this information the correct storage can be allo-
cated before the actual matrix data is accessed [8].

7.2 Matrix Market Format

The Matrix Market format provides a powerful and
simple file format for storing and exchanging matrix
data. The format is based on an ASCII file format
that is based on a collection of affiliated formats which
share certain design elements. So far, we have fo-
cused on supplying routines for accessing two of these
design elements, general sparse matrices and general
dense matrices.
In the general sparse matrices version only the non-
zero entries are stored, and for each value the cor-
responding matrix coordinates is stored. For general
dense matrices the array format is the most efficient,
and the data is provided in a column-oriented order.
In both of the formats an arithmetic field is defined
that specifies the matrix entries, i.e, real, complex, in-
teger, pattern. The format also specifies the symmetry
structure such as general, symmetric, skew-symmetric
or Hermitian [6].

7.3 Examples

The easiest way to read a Matrix Market file is using
the functions getMatrixSize and getMatrixFile.
getMatrixSize takes the file name as argument and
reads the size of the matrix so that the a matrix
with the correct size can be allocated. The function
getMatrixFile also takes the filename as argument and
reads the matrix data and store it in the corresponding
data structure. A Modelica pseudo code example can
be seen below where a matrix is loaded from a file
called matrix.mtx.

Integer n = getMatrixSize("matrix.mtx");
Real A[n,n];
A=getMatrix("matrix.mtx");

During the process of reading the file and storing it
in the MatrixMarket format messages are provided
through the ModelicaMessage() function.

Acknowledgements

This work was supported by Kalmar eHälsoinstitut, by
Vinnova in the GRIDModelica project, and SSF in the
VISIMOD project.

References

[1] The Modelica Language specification version
2.2. The Modelica Association, March 2005.
http://www.modelica.org.

291

A Numeric Library for Use in Modelica Simulations with Lapack, SuperLU, Interpolation, and MatrixIO

The Modelica Association Modelica 2006, September 4th – 5th

[2] E Anderson, Z Bai, C Bischof, J Demmel, J Don-

garra, J Du Croz, A Greenbaum, S Hammarling,
A McKenney, S Ostrouchov, and D Sorensen.
LAPACK Users’ Guide. 1995.

[3] George B. Arfken, Hans J. Weber, and Hans-
Jurgen Weber. Mathematical Methods for Physi-
cists. Academic Press, 1985.

[4] Richard H. Bartels, John C. Beatty, and Brian A.
Barsky. An Introduction to Splines for Use in
Computer Graphics and Geometric Modeling.
Morgan Kaufmann, 1995.

[5] Ronald F. Boisvert, editor. The Matrix Market: A
Web Resource for Test Matrix Collections, Lon-
don, 1997. Chapman & Hall.

[6] Ronald F. Boisvert, Roldan Pozo, and Karin
Remington. The matrix market exchange for-
mats: Initial design. Technical Report NIS-
TIR 5935, National Institute of Standards and
Technology, Gaithersburg, MD, USA, December
1996.

[7] Carl De Boor. A Practical Guide to Splines.
Springer, 2002.

[8] Iain Duff, Roger G. Grimes, and John G. Lewis.
Users’ guide for the harwell-boeing sparse ma-
trix collection (Release I). Technical Report TR/-
PA/92/86, CERFACS, October 1992.

[9] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1.
Wiley-IEEE Press, 2004. ISBN 0-471-471631.

[10] Peter Fritzson, Peter Aronsson, Håkan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldami, and
David Broman. The Openmodelica modeling,
simulation, and software development environ-
ment. Simulation News Europe, 44/45, 2005.

[11] John Gilbert James W. Demmel and Xiaoye S.
Li. Superlu users’ guide. Technical Report
UCB/CSD-97-944, EECS Department, Univer-
sity of California, Berkeley, 1997.

[12] John R. Gilbert Xiaoye S. Li James W. Dem-
mel, Stanley C. Eisenstat and Joseph W.H. Liu.
A supernodal approach to sparse partial pivot-
ing. Technical Report UCB/CSD-95-883, EECS
Department, University of California, Berkeley,
1995.

[13] Boris I Kvasov. Methods of Shape-Preserving
Spline Approximation. World Scientific, 2000.

[14] Erik Meijering. Chronology of interpolation:
From ancient astronomy to modern signal and
image processing. volume 90, pages 319–342.
IEEE, March 2002.

[15] William H. Press, Saul A. Teukolsky, William T.
Vetterling, and Brian P. Flannery. Numerical
recipes in FORTRAN (2nd ed.): the art of sci-
entific computing. Cambridge University Press,
New York, NY, USA, 1992.

292

A. Sandholm, P. Bunus, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

Online Application of Modelica Models in
the Industrial IT Extended Automation System 800xA

Rüdiger Franke
ABB AG, Power Technology Systems

Kallstadter Str. 1
68309 Mannheim, Germany

Jens Doppelhamer
ABB Corporate Research

Wallstadter Str. 59
68526 Ladenburg, Germany

Abstract

The Modelica technology and the increasing availabil-
ity of model libraries allow an efficient modeling of
complex dynamic processes. Having a good process
model at hand one might want to apply the model on-
line to improve the operation of the real process. These
online applications range from the generation of high-
level information like performance indices from pro-
cess measurements over the estimation of unmeasured
quantities in a so called soft sensor up to model based
control and online optimization.
This paper discusses the online application of Model-
ica models in an industrial control system. The mod-
els are developed and tested using a standard Model-
ica tool. Afterwards they are imported into the control
system. Here the model variables can be associated
with process signals. This way a model can be initial-
ized with current process values. A numerical solver
performs simulation, estimation or optimization activ-
ities. Solution results can either be used for diagnos-
tics or they can be fed back to the process as manipu-
lated variables.
The Dynamic Optimization system extension has been
developed for the Industrial IT System 800xA. Ex-
ploiting Aspect Object technology, the required func-
tionality for model-based applications can be inte-
grated seamlessly with the control system. Model
based applications can be set up in a modularly struc-
tured way.
The Dynamic Optimization system extension has been
used to deploy different model-based applications. A
Nonlinear Model-based Predictive Controller (NMPC)
for the start-up of steam power plants is discussed as
an example. The overall NMPC application consists of
several model-based activities, including preprocess-
ing of process values, estimation of model states, pre-
diction of optimal operations, and post-processing of
optimization results. A scheduler periodically triggers

these activities online.
Keywords: Modelica, 800xA, Industrial IT, control
system, online optimization, NMPC

1 Introduction

The Modelica technology clearly separates between
model specification and model solution. This way not
only existing models can be used with different tools,
but also different kinds model based activities can be
performed for one and the same model. Such activities
include, besides the solution of initial-value simulation
problems, also the estimation of model parameters, the
optimization of the design of a modeled process and
model-based control.
Also the increasing availability of libraries for fluid
processes is making Modelica more and more suitable
for process applications, see also [5, 8, 4].
Additional things that have to be treated in a real
model based application include the signal exchange
with the process, concepts for security and redundancy
as well as real-time scheduling of model based activi-
ties and the operator user interface.
This paper discusses the integration of dynamic op-
timization with the Industrial IT System 800xA by
ABB, allowing a rapid online deployment of model
based applications once appropriate models and model
based activities have been set up offline.

2 System 800xA overview

The architectural framework for the Industrial IT Sys-
tem 800xA is built upon ABB’s Aspect Object tech-
nology [1]. Aspect Objects relate plant data and func-
tions – the aspects, to specific plant assets – the ob-
jects. Aspect objects represent real objects, such as
process units, devices and controllers. Aspects are in-
formational items, such as I/O definitions, engineering

293

Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA

The Modelica Association Modelica 2006, September 4th – 5th

Figure 1: Plant Explorer Workplace showing the Functional Structure of an NMPC.

drawings, process graphics, reports and trends that are
assigned to the objects in the system.
Aspect Objects are organized in hierarchical structures
that represent different views of the plant. One object
may be placed multiple times in different structures.
Examples for different types of structures are:

Functional Structure: Shows the plant from the pro-
cess point of view.

Location Structure: Shows the physical layout of
what equipment is located where in the plant.

Control Structure: Shows the control network in
terms of networks, nodes, fieldbuses, and sta-
tions.

The idea of placing the same object in multiple struc-
tures is based on the IEC standard 1346 [9, 2]. A con-
troller is a typical example: the real controller is rep-
resented by an Aspect Object. This object is placed in
the control structure showing the logical arrangement
of the controller in the control system, in the location
structure showing the actual location, and in the func-
tional structure showing the function of the controller
for the operation of the process.
The Plant Explorer Workplace is the main tool used
to create, delete, and organize Aspect Objects and as-
pects. It is based on a structural hierarchy, similar to
Windows Explorer, as demonstrated in Figure 1. The
object hierarchy is visible on the left hand side of the

window. The upper right pane shows the aspects of an
object and the lower right pane views a selected aspect.

3 Integration of model based control

3.1 Example for a complex model-based con-
trol application

Figure 1 shows how the functional structure is set up
for an Nonlinear Model-based Predictive Controller
(NMPC) using Aspect Object technology and the Dy-
namic Optimization system extension discussed in this
section. Different Aspect Objects represent the major
processing steps of the NMPC algorithm.

1. The Preprocessor reads current measurements,
validates the data, and generates a guess for the
model state. Furthermore a short term history is
assembled.

2. The State Estimator uses the short term history
and estimates the initial model state.

3. The Optimizer predicts the optimal control into
the future, starting from the estimated initial state.

4. The Postprocessor checks optimization results
and communicates set points to the underlying
control system.

294

R. Franke, J. Doppelhamer

The Modelica Association Modelica 2006, September 4th – 5th

Figure 2: Software architecture of the Dynamic Optimization system extension.

An additional scheduler activity periodically triggers
the other activities and supervises their successful
completion.
The state estimator and the optimizer are based on
the same plant model. This model is built efficiently
on available model libraries [5]. Moreover, specific
preprocessor and the postprocessor models are formu-
lated as computational algorithms in Modelica. The
scheduler model is formulated as a state graph [12].
Based on the models, the activities are formulated as
estimation (State Estimator), optimization (Optimizer)
or initial-value simulation (Preprocessor, Postproces-
sor, Scheduler). The Dynamic Optimization system
extension provides the required aspects.

3.2 Dynamic Optimization system extension

Figure 2 shows the Dynamic Optimization system ex-
tension in the context of System 800xA. The frame-
work underlying the Industrial IT System 800xA con-
tains a scalable client-server object oriented database
as one of its key components, seen as Aspect Direc-
tory in Figure 2. This database is generally used to
store configuration data.
The System 800xA provides multiple predefined as-
pects that cover the basic functionality of a control sys-
tem, such as control connection, process graphics and

history logs of process values. Additional functional-
ity is added through system extensions.
The Dynamic Optimization system extension provides
two new aspects: the Model aspect and the Dynamic
Optimization solver aspect. The new aspects allow
the seamless integration of model-based applications.
Moreover a configuration GUI is provided as an add-in
for Microsoft Excel, allowing the efficient engineering
of model based activities. Last but not least the Dy-
namic Optimization service manages the instantiation
of solver activities in online applications.
The model integration exploits the principle of Model-
ica to clearly separate model specification and model
analysis [10]. For the applications conducted so far,
the tool Dymola [3] is used for model editing and
translation. The implementation of the executable
model is treated as a Simulink S-function [13]. The
used solver HQP [6] allows the treatment of different
model based activities, including initial value simula-
tion, estimation of model parameters and initial states
as well as nonlinear optimal control with constraints
on model inputs and outputs.

3.3 The Model Aspect

The model aspect of an aspect object provides applica-
tions with the necessary information to apply a model

295

Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA

The Modelica Association Modelica 2006, September 4th – 5th

based activity in the context of the aspects object. A
model aspect thus augments the aspect object repre-
sentation of a real-world object with model meta-data.
The responsibilities of the model aspect are:

1. Persistent Storage of the model meta-data

2. Exposing a convenient API for the programmatic
retrieval and manipulation of the model meta-
data and

3. Providing a user interface to allow viewing and
manipulating the model meta-data.

The Model aspect does not provide any functionality
nor does it deal with implementation details. Instead
it references an external implementation. In this way
available modeling tools can be applied, such as Dy-
mola, and expensive re-implementation is avoided.

3.3.1 Persistent Storage of the Model Meta-Data

The responsibility of actually storing the model meta
data delegated by the model aspect to the Aspect
Directory, ensuring qualities like security, redun-
dancy and scalability and providing functionality like
backup/restore and import/export of data. The stored
data includes:

• Declaration of model variables in categories (Pa-
rameter, Input, Output, State, Generic),

• Values for model variables, e.g. for parameters,

• References to process signals, e.g. for inputs and
outputs,

• Structural information for hierarchical sub-model
structure,

• Reference to the implementation of the model.

3.3.2 APIs for Retrieval and Manipulation of
Model Meta-Data

The 800xA framework also defines a generic means
of exposing the data of aspect objects: Aspects can
make their data available as a set of named proper-
ties with values of simple types (String, Real, Boolean,
etc). Through these framework defined, generic inter-
faces to aspect properties, the model data can be made
available to generic applications, i.e. non model-based
ones. These generic interfaces were specially designed
to ease access from many programming environments
and languages. As an example, a tool providing im-
port and export of aspect data to and from Excel could

use these generic interfaces. Another key component
of the Industrial IT System 800xA can make data ex-
posed as aspect properties available for clients using
the widely recognized OPC standard for data access.
For the convenience of model based applications, the
model meta-data is also made available in a more
structured way, using collections of complex types for
model variables, their connection to process signals
and other model meta-data. These API can be seen as a
facade of the underlying, lower-level data structure ex-
posed via the generic interfaces described above. Sup-
port for resolving references to process variables espe-
cially suited for modeling applications is added on this
layer.

3.3.3 User Interface Integration

The framework underlying the Industrial IT System
800xA strongly supports user interface integration of
the constituent applications. A consistent look and
feel, support for services like drag-and-drop or copy-
and-paste and the seamless integration of an applica-
tions user interface into workplaces like the Plant Ex-
plorer Tool can be easily achieved based on that sup-
port as well as role based customization and security of
a workplace, i.e. the ability to adapt and restrict the ap-
plications user interfaces depending on the role of the
current user of the system. Based on this framework
features, and analog to the two levels model meta-data
API described above, the model aspect provides three
views of the model meta-data:
The first one reflects the lower-level data structure as
a set of aspect object properties that can be viewed
and individually manipulated (if sufficient permission
is granted). This generic UI component is not specific
to modeling application; it actually ships with the In-
dustrial IT System 800xA Core and is reused by the
model aspect to provide users with a well known view
of the underlying data.
The second view specially presents information about
the model variables in an Excel-like grid. Model vari-
ables can be sorted and filtered by their category (in-
put, output, parameter, state or generic) and associated
with process variables by drag-and-drop of aspect ob-
jects, e.g. from a tree view in a Plant Explorer, and
selection of control connection aspects and properties
from combo boxes in the grid. Features like undo
functionality, sorting and Excel-like auto fill of this
variable table is provided by the underlying, 3rd party,
grid implementation.
Last but not least the third view embeds an Internet
Explorer control that can be configured with an URL.

296

R. Franke, J. Doppelhamer

The Modelica Association Modelica 2006, September 4th – 5th

This view can e.g. be used to launch the modeling ap-
plication Dymola to view the Modelica model graphi-
cally.

3.3.4 Mathematical view on a model

Mathematically, a model has the form of a hybrid dif-
ferential algebraic equation system (hybrid DAE)

0 = F[x(t), ẋ(t),m(t),u(t),z(t),y(t),p, t], (1)

F : IRnx × IRnx × IRnm × IRnu × IRnz × IRny

×IRnp × IR1 7→ IRnx ,

m(t) := G[x(t),m(t),u(t),z(t),y(t),p, t], (2)

G : IRnx × IRnm × IRnu × IRnz × IRny

×IRnp × IR1 7→ IRnm .

Here x denote continuous-time states, m are discrete
modes, u and z are controlled and not-controlled in-
puts, respectively, y are outputs and p are model pa-
rameters. Discrete modes are variables that change
their values only at discrete time instants, so called
event instants te, see [10].

3.4 The Dynamic Optimization solver Aspect

A model can be applied to perform one or more model-
based activities. A second aspect, the Dynamic Op-
timization aspect has been developed to interface a
numerical solver, hold the solver configuration, and
to exchange data between the solver and the control
system. The exchanged data includes: configuration
data, current process values (like sensor values and
controller set-points), and history logs. Predictions are
written back to the control system as history logs with
future time stamps. Each aspect is working with its
own instance of the numerical solver, allowing multi-
ple model-based activities to run at the same time.
The integrated solver HQP is primarily intended for
structured, large-scale nonlinear optimization [6]. It
implements a Sequential Quadratic Programming al-
gorithm that treats nonlinear optimization problems
with a sequence of linear-quadratic sub-problems. The
sub-problems are formed internally by simulating the
model and by analyzing sensitivities. They are solved
with an interior point method that is especially suited
for a high number of inequality constraints, e.g. result-
ing from the discretization of path constraints. See [7]
and [6] for more details about the solver.
Based on the system model (1),(2), several model-
based activities can be formulated and solved numer-
ically over a time horizon [t0, t f]. The treated model
based activities include

• Initial value simulation for specified initial states
x(t0) and model inputs,

• Estimation of model parameters and initial states,

• Nonlinear optimal control with constraints on
model inputs and outputs,

• Steady-state simulation, estimation and optimiza-
tion at one time instant.

An initial-value simulation covers hybrid DAEs
(1),(2). However, optimization and estimation prob-
lems can currently only be solved for a simplified hy-
brid DAE F, G′ of the form:

m(t) := G′[m(t),z(t), t], (3)

G′ : IRnm × IRnz × IR1 7→ IRnm ,

where discrete modes do not depend on states or opti-
mized variables.

3.4.1 Simulation Problem

The model behavior is completely determined by the
system equations F and G, if initial states x0 = x(t0),
external inputs u(t),z(t), t ∈ [t0, t f], and parameters p
are given. The outputs y(t), t ∈ [t0, t f] can then be ob-
tained by solving the system of differential equations
using initial-value simulation.
However, often some of the required information is not
explicitly known, but can be obtained by minimizing
a cost function. In many of those cases, a feasible so-
lution can be further specified by constraining model
variables. Optimization is a universal tool for treating
those inverse problems.

3.4.2 Estimation Problem

An example for an inverse problem is the estimation of
unknown parameters p and/or initial states x0 based on
measured inputs and outputs. The estimation problem
can be solved by minimizing a least squares criterion

nȳ

å
i=1
‖y(ti)− ȳ(ti)‖2 → min

x0,p
(4)

for the set of measurement data {ȳ(ti), ti ∈ [t0, t f], i =
1, . . . ,nȳ}.

3.4.3 Optimization Problem

The control inputs u(t), t ∈ [t0, t f] or the initial states
x0 might be free to be chosen so that a criterion

F0[t f ,x(t f)] +
Z t f

t0
f0[t,x(t),u(t)]dt → min

x0,u(t)
, (5)

297

Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA

The Modelica Association Modelica 2006, September 4th – 5th

F0 : IR× IRnx 7→ IR,

f0 : IR× IRnx × IRnu 7→ IR.

is minimized subject to constraints on model inputs
umin(t)≤ u(t)≤ umax(t) and outputs ymin(t)≤ y(t)≤
ymax(t), t ∈ [t0, t f].
Generally it cannot be guaranteed that a solution exists
for an optimization problem with output constraints as
the model outputs are determined by model states and
model inputs. This is why output constraints should be
relaxed to soft constraints, augmenting the optimiza-
tion criterion (5) with penalties for violations. The
HQP solver provides support for soft constraints.

3.4.4 Steady-state problem

The dynamic estimation and optimization problems
discussed above can also be formulated as steady-state
problems at one time instant t = t0 = t f . The steady-
state condition

ẋ(t) = 0 (6)

is formulated as constraint for the HQP optimization
solver.

3.5 Discrete-Time Optimal Control Problem

Dynamic Optimization and Estimation problems are
treated internally as discrete-time optimal control
problems, applying multi-stage control vector param-
eterization. The time horizon [t0, t f] is divided into
K stages with t0 = t0 < t1 < .. . < tK = t f . The con-
trols u(t) are described in each interval [tk, tk+1], k =
0, . . . ,K−1 as function of the discrete-time input vari-
ables uk ∈ IRm. The unknown parameters p are con-
verted to state variables with the state equation ṗ = 0
and with unknown initial values p0 = p(t0). They
are described together with the continuous-time model
states x(t) with the discrete-time state variables xk ∈
IRn,n = nx + np. The state equation (1) is solved for
the stage k with the initial values xk and the controls
uk using a numerical integration formula.
This results in the multistage optimization problem:

FK(xK) + å
k

f k
0 (xk,uk) → min

uk,x0

, (7)

FK : IRn 7→ IR1, f k
0 : IRn× IRm 7→ IR1

with respect to the discrete-time system equations

xk+1 = fk(xk,uk), (8)

fk : IRn× IRm 7→ IRn

and the additional constraints

ck
min ≤ ck(xk,uk) ≤ ck

max,

cK
min ≤ cK(xK) ≤ cK

max, (9)

ck : IRn× IRm 7→ IRmk ,cK : IRn 7→ IRmK .

Note that initial conditions of the system model are
formulated as general constraints (9) as well. Dis-
cretization formulae, known parameter values, and
predetermined disturbances are included into the
discrete-time functions FK , f k

0 , fk, ck, and cK . The
discrete-time functions are assumed to be two times
continuously differentiable with respect to their vari-
ables.

3.6 Large-Scale Nonlinear Programming
Problem

Discrete-time optimal control problems can be solved
as structured large-scale nonlinear optimization prob-
lems. This has the main advantage that powerful meth-
ods for large-scale nonlinear optimization can be ap-
plied to their efficient solution [11].
The discrete-time control and state variables for all
stages k are collected to one large vector of optimiza-
tion variables

v =

x0

u0

x1

u1

...
xK−1

uK−1

xK

. (10)

One specific feature of the optimization approach dis-
cussed here is that the discrete-time state variables at
all stages are treated as optimization variables as well,
even though they are determined by initial conditions
and the control parameters. This leads to a signifi-
cant increase of the size of the optimization problem.
However, the consideration of states as constrained
optimization variables generally improves robustness
and efficiency of the solution. For instance trajectory
constraints can be formulated directly on the discrete-
time state variables. Furthermore the separation of the
overall problem into multiple stages often leads to a
reduction of the required number of nonlinear itera-
tions. The computational overhead is relatively low if
the number of state variables nx is not too high, com-
pared to the number of control variables nu and if the
sparse multistage structure of the large-scale nonlinear
optimization problem is exploited appropriately.

298

R. Franke, J. Doppelhamer

The Modelica Association Modelica 2006, September 4th – 5th

Figure 3: Simplified process diagram of a power plant.

4 Application example

A Nonlinear Model-based Predictive Controller
(NMPC) for power plant start-up serves as example.
The start-up problem is challenging as it is highly non-
linear in the covered large range of operation. Thermal
stress occurring in thick walled components needs to
be kept in given limits. Multiple manipulated variables
have to be coordinated. A long prediction horizon is
required to fulfill the constraints during a start-up.

Figure 3 shows a process diagram of a power plant.
Feed water enters through pre-heaters and the econ-
omizer into the evaporator (lower left side). Satu-
rated steam leaving the evaporator gets super-heated
within several super-heater stages (the example dia-
gram shows five super-heater stages and 4 parallel
streams in the upper left part). The live steam leav-
ing the boiler goes to the turbine (the example shows 2
turbine sections). There the thermal energy gets trans-
formed to mechanical energy, driving the generator.
Afterwards the steam gets condensed and water flows
back to the feed water tank (lower right side of the di-

agram).

During start-up, the boiler first has to produce steam as
required for starting the turbine. Within this phase, the
steam bypasses the turbine through the high-pressure
(HP) and low pressure (LP) bypass valves. The boiler
gets heated up by several hundred degrees centigrade.
This causes spatial temperature differences in thick
walled parts, in particular headers behind the super-
heaters and spherical fittings in the live steam pipe.
Depending on the material properties, the spatial tem-
perature differences cause thermal stress, which again
causes fatigue up to destruction. This is why the ther-
mal stress needs to be carefully observed and kept in
prescribed limits.

A boiler model was built using the Modelica technol-
ogy [5]. The model needs to be carefully designed so
that is expresses the relationship between optimized
control actions (fuel flow rate and valve positions) and
constrained process values (pressures, temperatures
and thermal stresses). In the example described here, a
system of differential-algebraic equations (DAE) with
about 1000 variables was built. The Dynamic Opti-

299

Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA

The Modelica Association Modelica 2006, September 4th – 5th

Figure 4: Traditional start-up. The dots show actual process values and limits, the light lines show predictions
of process values over 90 minutes that are recalculated every minute. The dark lines show the most recent
prediction.

Figure 5: Optimized start-up performed with the NMPC online in closed loop.

300

R. Franke, J. Doppelhamer

The Modelica Association Modelica 2006, September 4th – 5th

Figure 6: Operator display showing the optimal start-up predicted by the NMPC, in addition to current process
values and history logs.

mization aspect system was used offline to identify
model parameters based on data logs available for his-
torical start-ups.
Figure 4 shows major process values for a start-up that
was performed using well tuned standard control. The
plant model was used online, open loop to check its
ability to predict the future behavior of the process.
The fuel flow rate and the HP bypass position are ma-
nipulated variables. The most important process vari-
ables are the furnace temperature, live steam pressure,
temperature and flow rate, as well as thermal stresses.
It can be seen that the allowed limits for thermal stress
are not exploited during long time periods on the one
hand side and that they exceed the allowed limits at
other times (in particular DT HP header). The model
was able to predict the behavior of the plant suffi-
ciently well.
During a run of the NMPC, an optimization problem is
solved online every minute. The time horizon (predic-
tion and control) is 90 minutes in the example. It gets
divided into 90 sample periods. The optimized ma-
nipulated variables are parameterized piecewise linear.
All other model variables are evaluated at the sample
time points. This means that overall about 91000 vari-

ables are present in the online optimization problem.
The solution time is about five minutes for a cold start
of the solver and about 40 seconds for a subsequent
solver run.

Figure 5 shows the results of a start-up performed with
the NMPC. Due to optimized use of the manipulated
variables fuel flow rate and HP bypass position, the
constraint on thermal stress of the HP header stays ac-
tive during almost one hour. After about 50 minutes
the fuel flow rate accidentally shot over, resulting in a
violation of the thermal stress constraint. It can be seen
how the NMPC reacted by immediately throttling the
HP bypass valve and by reducing the fuel flow rate.
Overall the start-up time could be reduced with the
NMPC by about 20 minutes and the start-up costs by
about 10% in a 700 MW coal fired power plant.

Figure 6 shows an operator display for boiler start-up
optimization. Traditionally an operator display shows
current process values and history logs. As a by-
product of model predictive control, the operator can
additionally see the prediction of the future behavior
of the plant. As the NMPC runs integrated with the
control system, this display can easily be configured.

301

Online Application of Modelica Models in the Industrial IT Extended Automation System 800xA

The Modelica Association Modelica 2006, September 4th – 5th

5 Conclusions

The Modelica technology and the available model li-
braries allow an efficient modeling of many processes.
Nevertheless nowadays the application of the models
normally remains restricted to simulation studies con-
ducted offline. A considerable additional effort is re-
quired to bring a model online and to deploy a mature
model-based application.
The Dynamic Optimization system extension has been
developed for the Industrial IT System 800xA by ABB
to integrate model-based applications. Exploiting the
powerful framework of the System 800xA, the effort
for the development of the Dynamic Optimization sys-
tem extension could be restricted to few additional
software components. The new Model aspect exposes
model data to the System 800xA. An additional mod-
eling application like Dymola is used to build a Mod-
elica model and to export C-code. The C-code is com-
piled to a stand-alone executable Dll and loaded by
the HQP optimization solver at runtime. The new Dy-
namic Optimization aspect configures the HQP solver
for a specific model based activity and it exchanges
data like model parameters, process values and his-
tory logs between System 800xA and the HQP solver.
The new aspects can be combined with other exist-
ing aspects in Aspect Objects. This allows the flexi-
ble structuring of complex model-based applications,
consisting of multiple models and model-based activ-
ities. A configuration GUI has been developed as Ex-
cel add-in, which turned out to be a good compromise
between development effort and achieved productiv-
ity. The Dynamic Optimization service manages the
instantiation of solver activities in online applications.
The Dynamic Optimization system extension has been
applied so far in a number of different model-based ap-
plications. Nonlinear Model-based Predictive Control
(NMPC) for the start-up of power plants is discussed
in this paper as an example. The overall controller con-
sists of four different model-based activities, including
the pre-processing of process signals, the estimation of
the model state, the prediction of the optimal start-up,
and the post-processing of optimization results. The
process models are based on the Modelica.Media and
Modelica.Fluid libraries. The scheduling and super-
vision of the four activities has been implemented in
the same framework as additional model-based activ-
ity, based on the Modelica.StateGraph library.
After the successful application of the NMPC to the
start-up of a 700 MW coal fired power plant, several
more start-up optimizations are currently being de-
ployed in gas, oil and coal fired power plants.

References

[1] ABB Automation Technologies. Industrial
IT System 800xA – System Architecture
Overview. http://www.abb.com, Document Id:
3BUS092080R0101, 2005.

[2] L.G. Bratthall, R. van der Geest, H. Hoffmann, E. Jel-
lum, Z. Korendo, R. Martinez, M. Orkisz, C. Zeidler,
and J. S Andersson. Integrating hundred’s of products
through one architecture – the Industrial IT architec-
ture. In International Converence on Software Engi-
neering. Orlando, Florida, USA, 2002.

[3] Dynasim AB. Dymola: Dynamic Modeling Labora-
tory. http://www.dynasim.se.

[4] J. Eborn, H. Tummescheit, and K. Prölß. Aircondi-
tioning – a Modelica library for dynamic simulation
of AC systems. In Proceedings of the 4th Interna-
tional Modelica Conference. Modelica Association,
Hamburg-Harburg, Germany, March 2005.

[5] H. Elmqvist, H. Tummescheit, and M. Otter. Mod-
eling of thermo-fluid systems – Modelica.Media and
Modelica.Fluid. In Proceedings of the 3rd Interna-
tional Modelica Conference. Modelica Association,
Linköping, Sweden, November 2003.

[6] R. Franke, E. Arnold, and H. Linke. HQP: a solver
for nonlinearly constrained large-scale optimization.
http://hqp.sourceforge.net.

[7] R. Franke, K. Krüger, and M. Rode. Nonlinear model
predictive control for optimized startup of steam boil-
ers. In GMA-Kongress 2003. VDI-Verlag, Düsseldorf,
2003. VDI-Berichte Nr. 1756, ISBN 3-18-091756-3.

[8] R. Franke, K. Krüger, and M. Rode. On-line optimiza-
tion of drum boiler startup. In Proceedings of the 3rd
International Modelica Conference. Modelica Asso-
ciation, Linköping, Sweden, November 2003.

[9] International Electrotechnical Commission. Industrial
systems, installations and equipment and industrial
products – structuring principles and reference desig-
nations. IEC Standard 61346, 1996.

[10] Modelica Association. Modelica – A Unified Object-
Oriented Language for Physical Systems Modeling,
Version 2.2. http://www.modelica.org, 2005.

[11] Walter Murray. Sequential quadratic programming
methods for large-scale problems. Computational Op-
timization and Applications, 7(1):127–142, 1997.

[12] M. Otter, J. Årzén, and A. Schneider. StateGraph –
a Modelica library for hierarchical state machines. In
Proceedings of the 4th International Modelica Con-
ference. Modelica Association, Hamburg-Harburg,
Germany, March 2005.

[13] The MathWorks, Inc. Simulink: for model-based and
system level design. http://www.mathworks.com.

302

R. Franke, J. Doppelhamer

The Modelica Association Modelica 2006, September 4th – 5th

Types in the Modelica Language

David Broman Peter Fritzson Sébastien Furic
Linköping University, Sweden Linköping University, Sweden Imagine, France

davbr@ida.liu.se petfr@ida.liu.se

Abstract

Modelica is an object-oriented language designed
for modeling and simulation of complex physical
systems. To enable the possibility for an engineer
to discover errors in a model, languages and com-
pilers are making use of the concept of types and
type checking. This paper gives an overview of
the concept of types in the context of the Model-
ica language. Furthermore, a new concrete syntax
for describing Modelica types is given as a starting
point to formalize types in Modelica. Finally, it is
concluded that the current state of the Modelica
language specification is too informal and should
in the long term be augmented by a formal defin-
ition.

Keywords: type system; types; Modelica; simula-
tion; modeling; type safety

1 Introduction

One long term goal of modeling and simulation
languages is to give engineers the possibility to
discover modeling errors at an early stage, i.e.,
to discover problems in the model during design
and not after simulation. This kind of verifica-
tion is traditionally accomplished by the use of
types in the language, where the process of check-
ing for such errors by the compiler is called type
checking. However, the concept of types is of-
ten not very well understood outside parts of the
computer science community, which may result in
misunderstandings when designing new languages.
Why is then types important? Types in program-
ming languages serve several important purposes
such as naming of concepts, providing the com-
piler with information to ensure correct data ma-
nipulation, and enabling data abstraction. Almost
all programming or modeling languages provide
some kind of types. However, few language spec-
ifications include precise and formal definitions of

types and type systems. This may result in incom-
patible compilers and unexpected behavior when
using the language.

The purpose of this paper is twofold. The first
part gives an overview of the concept of types,
states concrete definitions, and explains how this
relates to the Modelica language. Hence, the first
goal is to augment the computer science perspec-
tive of language design among the individuals in-
volved in the Modelica language design. The long-
term objective of this work is to provide aids for
further design considerations when developing, en-
hancing and simplifying the Modelica language.
The intended audience is consequently engineers
and computer scientists interested in the founda-
tion of the Modelica language.

The second purpose and likewise the main con-
tribution of this work is the definition of a concrete
syntax for describing Modelica types. This syntax
together with rules of its usage can be seen as a
starting point to more formally describe the type
concept in the Modelica language. To the best of
our knowledge, no work has previously been done
to formalize the type concept of the Modelica lan-
guage.

The paper is structured as follows: Section 2
outlines the concept of types, subtypes, type sys-
tems and inheritance, and how these concepts are
used in Modelica and other mainstream languages.
Section 3 gives an overview of the three main forms
of polymorphism, and how these concepts corre-
late with each other and the Modelica language.
The language concepts and definitions introduced
in Section 2 and 3 are necessary to understand the
rest of the paper. Section 4 introduces the type
concept of Modelica more formally, where we give
a concrete syntax for expressing Modelica types.
Finally, Section 5 state concluding remarks and
propose future work in the area.

303

Types in the Modelica Language

The Modelica Association Modelica 2006, September 4th – 5th

2 Types, Subtyping and

Inheritance

There exist several models of representing types,
where the ideal model [3] is one of the most well-
known. In this model, there is a universe V of all
values, containing all values of integers, real num-
bers, strings and data structures such as tuples,
records and functions. Here, types are defined as
sets of elements of the universe V . There is infi-
nite number of types, but all types are not legal
types in a programming language. All legal types
holding some specific property, such as being an
unsigned integer, are called ideals. Figure 1 gives
an example of the universe V and two ideals: real
type and function type, where the latter has the
domain of integer and codomain of boolean.

Figure 1: Schematic illustration of Universe V and
two ideals.

In most mainstream languages, such as Java and
C++, types are explicitly typed by stating infor-
mation in the syntax. In other languages, such as
Standard ML and Haskell, a large portion of types
can be inferred by the compiler, i.e., the compiler
deduces the type from the context. This process is
referred to as type inference and such a language
is said to be implicitly typed. Modelica is an ex-
plicitly typed language.

2.1 Language Safety and Type Systems

When a program is executed, or in the Modelica
case: during simulation, different kinds of execu-
tion errors can take place. It is practical to distin-
guish between the following two types of runtime
errors [2].

• Untrapped errors are errors that can go un-
noticed and later cause arbitrary behavior of
the system. For example, writing data out of
bound of an array might not result in an im-
mediate error, but the program might crash
later during execution.

• Trapped errors are errors that force the com-
putation to stop immediately; for example di-
vision by zero. The error can then be handled

by the run-time system or by a language con-
struct, such as exception handling.

A programming language is said to be safe if no
untrapped errors are allowed to occur. These
checks can be performed as compile-time checks,
also called static checks, where the compiler finds
the potential errors and reports them to the pro-
grammer. Some errors, such as array out of bound
errors are hard to resolve statically. Therefore,
most languages are also using run-time checks,
also called dynamic checking. However, note that
the distinction between compile-time and run-time
becomes vaguer when the language is intended for
interpretation.

Typed languages can enforce language safety
by making sure that well-typed programs cannot
cause type errors. Such a language is often called
type safe or strongly typed. This checking process
is called type checking and can be carried out both
at run-time and compile-time.

The behavior of the types in a language is ex-
pressed in a type system. A type system can
be described informally using plain English text,
or formally using type rules. The Modelica lan-
guage specification is using the former informal
approach. Formal type rules have much in com-
mon with logical inference rules, and might at
first glance seem complex, but are fairly straight-
forward once the basic concepts are understood.
Consider the following:

G ` e1 : bool G ` e2 : T G ` e3 : T
(t-if)

G ` if e1 then e2 else e3 : T

which illustrates a type rule for the following Mod-
elica if-expression:

if e1 then e2 else e3

A type rule is written using a number of premises
located above the horizontal line and a conclusion
below the line. The typing judgement G ` e : T
means that expression e has type T with respect
to a static typing environment G. Hence, the rule
(t-if) states that guard e1 must have the type of
a boolean and that e2 and e3 must have the same
type, which is also the resulting type of the if-
expression after evaluation. This resulting type is
stated in the last part of the conclusion, i.e., : T .

If the language is described formally, we can at-
tempt to prove the type soundness theorem [15].
If the theorem holds, the type system is said to be
sound and the language type safe or or just safe.

304

D. Broman, P. Fritzson, S. Furic

The Modelica Association Modelica 2006, September 4th – 5th

The concept of type safety can be illustrated by
Robin Milner’s famous statement ”Well-typed pro-
grams cannot go wrong”[9]. Modern type sound-
ness proofs are based on Wright and Felleisen’s
approach where type systems are proven correct
together with the language’s operational seman-
tics [15]. Using this technique, informally stated,
type safety hold if and only if the following two
statements holds:

• Preservation - If an expression e has a type T
and e evaluates to a value v, then v also has
type T .

• Progress - If an expression e has a type T
then either e evaluates to a new expression e′

or e is a value. This means that a well typed
program never gets ”stuck”, i.e., it cannot go
into a undefined state where no further eval-
uations are possible.

Note that the above properties of type safety cor-
responds to our previous description of absence
of untrapped errors. For example, if a division by
zero error occurs, and the semantics for such event
is undefined, the progress property will not hold,
i.e., the evaluation gets ”stuck”, or enters an un-
defined state. However, if dynamic semantics are
defined for throwing an exception when the divi-
sion by zero operation occurs, the progress prop-
erty holds.

For the imperative and functional parts of the
Modelica language, the safety concept corresponds
to the same methodology as other languages,
such as Standard ML. However, for the instan-
tiation process of models, the correspondence to
the progress and preservation properties are not
obvious.

Table 1 lists a number of programming lan-
guages and their properties of being type safe
[10][2]. The table indicates if the languages are
primarily designed to be checked statically at
compile-time or dynamically at run-time. How-
ever, the languages stated to be statically type
checked typically still perform some checking at
runtime.

Although many of the languages are commonly
believed to be safe, few have been formally proven
to be so. Currently, ML [9] and subsets of the Java
language [14] [7] has been proven to be safe.

Language Type Safe Checking
Standard ML yes static
Java yes static
Common LISP yes dynamic
Modelica yes static1

Pascal almost static
C/C++ no static
Assembler no -

Table 1: Believed type safety of selected lan-
guages.

2.2 Subtyping

Subtyping is a fundamental language concept used
in most modern programming languages. It means
that if a type S has all the properties of another
type T , then S can be safely used in all contexts
where type T is expected. This view of subtyp-
ing is often called the principle of safe substitution
[12]. In this case, S is said to be a subtype of T ,
which is written as

S <: T (1)

This relation can be described using the following
important type rule called the rule of subsumption.

G ` t : S S <: T
(t-sub)

G ` t : T

The rule states that if S<: T , then every term2

t of type S is also a term of type T . This shows a
special form of polymorphism, which we will fur-
ther explore in Section 3.

2.3 Inheritance

Inheritance is a fundamental language concept
found in basically all class based Object-Oriented
(OO) languages. From an existing base class, a
new subclass can be created by extending from
the base class, resulting in the subclass inheriting
all properties from the base class. One of the main
purposes with inheritance is to save programming

1One can argue whether Modelica is statically or dynam-
ically checked, depending on how the terms compile-time
and run-time are defined. Furthermore, since no exception
handling is currently part of the language, semantics for
handling dynamic errors such as array out of bound is not
defined in the language and is therefore considered a com-
piler implementation issue.

2The word term is commonly used in the literature as
an interchangeable name for expression.

305

Types in the Modelica Language

The Modelica Association Modelica 2006, September 4th – 5th

and maintenance efforts of duplicating and reading
duplicates of code. Inheritance can in principle be
seen as an implicit code duplication which in some
circumstances implies that the subclass becomes a
subtype of the type of the base class.

Figure 2 shows an example3 where inheritance
is used in Modelica. A model called Resistor
extends from a base class TwoPin, which includes
two elements v for voltage and i for current. Fur-
thermore, two instances p and n of connector Pin
are public elements of TwoPin. Since Resistor
extends from TwoPin, all elements v, i, p and
n are ”copied” to class Resistor. In this case,
the type of Resistor will also be a subtype of
TwoPin’s type.

connector Pin
SI.Voltage v;
flow SI.Current i;

end Pin;

partial model TwoPin
SI.Voltage v;
SI.Current i;
Pin p, n;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

model Resistor
extends TwoPin;
parameter SI.Resistance R=100;

equation
R*i = v;

end Resistor;

Figure 2: Example of inheritance in Modelica,
where a new subclass Resistor is created by ex-
tending the base class TwoPin.

However, a common misunderstanding is that sub-
typing and inheritance is the same concept [10].
A simple informal distinction is to say that ”sub-
typing is a relation on interfaces”, but ”inheri-
tance is a relation on implementations”. In the
resistor example, not only the public elements
v, i, p and n will be part of class Resistor,
but also the meaning of this class, i.e, the equa-
tions v = p.v - n.v, 0 = p.i + n.i and
i = p.i.

3These classes are available in the Modelica Standard
Library 2.2, but are slightly modified for reasons of read-
ability.

A famous example, originally stated by Alan
Snyder [13], illustrates the difference between sub-
typing and inheritance. Three common abstract
data types for storing data objects are queue, stack
and dequeue. A queue normally has two opera-
tions, insert and delete, which stores and returns
object in a first-in-first-out (FIFO) manner. A
stack has the same operations, but are using a
last-in-first out (LIFO) principle. A dequeue can
operate as both a stack and a queue, and is nor-
mally implemented as a list, which allows inserts
and removals at both the front and the end of the
list.

Figure 3 shows two C++ classes modeling the
properties of a dequeue and a stack. Since class
Dequeue implements the properties also needed
for a stack, it seems natural to create a sub-
class Stack that inherits the implementation
from Dequeue. In C++, it is possible to use
so called private inheritance to model inheritance
with an exclude operation, i.e., to inherit some, but
not all properties of a base class. In the exam-
ple, the public methods insFront, delFront,
and delRear in class Dequeue are inherited to
be private in the subclass Stack. However, by
adding new methods insFront and delFront
in class Stack, we have created a subclass, which
has the property of a stack by excluding the
method delRear. Stack is obviously a subclass

class Dequeue{
public:
void insFront(int e);
int delFront();
int delRear();

};

class Stack : private Dequeue{
public:
void insFront(int e)
{Dequeue::insFront(e);}

int delFront()
{return Dequeue::delFront();}

};

Figure 3: C++ example, where inheritance does
not imply a subtype relationship.

of Dequeue, but is it a subtype? The answer is
no, since an instance of Stack cannot be safely
used when Dequeue is expected. In fact, the op-
posite is true, i.e., Dequeue is a subtype of Stack
and not the other way around. However, in the
following section we will see that C++ does not

306

D. Broman, P. Fritzson, S. Furic

The Modelica Association Modelica 2006, September 4th – 5th

treat such a subtype relationship as valid, but the
type system of Modelica would do so.

2.4 Structural and Nominal Type Sys-
tems

During type checking, regardless if it takes place at
compile-time or run-time, the type checking algo-
rithm must control the relations between types to
see if they are correct or not. Two of the most fun-
damental relations are subtyping and type equiva-
lence.

Checking of type equivalence is the single most
common operation during type checking. For ex-
ample, in Modelica it is required that the left and
right side of the equality in an equation have the
same type, which is shown in the following type
rule.

G ` e1 : T G ` e2 : T
(t-equ)

G ` e1= e2 : Unit

Note that type equivalence has nothing to do with
equivalence of values, e.g., equation 4 = 10 is
type correct, since integers 4 and 10 are type
equivalent. However, this is of course not a valid
equation, since the values on the right and left side
are not the same.

The Unit type (not to confuse with physical
units), shown as the resulting type of the equa-
tion, is often used as a type for uninteresting result
values.

A closely related concept to type equivalence is
type declaration, i.e., when a type is declared as
a specific name or identifier. For example, the
following Modelica record declaration

record Person
String name;
Integer age;

end Person;

declares a type with name Person. Some lan-
guages would treat this as a new unique type that
is not equal to any other type. This is called
opaque type declaration. In other languages, this
declaration would simply mean that an alternative
name is given to this type. However, the type can
also be expressed by other names or without any
name. This latter concept is commonly referred
as transparent type declaration.

In a pure nominal type system, types are com-
pared (subtyping and type equivalence) by using
the names of the declared types, i.e., opaque type

declarations are used. Type equivalence is con-
trolled by checking that the same declared name
is used. Furthermore, the subtype relation in
OO languages is checked by validating the inheri-
tance order between classes. The C++ language is
mainly using a nominal type system, even if parts
of the language does not obey the strict nominal
structure.

Consider the listing in Figure 4, which illus-
trates a C++ model similar to the resistor ex-
ample earlier given as Modelica code in Figure 2.
In this case, Resistor is a subclass of TwoPin
and the type of Resistor is therefore also a
subtype of TwoPin’s type. However, the type
of Inductor is not a subtype to the type of
TwoPin, since Inductor does not inherit from
TwoPin. Moreover, Resistor2 is not type
equivalent to Resistor even if they have the
same structure and inherits from the same base
class, since they are opaquely declared.

class Pin{
public:
float v, i;

};

class TwoPin{
public:
TwoPin() : v(0),i(0){};
float v, i;
Pin p, n;

};

class Resistor : public TwoPin{
public:
Resistor() : r(100) {};
float r;

};

class Resistor2 : public TwoPin{
public:
Resistor() : r(200) {};
float r;

};

class Inductor{
public:
TwoPin() : v(0),i(0){};
float v, i;
Pin p, n;
const float L;

};

Figure 4: Resistor inheritance example in
C++.

307

Types in the Modelica Language

The Modelica Association Modelica 2006, September 4th – 5th

In a structural type system [12], declarations are

introducing new names for type expressions, but
no new types are created. Type equivalence and
subtype relationship is only decided depending on
the structure of the type, not the naming.

The Modelica language is inspired by the type
system described by Abadi and Cardelli in [1]
and is using transparent type declarations, i.e.,
Modelica has a structural type system. Con-
sider the Resistor example given in Figure 2
and the two complementary models Inductor
and Resistor2 in Figure 5. Here, the same
relations holds between TwoPin and Resistor,
i.e., that the type of Resistor is a subtype of
TwoPin’s type. The same holds between TwoPin
and Resistor2. However, now Resistor and
Resistor2 are type equivalent, since they have
the same structure and naming of their public
elements. Furthermore, the type of Inductor
is now a valid subtype of TwoPin’s type, since
Inductor contains all public elements (type and
name) of the one available in TwoPin.

model Resistor2
extends TwoPin;
parameter SI.Resistance R=200;

equation
R*i = v;

end Resistor;

model Inductor
Pin p, n;
SI.Voltage v;
SI.Current i;
parameter SI.Inductance L=1;

equation
L*der(i) = v;

end Inductor;

Figure 5: Complementary Inductor and
Resistor2 models to the example in Figure 2.

It is important to stress that classes and types in
a structural type system are not the same thing,
which also holds for Modelica. The type of a class
represents the interface of the class relevant to the
language’s type rules. The type does not include
implementation details, such as equations and al-
gorithms.

Note that a nominal type system is more re-
strictive than a structural type system, i.e., two
types that have a structured subtype relation can
always have a subtype relation by names (if the
language’s semantics allows it). However, the op-

posite is not always true. Recall the Dequeue
example listed in Figure 3. The class Stack has
a subclass relation to Dequeue, but a subtype re-
lation cannot be enforced, due to the structure of
the class. The converse could be true, but the
type system of C++ would not allow it, since it
is nominal and subtype relationships are based on
names. Hence, a structural type system can be
seen as more expressive and flexible compared to
a nominal one, even if both gives the same level of
language type safety.

3 Polymorphism

A type system can be monomorphic in which each
value can belong to at most one type. A type sys-
tem, as illustrated in Figure 1, consisting of the
distinct types function, integer, real, and boolean
is a monomorphic type system. Conversely, in a
polymorphic type system, each value can belong
to many different types. Languages supporting
polymorphism are in general more expressive com-
pared to languages only supporting monomorphic
types. The concept of polymorphism can be han-
dled in various forms and have different naming
depending on the paradigm where it is used. Fol-
lowing John C. Mitchell’s categorization, polymor-
phism can be divided into the following three main
categories [10]:

• Subtype Polymorphism

• Parametric Polymorphism

• Ad-hoc Polymorphism

There are other similar categorizations, such as
Cardelli and Wegner’s [3], where the ad-hoc cat-
egory is divided into overloading and coercion at
the top level of categories.

3.1 Subtype Polymorphism

Subtyping is an obvious way that gives polymor-
phic behavior in a language. For example, an in-
stance of Resistor can be represented both as an
TwoPin type and a Resistor type. This state-
ment can also be shown according to the rule of
subsumption (t-sub) described in Section 2.2.

When a value is changed from one type to some
supertype, it is said to be an up-cast. Up-casts
can be viewed as a form of abstraction or infor-
mation hiding, where parts of the value becomes

308

D. Broman, P. Fritzson, S. Furic

The Modelica Association Modelica 2006, September 4th – 5th

invisible to the context. For example, an up-cast
from Resistor’s type to TwoPin’s type hides
the parameter R. Up-casts are always type safe,
i.e., the run-time behavior cannot change due to
the upcast.

However, for subtype polymorphism to be use-
ful, typically types should be possible to down-
cast, i.e., to change to a subtype of a type’s value.
Consider function Foo

function Foo
input TwoPin x;
output TwoPin y;

end Foo;

where we assume that down-casting is allowed4. It
is in this case valid to pass either a value of type
TwoPin (type equivalence) or a subtype to the
type of TwoPin. Regardless if a value of TwoPin’s
or Inductor’s type is sent as input to the func-
tion, a value of TwoPin’s type will be returned. It
is not possible for the static type system to know
if this is a TwoPin, Resistor or a Inductor
type. However, for the user of the function, it
might be crucial to handle it as an Inductor,
which is why a down-cast is necessary.

Down-casting is however not a safe operation,
since it might cast down to the wrong subtype.
In Java, before version 1.5 when generics were in-
troduced, this safety issue was handled using dy-
namic checks and raising dynamic exceptions if
an illegal down-cast was made. Subtype polymor-
phism is sometimes called ”poor-man’s polymor-
phism”, since it enables polymorphic behavior, but
the safety of down-casts must be handled dynam-
ically [12].

The Modelica language supports subtyping as
explained previously, but does not have any oper-
ation for down-cast. Since the language does not
include this unsafe operation, only a limited form
of subtype polymorphism can be used with func-
tions. For example, a function can operate on a
polymorphic type as input, such as TwoPin, but
it only makes sense to return values of a type that
can be instantly used by the caller.

However, subtype polymorphism is more exten-
sively used when reusing and replacing compo-
nents in models, i.e., by using the redeclare
keyword.

4This function type or example is not valid in the cur-
rent Modelica standard. It is used only for the purpose of
demonstrating subtype polymorphism.

3.2 Parametric Polymorphism

The term parametric polymorphism means that
functions or classes can have type parameters, to
which types or type expressions can be supplied.
The term parametric polymorphism is often used
in functional language communities, while people
related to object-oriented languages tend to use
the term generics.

The C++ template mechanism is an exam-
ple of explicit parametric polymorphism, where
the type parameter must be explicitly declared.
Consider for example Figure 6, where a tem-
plate function swap is implemented. The type
parameter T must be explicitly stated when
declaring the function. However, the type ar-
gument is not needed when calling the func-
tion, e.g., both int x,y; swap(x,y); and
float i,j; swap(i,j) are valid usage of the
function.

template<typename T>
void swap(T& x, T& y){
T tmp = x;
x = y;
y = tmp;

}

Figure 6: Explicit parametric polymorphism in
C++.

Standard ML on the other hand is making use
of implicit parametric polymorphism, where the
type parameters do not need to be explicitly stated
when declaring the function. Instead, the type in-
ference algorithm computes when type parameters
are needed.

A notable difference of parametric and subtype
polymorphism is that all type checking of para-
metric polymorphism can take place at compile-
time and no unsafe down-cast operation is needed.

Standard ML and and C++ are internally han-
dling parametric polymorphism quite differently.
In C++ templates, instantiation to compiled code
of a function is done at link time. If for exam-
ple function swap is called both using int and
float, different code of the function is generated
for the two function calls. Standard ML on the
other hand is using uniform data representation,
where all data objects are represented internally as
pointers/references to objects. Therefore, there is
no need to create different copies of code for dif-
ferent types of arguments.

309

Types in the Modelica Language

The Modelica Association Modelica 2006, September 4th – 5th

Modelica can be seen to support a limited ver-

sion of parametric polymorphism, by using the re-
declare construct on local class declarations.

3.3 Ad-hoc Polymorphism

In parametric polymorphism the purpose is to de-
clare one implementation that can be used with
different types of arguments. Ad-hoc polymor-
phism, by contrast, allows a polymorphic value to
be used differently depending on which type the
value is viewed to have.

There are several language concepts that fall
under the concept of ad-hoc polymorphism [3],
where Overloading and Coercion are most notable.
Other related concepts that also fall under this
category are Java’s instanceOf concept and dif-
ferent form of pattern matching [12].

3.3.1 Overloading

A symbol is overloaded if it has two or more mean-
ings, which are distinguished by using types. That
is, a single function symbol or identifier is associ-
ated with several implementations.

An example of overloading that exists in many
programming languages is operator overloading
for built in types. For example, the symbol +
is using infix notation and have two operands as-
sociated with it. The type of these operands de-
cide how the operation should be carried out, i.e.,
which implementation that should be used.

Overloading can take place at either compile-
time or at run-time. Overloading used at run-
time is often referred to as dynamic lookup[10], dy-
namic dispatch or multi-method dispatch. In most
cases, the single term overloading refers to static
overloading taking place at compile-time. The dis-
tinction becomes of course vague, if the language
is interpreted and not compiled.

Another form of overloading available in some
languages is user-defined function overloading,
where a function identifier can represent sev-
eral implementations for different type arguments.
Modelica is currently not supporting any form of
user defined overloading.

3.3.2 Coercion

Another form of ad-hoc polymorphism is coer-
cion or implicit type conversion, which is run-time
conversion between types, typically performed by
code automatically inserted by the compiler. The

distinction between overloading and type coer-
cion is not always clear, and the two concepts are
strongly related. Consider the following four ex-
pressions of multiplication [3]:

7 * 9 //Integer * Integer
6.0 * 9.1 //Real * Real
6 * 5.2 //Integer * Real
6.0 * 8 //Real * Integer

All four of these expressions are valid Modelica ex-
pressions, but they can in the context of coercion
and overloading be interpreted in three different
ways:

• The multiplication operator is overloaded
four times, one for each of the four expres-
sions.

• The operator is overloaded twice; one for each
of the the first two expressions. If the argu-
ments have different types, i.e., one is Real
and the other one Integer, type coercion is
first performed to convert the arguments to
Real.

• Arguments are always implicitly converted to
Real, and the operator is only defined for
Reals.

Type conversions can also be made explicit, i.e.,
code is inserted manually by the programmer that
converts the expression to the correct type.

In Modelica, implicit type conversion is used
when converting from Integer to Real. Of the
three different cases listed above, the second one
applies to the current Modelica 2.2 standard.

4 Modelica Types

In the previous sections we described different as-
pects of types for various languages. In this sec-
tion we will present a concrete syntax for describ-
ing Modelica types, followed by rules stating legal
type expressions for the language.

The current Modelica language specification
[11] specifies a formal syntax of the language, but
the semantics including the type system are given
informally using plain English. There is no ex-
plicit definition of the type system, but an implicit
description can be derived by reading the text de-
scribing relations between types and classes in the
Modelica specification. This kind of implicit spec-
ification makes the actual specification open for
interpretation, which may result in incompatible

310

D. Broman, P. Fritzson, S. Furic

The Modelica Association Modelica 2006, September 4th – 5th

compilers; both between each other, but also to
the specification itself. Our work in this section
should be seen as a first step to formalize what a
type in Modelica actually is. Previous work has
been performed to formally specify the semantics
of the language [8], but without the aim to more
precisely define the exact meaning of a type in the
language.

Why is it then so important to have a precise
definition of the types in a language? As we have
described earlier, a type can be seen as an interface
to a class or an object. The concept of interfaces
forms the basis for the widely accepted approach
of separating specification from implementation,
which is particularly important in large scale de-
velopment projects. To put it in a Modelica mod-
eling context, let us consider a modeling project
of a car, where different modeling teams are work-
ing on the wheels, gearbox and the engine. Each
team has committed to provide a set of specific at-
tributes for their component, which specifies the
interface. The contract between the teams is not
violated, as long as the individual teams are fol-
lowing this commitment of interface (the specifica-
tion) by adding / removing equations (the imple-
mentation). Since the types state the interfaces in
a language with a structural type system, such as
Modelica, it is obviously decisive that they have a
precise definition.

Our aim here is to define a precise notation of
types for a subset of the Modelica language, which
can then further be extended to the whole lan-
guage. Since the Modelica language specification
is open for interpretation, the presented type def-
inition is our interpretation of the specification.

4.1 Concrete Syntax of Types

Now, let us study the types of some concrete Mod-
elica models. Consider the following model B,
which is rather uninteresting from a physical point
of view, but demonstrates some key concepts re-
garding types.
model B
parameter Real s=-0.5;
connector C
flow Real p;
Real q;

end C;
protected
Real x(start=1);

equation
der(x) = s*x;

end B;

What is the type of model B? Furthermore, if B
was used and instantiated as a component in an-
other model, e.g., B b;, what would the resulting
type for element b be? Would the type for B and
b be the same? The answer to the last question is
definitely no. Consider the following listing, which
illustrates the type of model B.

model classtype //Class type of model B
public parameter Real objtype s;
public connector classtype
flow Real objtype p;
nonflow Real objtype q;

end C;
protected Real objtype x;

end

This type listing follows the grammar syntax
listed in Figure 7. The first thing to notice is that
the name of model B is not visible in the type. Re-
call that Modelica is using a structural type sys-
tem, where the types are determined by the struc-
ture and not the names, i.e., the type of model B
has nothing to do with the name B. However, the
names of the elements in a type are part of the
type, as we can see for parameter s and variable
x.

The second thing to observe is that the equa-
tion part of the model is missing in the type def-
inition. The reason for this is that equations and
algorithms are part of the implementation and not
the model interface. Moreover, all elements s, C
and x are preserved in the type, but the keywords
model, connector and basic type Real are fol-
lowed by new keywords classtype or objtype.
This is one of the most important observations to
make regarding types in a class based system us-
ing structural subtyping and type equivalence. As
we can see in the example, the type of model B
is a class type, but parameter s is an object type.
Simply stated: A class type is the type of one
of Modelica’s restricted classes, such as model,
connector, record etc., but an object type is
the type of an instance of a class, i.e., an object.
Now, the following shows the object type of b,
where b represents an instance of model B:

model objtype //Object type of b
parameter Real objtype s;

end

Obviously, both the type of connector C and
variable x have been removed from the type of b.
The reason is that an object is a run-time entity,
where neither local classes (connector C) nor pro-
tected elements (variable x) are accessible from

311

Types in the Modelica Language

The Modelica Association Modelica 2006, September 4th – 5th

outside the instance. However, note that this is
not the same as that variable x does not exist in
a instance of B; it only means that it is not visible
to the outside world.

Now, the following basic distinctions can be
made between class types and object types:

• Classes can inherit (using extends) from class
types, i.e., the type that is bound to the name
used in an extends clause must be a class
type and not an object type.

• Class types can contain both object types and
class types, but object types can only hold
other object types.

• Class types can contain types of protected el-
ements; object types cannot.

• Class types are used for compile time evalua-
tion, such as inheritance and redeclarations.

type ::= (model | record | connector |
block | function | package)
kindo f type

{{pre f ix} type identi f ier ;} end
| (Real | Integer | Boolean |

String) kindo f type

| enumeration kindo f type

enumlist

kindo f type ::= classtype | objtype
pre f ix ::= access | causality |

f lowpre f ix | modi f iability |
variability | outerinner

enumlist ::= (identi f ier {, identi f ier})
access ::= public | protected

causality ::= input | output |
inputoutput

f lowpre f ix ::= flow | nonflow
modi f iability ::= replaceable | modifiable |

final

variability ::= constant | parameter |
discrete | continuous

outerinner ::= outer | inner |
notouterinner

Figure 7: Concrete syntax of partial Modelica
types.

Let us now take a closer look at the grammar
listed in Figure 7. The root non-terminal of the
grammar is type, which can form a class or ob-
ject type of the restricted classes or the built in
types Real, Integer, Boolean, String, or
enumeration. The grammar is given using a
variant of Extended Backus-Naur Form (EBNF),
where terms enclosed in brackets {} denote zero,
one or more repetitions. Keywords appearing in
the concrete syntax are given in bold font. All
prefixes, such as public, flow, outer etc. can
be given infinitely many times. The correct usage
of these prefixes is not enforced by the grammar,
and must therefore be handled later in the seman-
tic analysis. We will give guidelines for default
prefixes and restrictions of the usage of prefixes in
the next subsection.

Now, let us introduce another model A, which
extends from model B:

model A
extends B(s=4);
C c1;

equation
c1.q = -10*der(x);
end A;

The question is now what the type of model A
is and if it is instantiated to an object, i.e., A a;,
what is then the type of a? The following shows
the type of model A.

model classtype //Class type of A
public parameter Real objtype s;
public connector classtype
flow Real objtype p;
nonflow Real objtype q;

end C;
public connector objtype
flow Real objtype p;
nonflow Real objtype q;

end c1;
protected Real objtype x;

end

First of all, we see that the type of model A does
not include any extends keyword referring to the
inherited model B. Since Modelica has a structural
type system, it is the structure that is interesting,
and thus a type only contains the collapsed struc-
ture of inherited elements. Furthermore, we can
see that the protected elements from B are still
available, i.e., inheritance preserves the protected
element after inheritance. Moreover, since model
A contains an instance of connector C, this is now
available as an object type for element c1 in the
class type of A. Finally, consider the type of an

312

D. Broman, P. Fritzson, S. Furic

The Modelica Association Modelica 2006, September 4th – 5th

instance a of class A:

model objtype //Object type of a
parameter Real objtype s;
connector objtype
flow Real objtype p;
nonflow Real objtype q;

end c1;
end

The protected element is now gone, along with
the elements representing class types. A careful
reader might have noticed that each type defini-
tion ends without a semi-colon, but elements de-
fined inside a type such as model classtype
ends with a semi-colon. A closer look at the gram-
mar should make it clear that types themselves
do not have names, but when part of an element
definition, the type is followed by a name and a
semi-colon. If type expressions were to be ended
with a semi-colon, this recursive form of defining
concrete types would not be possible.

4.2 Prefixes in Types

Elements of a Modelica class can be prefixed with
different notations, such as public, outer or
replaceable. We do not intend to describe the
semantics of these prefixes here, instead we refer
to the specification [11] and to the more accessible
description in [5]. Most of the languages prefixes
have been introduced in the grammar in Figure 7.
However, not all prefixes are allowed or have any
semantic meaning in all contexts.

In this subsection, we present a partial defini-
tion of when different prefixes are allowed to ap-
pear in a type. In currently available tools for
Modelica, such as Dymola [4] and OpenModelica
[6], the enforcement of these restrictions is sparse.
The reason for this can both be the difficulties
to extract this information from the specification
and the fact that the rules for the type prefixes
are very complex.

In Figure 8 several abbreviations are listed. The
lower case abbreviations a, c, c′ etc. define sets of
prefixes. The uppercase abbreviations M, R etc.
together with a subscription of c for class type
and o for object type, represents the type of an
element part of another type. For example Mc is
a model class type, and Ro is a record object type.

Now, consider the rules for allowed prefixes of
elements shown in the tables given in Figure 9,
Figure 10, and Figure 11.

In Figure 9 the intersection between the col-
umn (the type of an element) and the row (the

M = model
R = record
C = connector
B = block
F = function
P = package
X = Integer, Boolean,

enumeration, String
Y = Real
a = {public, protected} Access
a′ = {public}
c = {input, output, Causality

inputoutput}
c′ = {input, output}
f = {flow, nonflow} Flowprefix
m = {replaceable, Modifiability

modifiable, final}
m′= {modifiable, final}
v = {constant, parameter Variability

discrete, continuous}
v′ = {constant, parameter

discrete}
v′′= {constant}
o = {outer, inner, Outerinner

notouterinner}

Figure 8: Abbreviation for describing allowed pre-
fixes. Default prefixes are underlined.

Mc Rc Cc Bc Fc Pc Xc Yc

Mc amo amo amo amo amo . amo amo
Rc
Cc
Bc amo amo amo amo amo . amo amo
Fc . am . . am . am am
Pc am amv′′ am am am a′m am am

Figure 9: Prefixes allowed for elements of class
type (columns) inside a class type (rows).

Mo Ro Co Bo Fo Po Xo Yo

Mc amo acmo acmo amo amo . acmv′o acmvo
Rc . mo mv′o mvo
Cc . mo mo . . . m mc f vo
Bc amo ac′mo ac′mo amo amo . ac′mv′o ac′mvo
Fc . ac′m . . am . ac′mv′ ac′mv
Pc . amv′′ amv′′ amv′′

Figure 10: Prefixes allowed for elements of object
type (columns) inside a class type (rows).

type that contains this element) states the al-
lowed prefixes for this particular element. This
table shows which prefixes that are allowed for
a class type that is part of another class type.
For example, recall the connector C in model A.
When looking at the type of A, we have a class
type (the model class type) that contains an-

313

Types in the Modelica Language

The Modelica Association Modelica 2006, September 4th – 5th

Mo Ro Co Bo Fo Po Xo Yo

Mo o cm′o co o o . cm′v′o cm′vo
Ro . m′o m′v′o m′vo
Co . m′o o c f m′vo
Bo o c′o c′o o o . c′m′v′o c′m′vo
Fo . c′ m′v′ m′v
Po

Figure 11: Prefixes allowed for elements of object
type (columns) inside an object type (rows).

other class type (the connector class type), i.e.,
the allowed prefixes are given in the intersec-
tion of row 1 and column 3. In this case, ac-
cess prefixes public and protected, modifia-
bility prefixes replaceable, modifiable, and
final, and outer/inner prefixes outer, inner
and notouterinner are allowed.

We have introduced a number of new prefixes:
inputoutput, notouterinner, nonflow,
modifiable, and continuous. These new pre-
fixes are introduced to enable a complete type de-
finition, e.g., it should be possible to explicitly
specify that a variable in a connector is not a flow
variable by giving a nonflow prefix. However,
for simplicity, sometimes it is more convenient to
leave out some of the prefixes, and instead use
default prefixes. The defined default prefixes are
show underlined in Figure 8. If no underlined pre-
fix exists in a specific set, this implies that the
prefix must be explicitly stated.

Analogous to the description of Figure 9, Fig-
ure 10 shows the allowed prefixes for elements of
object types contained in a class type and Fig-
ure 11 shows object types contained in object
types. There are no tables given for class types
contained in object types for the simple reason
that object types are not allowed to contain class
types.

In some of the cells in the tables described
above, a dot symbol is shown. This means that
the specific type of element inside a certain type
is not allowed. Hence, such a combination should
not be allowed by the compiler at compile-time.

Now, let us observe some general trends be-
tween the allowed attributes. First of all, object
types cannot contain class types, which is why
there are only 3 tables. Secondly, access prefixes
(public, protected) are only allowed in class
types, which is why Figure 11 does not contain
any abbreviation a. Thirdly, the replaceable
prefix does not make sense in object types, since
redeclarations may only occur during object cre-

ation or inheritance, i.e., compile-time evaluation.
Then when an object exists, the type information
for replaceable is of no interest any more. Finally,
we can see that package class types can hold any
other class types, but no other class type can hold
package types.

Note that several aspects described here are our
design suggestions for simplifying and making the
language more stringent from a type perspective.
Currently, there are no limitations for any class
to contain packages in the Modelica specification.
Furthermore, there are no strict distinctions be-
tween object- and class types, since elaboration
and type checking are not clearly distinguished.
Hence, redeclaration of elements in an object are
in fact possible according to the current specifica-
tion, even if it does not make sense in a class based
type perspective.

4.3 Completeness of the Type Syntax

One might ask if this type definition is complete
and includes all aspects of the Modelica language
and the answer to that question is no. There are
several aspects, such as arrays, partial and en-
capsulated classes, units, constrained types, con-
ditional components and external functions that
are left out on purpose.

The main reason for this work is to pinpoint the
main structure of types in Modelica, not to formu-
late a complete type definition. As we can see from
the previous sections, the type concept in the lan-
guage is very complex and hard to define, due to
the large number of exceptions and the informal
description of the semantics and type system in
the language specification.

The completeness and correctness of the allowed
type prefixes described in the previous section de-
pend on how the specification is interpreted. How-
ever, the notation and structure of the concrete
type syntax should be consistent and is intended
to form the basis for incorporating this improved
type concept tighter into the language.

Finally, we would like to stress that defining
types of a language should be done in parallel with
the definition of precise semantic and type rules.
Since the latter information is currently not avail-
able, the precise type definition is obviously not
possible to validate.

314

D. Broman, P. Fritzson, S. Furic

The Modelica Association Modelica 2006, September 4th – 5th

5 Conclusion

We have in this paper given a brief overview of
the concept of types and how they relate to the
Modelica language. The first part of the paper
described types in general, and the latter sections
detailed a syntax definition of how types can be
expressed for the Modelica language.

The current Modelica specification uses Ex-
tended Backus-Naur Form (EBNF) for specify-
ing the syntax, but the semantics and the type
system are informally described. Moreover, the
Modelica language has become difficult to reason
about, since it has grown to be fairly large and
complex. By giving the types for part of the lan-
guage we have illustrated that the type concept
is complex in the Modelica language, and that it
is non-trivial to extract this information from the
language specification.

Consequently, we think that it is important to
augment the language specification by using more
formal techniques to describe the semantics and
the type system. We therefore propose that a sub-
set of Modelica should be defined, which models
the core concepts of the language. This subset
should be describe using operational semantics in-
cluding formal type rules. For some time, deno-
tational semantics has been used as the semantic
language of choice, however it has been shown to
be less cumbersome to prove type soundness using
operational semantics [15].

In the short term, this proposed core language
is supposed to be used as basic data for better
design decision-making, not as an alternative or
replacement of the official Modelica specification.
However, the long term goal should, in our op-
tion, be to describe the entire Modelica language
formally.

Acknowledgments

Thanks to Thomas Schön and Kaj Nyström for
many useful comments of this paper.

This research work was funded by CUGS (the
Swedish National Graduate School in Computer
Science), by SSF under the VISIMOD project, and
by Vinnova under the NETPROG Safe and Secure
Modeling and Simulation on the GRID project.

References

[1] Mart́ın Abadi and Luca Cardelli. A Theory of
Objects. Springer-Verlag, New York, USA, 1996.

[2] Luca Cardelli. Type Systems. In The Computer
Science and Engineering Handbook, chapter 97.
CRC Press, second edition, 2004.

[3] Luca Cardelli and Peter Wegner. On Understand-
ing Types, Data Abstraction, and Polymorphism.
ACM Comput. Surv., 17(4):471–523, 1985.

[4] Dynasim. Dymola - Dynamic Modeling Labo-
ratory with Modelica (Dynasim AB). http://
www.dynasim.se/ [Last accessed: 8 May 2006].

[5] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1.
Wiley-IEEE Press, New York, USA, 2004.

[6] Peter Fritzson, Peter Aronsson, H̊akan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldamli, and
David Broman. The OpenModelica Modeling,
Simulation, and Development Environment. In
Proceedings of the 46th Conference on Simulation
and Modeling (SIMS’05), pages 83–90, 2005.

[7] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: a minimal core cal-
culus for Java and GJ. ACM Trans. Program.
Lang. Syst., 23(3):396–450, 2001.

[8] David K̊agedal and Peter Fritzson. Generating a
Modelica Compiler from Natural Semantics Speci-
fications. In Proceedings of the Summer Computer
Simulation Conference, 1998.

[9] Robin Milner. A Theory of Type Polymorphism in
Programming. Journal of Computer and System
Sciences, 17(3):348–375, 1978.

[10] John C. Mitchell and Krzysztof Apt. Concepts in
Programming Languages. Cambridge University
Press, 2003.

[11] Modelica Association. Modelica - A Unified
Object-Oriented Language for Physical Systems
Modeling - Language Specification Version 2.2,
February 2005. Available from: http://www.
modelica.org [Last accessed: 29 March 2006].

[12] Benjamin C. Pierce. Types and Programming Lan-
guages. The MIT Press, 2002.

[13] Alan Snyder. Encapsulation and Inheritance in
Object-Oriented Programming Languages. In
OOPLSA ’86: Conference proceedings on Object-
oriented programming systems, languages and ap-
plications, pages 38–45, New York, USA, 1986.
ACM Press.

[14] Don Syme. Proving Java Type Soundness. Lecture
Notes in Computer Science, 1523:83, 1999.

[15] Andrew K. Wright and Matthias Felleisen. A Syn-
tactic Approach to Type Soundness. Information
and Computation, 115(1):38–94, 1994.

315

Types in the Modelica Language

The Modelica Association Modelica 2006, September 4th – 5th

316

D. Broman, P. Fritzson, S. Furic

 Session 3d

The Modelica Association Modelica 2006, September 4th – 5th 317

Session 3d

Electric Systems and Applications 1

Session 3d

The Modelica Association Modelica 2006, September 4th – 5th 318

The Modelica Association Modelica 2006, September 4th – 5th

��������	
��	����
����	��	�����
���	������	���
���	�������
���	

����������	

�
�������	�������

�
�

�������	
�������	����
�
�������	�������������� ����!�	�������"���#$%&'%�����$()		��������	
������
�
#� �$�*���	��+�	�,�������$������$�	������%���#$-'%'�./���������	
������

�������!��	
0����11���,��,��	�������0����11���,�

�����
��	

2��� �*	����� ������1�� �� ���!��,���$����*�	��� 	����

!���3����	�������*�	����������43��5�	��	������	����

	������������!������	� �	����� �	�,�������������!�$

��	���� !��,� �� *,1��� �!� �*�	�,��� ��6*���,�	���

2��� 	���� ���1����� �� �� 	���,��$�	����� ��1���+� �,$

���,�	��������������������������������	���1�����

��78������� �972�	������ +�����������*���� �	��$

!������������ ��������	���!���	����������+���,*$

��	�����

�� �����������	

:����*��,�	�����������*�����������	��,����*�	�,���

��6*���,�	�� 	�� 	��� ���!��,���� �!� �� �����	��� �!�

������1��� ����*�	��� 3����	��� ����*�	� 1��������

43��5�� ����� ����*�	� 1�������� ��	������ 1�	���� 	���

 ����	��� ��� 	��� �	��$*�� 	���!��,���� ���� ������1���

��	����	���������*���'''��:�����,*�	�1���1���	��

���	�������	$����*�	��*���	��*��	���''������

2��� 3��� 	+���� ,������� ����� ���� ;$������ �+�	�,��

��	��� � �� ����*�	� 1������� ��� �� �������	��� 4��

������5� �� �� ��� ������ �����*���� 4��!��� �� �� �5��

��	�����+�	����+�	�,����1���6*��������	���*8�����+�

���	�����4���	�� ����	�����������	����� 	�� �	��	�*��

 ��� 	*�1���5�� �*� �� �����	����� ���	� �� ��� �*���	�

	���!��,����4�����	� ��	�����	��������*��5��

<�������	��!���	�����������*���	�����+� �����1���	+�

�!� �� �����!��� 	+��� �!� 3���� ���	��*���� ����	����

!�*�� �	� 	��� �*�	�,��=�� ��	�� ����� 	��1�� ���������>�

�,1��	� 	�,����	*���� ������ �������	���� 	�,����	*����

�!�����	� ����	���������������6*��,�	�4������� ��

�*���	�	���!��,���5���	��������	���3�������	+������

�8�,����� �!� �*��� ����	����� 2��� ,�8�,*,� ��	���

�*���	��!���3���*�������	��������	� �����	����

��������!��,�	�����6*���,�	� 	��	������	�����,�	�!���

	���	�,����	*������������	�	�����	��	�����*����	�1��

�8��������������3���	���,�8�,*,�������1��� 	�,$

����	*�������,�8�?��'%@���	�������$���	�����	��	�����

�,�8�?�A'@�� �	� �����*��� ���	�� ������ ��*��� 1��

	�*�����1+��������	���B�C��2������*�������� ����$

 �����!������1���	+�������� �����������!�����������	�$

�����	����!�	���,�	������������������	�*���8��*�����

�!	��� ��	������ �	*����� 4����� ��(� ��� 	���,�$����	����

D(7� ��,*��	���5� !��� ,���� � ��6*���,�	�� ����

	�,�$���*,� � ��� !��� 	����� ������ ��	���� �� 	���

����*�	$�������,�	��+����	�����	����������������

2��� �����	��� 	���� �*����	� � 	��� ������ �������� �!�

3��������	��1���1���	������*���!��	���������1�����$

�*�	���1����,���� 	��*���1+��$�8���	������������

�	���������	����������+�,��*����	+����,��	���1��$

�	+���������	��������!����+�	�,�	�����!��,�	���!�	���

*����+� � ,������ 2��� 	����� ��� ,�	����� ������

����� 	����!������ 	���,��$�	�����,����� !��,*��	���

������������������������78���$1������������	����

�

�
����	��	�����
���	�����	���
���	������	

 � !"���
�#���$���	����
��	

�� ��������� ��1���+� �!� 	���,��$�	����� ���,�	��

��	�� ��	������ �,���,�	�	���� �!� �����*�� �����	�� �!�

���	$	���!��� ��+����� 4���*�	���� �����	���� !������

��� !���� �����	��� �	� �����*�� �����*���� ��� !��� ��

,1����!�,�	������5� ������� ��� ����1���1�����!� 	���

,����������	��!� !*���,������ 	��1��*���� !��� �	������

���!��,���� ����*�	���� �!� �� ��,���	�� !�,��+� �!�

3�����������	�	���������1�������*�	��� ���

319

Modeling and Simulation of Generator Circuit Breaker Performance

The Modelica Association Modelica 2006, September 4th – 5th

2��� ��1���+� ��� !*��+� ���!$��	������ E����� �	�� 1�����

���	�� ����,������� ��� � 	������������+��!� 	���#��	�

2���!�����1���+�����������	�����������������	��������

�*1�	�	����*,1����!��	������
������*��1�����,��$

�	�� ,����� � 	��� ���	� 	���!��� !��� �1F��	�� �!� 	���

��
���!���,����	�,�	����	��,�	�����

 ��� %�
�	������	

�������	���*�������	���3�������G��,��H������	�����

������	���!��,����*���	�!����4	+������+�1�	����%�

��� �'� ��5� �	�� ���	� 	���* �� I�*��� ���	� �� ����	$

������ �������	+� 4�5� �� 	�,����	*��� ������1��� 	���

����������!�	�������	�����������	������!���	���	�,$

����	*��$�� �� �!� �	����	� 4!��,� �,1��	� 	�� �1�*	�

�'%��5��*!!����	�+�����>�

554�4 '' ����� ��� � �

2����!!��	���������	�����!�	����*���	$����+� ����	��

��������� �� �!!��	���� �������� 	���* �� 	��� 4!��$

6*��+$������	5� ���� �!!��	� 4�5�� ���� ��,���� ��$

�*�	��� ��,�	��������������������������+������������

1�� ��	��,���� ���+	�����+�� ���� ,���� ��,���8� �$

�,�	����� 4��������*�	������	����	���		����������� �

!��� ��� 	��� ���	� *���� �����*��� �!� 	��� ������*���

3��� �����5� �� ���� ����*��	��� ��	�� 	��� ����� �!� �7�

,������� ���� 	��� 3��� 	+���� ,������� ����� 	+������

���*���!�����������	����� ���!�����	����;�!���!��6*�$

�����1�	���%'����J'�#
�4	���3��������*����!���%'�

���J'�#
5��

����������,������������+����	�	����	���*���������

������	���,�����	��	��������	��!��������������	���

4�� ����� �!� �� �*	����� ��	����	��� �!� 	��� 3��5� ���

����� ��� �!� ������� �!� ��,���	�� ����� �*���	� 	���$

!��,����������������	��������	���3����

 � � %�
�	��
�����	

#��	�!����1+����*�	��� ��� �,���,�	��� !���������$

�	+��!����������� ��,�	���������	�+��!��	� ��,�	�����

��� �*�!����� ����,������K���
�� ��� 	���������!� 	���

���	�� ��	��,��� 	����� 	�	��� ���	$���*�	��� ������$

	�����<�	�����,����	�������!������	���������4	��������

��� ������ ���	��� �� ��� 	���,��� ���*�	���	+� �5� 	���
�!!��	����	���,��������	�������	��� ����1+>�

�

�
�
���� �

� �

�����	��� �����	����� ,����� �����	��$1����� ���	�

	������	�1�	����	������	����!�*�6*�����
�����*$

�6*��� �,������	+� 4 ��+$!��	��5�� 2��� �!!��	���� �����$

	��������	�������1������,�	���
������

�

�

�
�

	

	
� �
� ���	��

��

&

�

&

�
��

��

��
�
�	 �

�
� �� �

������	����	�!�$���	
,�����	�	���������L��������
��� ����1+� 	��� �,������	���� ��� ������ �!� 	��� ���	���

1+>�

�

��

�

�

�� �
��

�

�
�
�

	

�

�
��
�

	

�

�
���

��
�

�

�
�

�����	��� ��� �,���,�	���!�������� ��*��	� � ������

���� �����*,1����!�����������!������		������$

����� � 	�� �!!��	����,������ �!� !�*��� �+�,�����2���

�����	��� ���,�	�� ������ !���� ��� !������ �����$

	���� ��� 	��+� ��6*���� 	+������+���+� �8����,�	���+�

������1������	�1*��	������*���!�������,�	�����*�������

���,�	����������	+�������	����*�	�����4�������!*�$
	�����!�	�,����	*�����������*��5���

2����!!��	���� �����	���� !��� !���������	��� ���,��$

�������>�

��

���

�
�

�
�

� ���	��

 � �D��

�

�

�
�	�

�

�
� � �

�

2��� ��,�	�+� �!� 	��� !���� ��		��� ��� 	���� �	�� ��$

��*	�1+��!!��	������ 	�$�������4�E5��!�	������,�	$

�������� ��������+�� 	��� ��,�� !��,*��� ������ ����� !���

	���������!�!�����������	��>��������������������	��

������� �!� 	��� ����,�	���� ��� ��� ��� 	��� ����*�	� �!�

3�����!� ��� D����� *,1���� �� 	��� �1���� !��,*���

���� 	�� 1�� ��������� 1+� 	��� ��+����� *,1���� 2���

,����� ����,�	������� ����������� 	���� !��,� ��	���$

	*�����	��	����8���	����!�����������!� *��	���������

	��	������	�!������ �,�	��������*�����!� *��	����

��������������1�����	��,�����8����,�	���+��

2�����1���+������� ��,,����������������������+����

�����	���!�����������������!����	��������������������	��

������!����������	�	�	���	,�	��!�����,���� �����

���	�	�� ��� �+�	�,�	��� �8	����� ��� ��������
�$

	�����������,�	���8	���1��������������	����������

�������	����	�8	��

&� ���	������	

<� 	��� �	�	����+� �	�	�� 	����� ���	� 	�,����	*���� �� ��

3����������������	� 	�����	����������!� 	���;$������

�+�	�,� ����� !��� 	���� ������ ���	� 	���!��� !��,� 	���

�����*��� ���� �����	��� ��� �,������ 1+� 	��� 	���

�� �1��� � �������� 2��� ����� ������ �!� 	��� ��	���

����������!��� ���������	����,��	����	�����	�,����$

320

O. Fritz, M. Lakner

The Modelica Association Modelica 2006, September 4th – 5th

	��� 4!��,� 	��� 	��� �	��� ������5� ��� �����	��� ���	�

	���!������� �� �1���!���	��������	���2�*���	�����*!!�$

���	� 	�� ,����� 	��� ��	��� ������ ������ 	��� � �	��

����*	����������	��1�*���+�����	����!��� 	����$

����*����

2���,������!�	���!*�������*�	�1�������4��	���������5�

�����,�������!� 	��� 	�� 	����� ��������!� �*1$���,�	���

2��� �����1���	+�1�	���� 	��� ������*��� 	+������	���

	���!�,��+��!�3��������1����,���,�	���!*��+�����

����,�	����������2����������	��	�������������	� ���!�

����� � 	��� 	����� +� �!� 	��� !*��� ,����� *��� ���

������ ������ � ��,*��	���� !��� 	��� ������ ����*�	�

�� ��1+���,��+���� � ���,�� ��*	�����,�	�����	�

��,*��	���	�,���

��������+�� ���� ,����� �������� �8	��� �� 4*����*�	��5�

����,�	��$������� 2����� ����,�	���� 	��	� ��!!��� !��,�

,����� 	�� ,����� ���� �	����� �� ����+��� �����	� � 	���

,����� ���8� ������ 	�� �� !*��� ����� �	��� �!� ���� ��$

��,�	����	��	���������*����*1$,����������	�������$

���� �������	��� ����� ��+� ��	� ����,�	���� ��� ��	����

���*��� ���� 	��� ����	8	� !���� ����� � ����� ��,*��$

	���� ����,�	���� ,*�	� ���� 1�� ����*�	��� �	� �*$	�,��

��+��

2��� 	����� +� �!� 	��� 	���,��� �	����� �������	� �

	���3��� ���1����� �� ������������� ��� ��� �8����$

�����<	�����1���*�!����������+����� ���,��� �

��� �!� 	��� ����	���� �!� ������ � ������+� ��� �$

�����	��+� 	���* �� �� �+�	�,�	��� ���	�!���	��� �!�

��,�����	��������	�*�	*������,���	����	���������+��$

�������	*����!�	���3����������	���������	��,����	���

,������	� 	����1�	���	���� ������6*���� 	��������

	��,��	����

������8�,������ ����������	���1����� ����,1����!�

��3����<	������	���!� 	���,�	���������	� �� 4���*�$

� � 	��� ����	���
���� 	�� �� �1��� � �+�	�,�

��,���	�5� 	��� ��*��	��� 4���	�5� ��� 	��� ��	��	�

�+�	�,� 4�����1��� *�����	�� 	��� ��*��	��5�� 7����

��,���	� 4���	� ��� ��*��	���� �����	��	�
��5� ���

,�����������*1$���,�	��!� 	���1����� ����,1��� ��

������ 3��$	+��� �����!��� !��	*���� ����� 	��� ����� �

!���������	�������1+�����,�	�����

2��� ,��� �	�*�	*��� �!� �*1$���,�	�� �� 	��� �����	�

��������+��������!�	���,����������������� ��;������$

��	� � �� ���	��� �!� 	���,��� ���*�	����2��� �	�*�$

	�����	���������	�������4DM2�5��������1	����	���

�*���	� !���� � �� 	��� ���*�	��� ���� 	��� ����	������

���� �� ��� �� 	���,��� ���*�	��� �����	�����������

G�*	��H����	����	����������	����� 	����8	�������$

��+� ������ 	�� 	��� �� �1��� � ���	����� �� �����	���

4����5������������	��������	����4����5��2�����		���

���,�	��	���!������	�	��	��������*���*�� �	������$

	������	��	��������*����������	����+�4����	��������$

����� ����	����	���!�	����*1$���,�	5��

�
����	 �	���
����	�"
����	��	
	����	!"�	��'�	�"�$�	��	

�(�''��	$��"	�������	����	��	��"
���	�"�	"�
�	��
�����	

��	�"�	
������	
���	

�

���	��� �	�!������������,�����8	������!�	���,�����

��*���1��	�����������	�������	+����,�	�	��	�����$

	������������ ��;��2������*���������	�����!��,��+$

�,��� ��,*��	����� �� �� 	�� ����*�	�� 	��� �!�*���� �!�

	�,�����+�����������4��� � �������*���	�5��#��$

�������	�	��������	��	�	��	���,���������	�����	����$

	��,���	����	�	����+��	�	����+��

2���!����,�����������	�	������ ���� �����!����$

���� �+�	�,�� �!� �6*�	����� 2��+� ���� ��,��	� �8��*$

�����+��� �1��������	*�������	����	���+$�	�	�����*	���

�!���,���������!�,����	����	��

�

�
����	&�	!"���
�	���$���	���	
	�������	��	�"�	��������	

'
�"	��	
	����	

321

Modeling and Simulation of Generator Circuit Breaker Performance

The Modelica Association Modelica 2006, September 4th – 5th

)� *�
''��	
''���
����	

<	��!���� ��1������� ���������� �����972� ���:���

!��,� 	��� ��,���	�� �!� ��78���$1����� �������	���

��	�� �� ��,���� 	��$������ *���� �	��!����� �� !��,� !���

��*	� ��� 	�� ��� � ��,*��	���� ��� �����	��� 	�� 	���

*���� 4�� �� &5�� �� *,1��� �!� ����	����� 	�1���� ���

����	������*����!��������	� �	������*�	����

�

�
����)�	�����	���	��	�"�	���#������
���	�	�������	��#

���	 ��	 '
�
������	
��	 ����
����	 �'�����	
��	 '��#

������	��	�"�	����	

�

�� �� %� �������� ��,���	�������!� 	��� !*��� �������$

	�������	��,���	����!�������������*�	��!�	���,����$

� �� �� ��,*��	��� ������� 4�+,���,��8�5� ��� ����*����

��� ����� �����	�� 	��� �������	���� �� �	��!���� ��$

1���+� 4�����������5�� �,���,�	��� �� ��� ������� ���

���8+�1�	����78�������	�����,*��	�����������

E����� 	��� *���� ��!���� ����,�	���� ��� �	*��� �!� ��

�������� ����*�	��� !*��+� ��78����� 	��� ��!��	��� !����

4����	8	5������������	������*�	���!�	�����,*��	����*�

4���*	�	8	5��������		������������	�� 	���*����!� ��*$

	������	�������	������8+���1���+��2����	����!�������

��,���	��+�	�������	�	��	���*���K�	���*����������	�

�����	���	��!������	��	�����	*���!��,�	�����	+�����!�

��*	�����*	�*	��!�	�����,*��	����	������

�� 	+������ ����*�	��� ��� ������	��� �� !��� ��������

2���78�����������	�������,���,�	��������	�,���	���

�*��� 	��	� ���*�	�� ��� *���� ������ ��� 1�� ������ ���

���	����������	*������+��

�

�

�
����	+�	���'�����	,��$	��	�"�	���	
''���
�����	

+� -�����	
��	����������	

�� �� J� ������ 	��� ������ ���	��� �!� �� 3��� 	��	� ����

���� ���� 	���,��� 	+��� 	��	��	� 	��������� ������	�

	��	� ��1���	��+��2��������*��� �!� 	��� ����*�	�1�������

�����4�*���*�� ����	� *����1�85������+������	����

2��� ���*�	� � 	�,����	*��� ���!���� ��� � 	��� �8��� �!�

	��� ����*�	�1������� 4���� ���*�	��5� �!� 	��� 	���,���

	+���	��	��������������� ��A������������	�����,*��$

	������*�	��

�

�
����	 .�	 ��"��
���	 �����	 �������	 ��	
	 ����	 !"�	 ��#

�����	����	�����
��	'��������	��	���'��
���	�������	��	

���'��
���	����	������	

�

�
����	 /�	 !��'��
���	����	
��,�	
������	 ���'��
���	

,��	'�������	
����	�"�	��������	��	
	����	!"�	���	����	

�����
���	�"�	�
0���	'����������	���'��
���	�����	

�������

����	
�����

�����

�	����		�����

�	
�����

�	�������

322

O. Fritz, M. Lakner

The Modelica Association Modelica 2006, September 4th – 5th

�� ��A�������	��	�	�������*��	���	�,����	*������	��1*$

	��� � ����� ���+� ����� ��	�� 	��� ,���*���� 	�,����$

	�����2���,�8�,,������	�����������8�,�	��+�&�"�

�	� �� 	�,����	*��� ����� �!�NJ'�"� 4AO5� �	� 	��� ��	��	�

�����2���������	��	�	���,�����+�������������	����

���*�	�� ��� ,���+� �*�� 	�� ��� �	�+� �����,��	��� ���*���

*������	���,�����!���	���,�	����������,�	�������	���

��	��	� �����	������ 2��� � ���,�	� 1�	���� ,���$

��,�	� ��� ��,��	��� �1	����� !��� ���� �	����3���

	+���� �������� 1+� 	��� 	���,��� �	����� ,����� ����

�����1�		���	����'O��

���� 1���,���� � 	��� ���*�	�� �!� 	��� ��,*��	���� 	��

������*��+�*����,�	�������� ���	�*,1����!��	������

�8����,�	���������!��������8	������+� 	��	����<�

���	��*�����	������	�!���	����!�	���	�,����	*����!���	�

���	����	���3���*������ �����*���	���������	���

������� ���1��,�� ������ 	��� ���	�!���	��� �!� �� ,�8�$

,*,� ����� �*���	� ������ �	�+� �1����� �� ���� ��$

���	�1��� �����	� � 	�,����	*�������� ���!��,���� ��$

���+�� 	��� ������ �������	��� 4��	��*	� 	��� ,����� �

�����,�	5���������� ��������������*	�� 	������$

�*�	���� ������ �	��	��� ��* ��+� ���!� �� +���� �!	��� 	���

���F��	���!��	����

E����� 	��� �,���,�	�	��� �!� 	��� �������+� ���8+�

��1���+� ��� :��� ����� �����	��� �� ,�F��� ����$

�� ���� �� ���	��*���� ��!!��*�	+� �!� 	��� ,����� ��!��$

,�	� ���� 	��� ������� �!� �	�1��� *���$���*��� !��� 	���

�*1�	�	���� �,�*	� �$������ �6*�	�����2���* �� ��

���	���	��� �!� 	��� �,�������� ���	�� �!� ���	��� ,�����

��������	����+������+�,��� !*�����*���� �������*!$

!����	� �����1���	+� �!� 	��� ��	���$���*�� ����*��	���

��*���1������������

2��� �*	����� ����*��� 	��	� �� 	���,��$�	�����1�����

�������	��� �������*�	�����+�����*�	�������*	���!���

�� ���!��,���$����*�	��� 	���� ��	�� �� *����+� �

,������!��� ����,���8�	+�������*���+��2��������!���

�*�����	�������*��������1+��*1�	�	�������� ����

����������	��� 	���*����!� �	������ 	����� ��6*��� ���

	���� �����	�����,��	�	��������	� ���!����*1�	�$

	����+����*����	�,��	���!!����

-���������	

B�C� <777��;A�'�;$�PPA>�<777��	������ !������

#� �$:��	� �� 3����	��� ����*�	� ���������

��	��������+,,�	�������*���	�������

323

Modeling and Simulation of Generator Circuit Breaker Performance

The Modelica Association Modelica 2006, September 4th – 5th

324

O. Fritz, M. Lakner

The Modelica Association Modelica 2006, September 4th – 5th

Parallel Simulation with Transmission Lines in Modelica

Kaj Nyström Peter Fritzson

Dept. of Computer and Information Science, Linköping University

SE-581 83 Linköping, Sweden

kajny@ida.liu.se petfr@ida.liu.se

Abstract

Parallelization of simulations has traditionally
been an important way of improving the perfor-
mance of complex simulations. However, this of-
ten requires knowledge in parallel programming,
something few modellers have. In this paper we
present a way of parallelizing Modelica simulations
at the component level requiring no prior knowl-
edge in parallel programming. Our method of par-
allelizing simulations uses the equation based and
unconditionally stable Transmission Line Model-
ing technique which uses simple time delays to
decouple a model into submodels. The method
is independent of compiler implementation and
thus supports all of the Modelica language sup-
ported by a given Modelica compiler. An evalua-
tion of our implementation of this method shows
speedups of up to 2.3 times with a variation in
speedup that is highly dependent on the model
structure and how successful the users paralleliza-
tion is.

Keywords: TLM; parallel; simulation; transmis-

sion line; modeling;

1 Introduction

As knowledge in modeling and simulation be-
comes more common throughout both industry
and academia, the need to simulate systems with
higher complexity grows stronger. However, com-
putational power effectively sets the upper limit
for how complex our models can be before simpli-
fications have to be made in order for the simula-
tion to finish in reasonable time.

Traditionally one of the most common ways of
achieving better performance from a simulation
has been to parallelize it. While this is usually
difficult for a simulation in a low level language,
for example Fortran or C, it is even harder in the

Modelica language [4, 5, 6] since the Modelica user
has little control over the inner workings of a sim-
ulation, something that is often necessary in order
to parallelize it. In addition, parallelization of a
simulation almost always requires expert knowl-
edge in the area of parallel programming, some-
thing that few Modelica users have.

One possibility to simulate in parallel would
be to use parallel solvers. These parallel solvers
are however not suitable for all problems and can
sometimes suffer from numerical instability. An-
other solution is to automatically parallelize the
simulation, either at the Modelica level or at the
generated code level. This typically gives better
performance for some tightly coupled simulations.
However, available tools can not handle for exam-
ple hybrid models and performance increase could
possibly be better if the user can help the model-
ing environment with the parallelization in some
way.

The problem with user interaction when paral-
lelizing a model in Modelica is that user interac-
tion has to be done on a level that the user can
access and understand. The typical Modelica user
works on the component level. Thus, this is where
the parallelization should be specified. It should
also be in an application domain neutral fashion,
since that is how the Modelica core language is
intended to be used. Parallelizing a mechanical
application should ideally be no different from par-
allelizing an electrical application.

2 Contributions

In this paper, we present a domain neutral and nu-
merically stable method of parallelizing Modelica
simulations at the component level requiring vir-
tually no knowledge in parallel programming from
the user. We base our method on the Transmis-
sion Line Modeling theory.

325

Parallel Simulation with Transmission Lines in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

3 Transmission Line Modeling

Central to the task of parallelizing a model is
the task of partitioning the model into submod-
els which can then be simulated on separate com-
puters. We have chosen the Transmission Line
Modeling method for parallelizing simulations for
a number of reasons. It is a proven way of decou-
pling equation systems and is also equation based
itself which makes it fit nicely into a Modelica
component. Furthermore, the TLM method has
been proven to be unconditionally stable, an al-
most absolute requirement as an unstable simula-
tion can be close to useless. This stability holds
for as long as the TLM parameters are withing
physical boundaries.

The theory evolved from the Telegraphers Equa-
tions [18] which concerns signal propagation in ca-
bles. In the 1970’s the TLM method was first used
for computer based modeling by among others A.
Fettweiss[11] and P.B. Johns[12]. The method has
previously been used to decouple and solve previ-
ously unsolvable problems, for co-simulation and
to some extent also for distributed simulation.

3.1 TLM Theory

The idea behind the TLM technique is to use phys-
ically motivated delays in signal propagation me-
dia to decouple a simulation. This time, called
Ttlm is the time it takes for signals from system 1
to reach system 2 (see figure 1).

c2

c1

v2,i2v1,i1

Figure 1: A TLM connection and the governing
variables. Notation is from the electrical domain,
voltages v1,v2 and currents i1, i2. c1 and c2 are the
characteristics of the transmission line .

Ttlm can be computed from the signal propaga-
tion speed in the medium and the medium length.
The equations which govern the exchange of infor-

mation between the systems are

c1(t) = V2(t −Ttlm)+ZFI2(t−Ttlm) (1)

c2(t) = V1(t −Ttlm)+ZFI1(t−Ttlm) (2)

P1(t) = ZFI1(t)+ c1(t) (3)

P2(t) = ZFI2(t)+ c2(t) (4)

The parameters c1 and c2 are called the charac-
teristics of the transmission line and represents
the propagated information in every time step,
delayed as the theory prescribes. P and Q are
the variables in the TLM connection and could be
from any domain, for example current and voltage.
ZF is an implicit impedance for the connection.

The advantage with introducing TLM connec-
tion is that the previously implicit parallelization
problem now becomes explicit. Consider the equa-
tions 1 and 3. These equations state that P1 at
time t only depends on system 1 and on previ-
ous (t−Ttlm) values from system 2. Thus we have
transformed the problem of solving one implicit
equation system into two smaller implicit equation
systems. The possibility for parallel processing is
obvious.

An additional advantage is that we can use both
different solvers and different time steps in the two
subsystems, as long as we interpolate propagated
values reasonably well if needed. This means that
we can greatly reduce the stiffness for some prob-
lems.

The TLM method has been proved to be uncon-
ditionally stable [14, 16], provided that the TLM
parameters are computed correctly. The method
does not introduce any additional numerical error
into the model. Instead, it actually transforms a
numerical error to a modeling error[13]. This often
makes it easier for a user to identify and compen-
sate for the error rather than if the error would
be purely numerical due to the fact that the nor-
mal Modelica user is probably a modeling expert
rather than a numerical expert.

3.2 Theory Extensions

The TLM theory prescribes that we compute the
transmission line delay time Ttlm from the propa-
gation speed and the length of the line. However,
in order to maximize the degree of decoupling and
achieve maximum speedup, we can allow for non-
physical Ttlm. This is useful since we do not want
any stalling in the simulation of the subsystems
due to lack of data. This stalling can happen if

326

K. Nyström, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

it takes too long for the data to be transmitted
through the computer network from the computer
which simulates system 1 to the computer sim-
ulating system 2. If we increase Ttlm to a value
greater than its corresponding computed value, we
allow for higher latency which will avoid stalling
computations. Such an increase in Ttlm is how-
ever not without problems. If we increase Ttlm too
much, the system might become unstable and/or
produce wrong results. It is not easy to give an
answer on what a good value for Ttlm is when you
move beyond the strictly physical value as choos-
ing a good Ttlm is a trade off between performance
and robustness and depends on system dynamics.

The TLM theory was originally developed for
electromagnetical signals. Over the years it has
been used for a wide variety of domains (hy-
draulics, mechanics etc). However, we see no rea-
son to limit ourselves to any specific domains since
the Modelica language gives us such exceptional
possibilities for building generic components.

This method of parallelization should work for
most domains in one dimension which propagate
one flow and one non-flow variable. Extending
the TLM theory to use vectors has been investi-
gated previously[16, 13] in a somewhat different
context and we foresee no problem with extending
our method to handle different sets of propagated
variables.

Since the transmission line has an undamped
resonance, it is sometimes beneficial [15] to low
pass filter ci in a transmission line as

ci(t) = αci(t−δ)

where α is the filter parameter (0.2 is usually a
good value) and δ is the time step. Without this
filtering, the resulting signals might contain un-
wanted high frequency components, resulting in a
slightly staircase shaped signal as can be seen in
figure 6

4 Implementation

We have implemented and tested our way of par-
allelization of Modelica simulations with the TLM
method as outlined in section 2. The framework
consists of 3 parts which we shall now describe in
detail.

4.1 A Generic Modelica TLM package

The TLM package (depicted in figure 2) contains
the TLM components which the user inserts into
his model when he wants to partition it. More on
how this is done in section 5.1. The package also
contains external functions which take care of the
message passing in the simulation. However, the
user never needs to see or use these functions.

Figure 2: Structure of the TLM package

4.2 The Model Partitioner

This small program transforms the original model
into a new Modelica package which in turn consists
of the separate submodels derived from the orig-
inal model. The program also divides and prop-
agates the TLM components so that the correct
parts of it are present in all submodels. This par-
titioning is depicted in figure 3.

TLM

Component1 Component2

Component1 Component2

TLMComponent1

TLMRuntime1_1 TLMRuntime1_2

TLM_p TLM_p

Figure 3: Splitting one model into two models on
TLM boundaries

The arrows between TLM1 1 and TLM1 2 sym-
bolize the communication of TLM variables be-
tween the two submodels, which takes place over
a local network using a simple sockets-based pro-
tocol.

327

Parallel Simulation with Transmission Lines in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

Algorithm 1: Partition a model into submod-
els
Input: An arbitrary component based model
Output: A mapping component-submodel

number for all components
subModelNr ← 01

foreach component ∈ components do2

if notvisited(component) then3

visited(component) ← true4

component(component) ← subModelNr5

push(componentStack,6

allNeighbours(component))
while not empty(componentStack) do7

component ← pop(componentStack)8

visited(component) ← true9

component(component) ←10

subModelNr
push(componentStack,11

allNeighbours(component))
end12

end13

subModelNr ← subModelNr+114

end15

The partitioning is done using a repeated
breadth-first search with visitor recognition as de-
scribed in algorithm 1. TLM-components and
associated connect equations are filtered out be-
fore the algorithm is applied to the model as they
should be considered as separators (interfaces) be-
tween submodels.

After applying this algorithm, all components
have an association to a submodel number. We
can now insert all components present in the orig-
inal model in their respective submodels. Next,
we check into which submodel the first compo-
nent in each connect equation belongs and use
this information to add the connect equation in
the components. For example, if component
R1 belongs in submodel 2, the connect equa-
tion connect(R1.p,C1.n) should be entered in
submodel 2.

The previously filtered out TLM components
are now substituted for runtime TLM components
as in figure 3. These runtime TLM components
contain all necessary functionality for requesting
and reporting information necessary for the simu-
lation to their counterpart TLM runtime compo-
nent.

4.3 A Simulation Dispatcher and Man-

ager

When the partitioning is done, the simulation
is built using any Modelica compiler. We
have successfully used OpenModelica[1, 2, 3] and
Dymola[17]. As far as the compiler is concerned,
it is now compiling two or more completely differ-
ent models with no association between them, so
the compiler itself needs no modification.

This gives us some additional advantages. Dur-
ing compilation of our submodels we can cus-
tomize the simulation of our different submodels,
for example choosing different solvers for different
submodels if desired. We can also specify different
time steps or fault tolerance levels which if done
right can significantly reduce the stiffness in the
original model.

Finally, the dispatcher takes care of distributing
the jobs on separate machines, such as on a com-
putational grid or a PC cluster, and to manage
reports and request for data from the simulations.

5 Discussion and Results

In this section we will present and discuss our re-
sults with respect to user interaction, performance
and fault tolerance.

5.1 User Interaction

One of our primary goals with the work presented
in this paper is to provide a way of parallelizing
simulation that the average Modelica user can ac-
tually use without too much effort. This means
that it should require little change in the way the
user builds his model. At the time of writing,
no scientific study has been done on the usabil-
ity of this framework so we will settle for briefly
describing what has to be done by the user in order
to parallelize his model and let the reader decide
whether this is usable or not.

The only additional task the user has to under-
take in order to use our framework is to partition
his model by inserting TLM elements where he
wants to partition his model. This can be done
either graphically or textually and works exactly
like inserting any normal Modelica component in
a model. The hardest part for the user is to de-
termine where to insert these TLM elements.

The best and most general advice we can give at
a model level is to decouple the model at domain

328

K. Nyström, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

boundaries since these are usually the boundaries
between fast and slow subsystems. Decoupling
such subsystems combined with using different
solver settings can significantly increase perfor-
mance. Another advice is to partition the model
in equally complex parts. This is quite difficult to
do at a component level since it may be hard to
see at a component diagram level what the com-
plexity is of a certain part of a model.

5.2 Performance

Evaluation of a parallel programming framework
is difficult at best. Many factors are involved and
the framework designer tends to choose the prob-
lems and environments that favour his framework
the most. When evaluating our framework for
Modelica models, we have found that out largest
problem by far is to choose our models. Few suf-
ficiently large models are available to the general
public, especially models which can be understood
and parallelized by a non-expert in the modeling
domain.

The best thing would obviously be to have a
set of more or less standardized and independent
benchmarking models. Lacking this, we have cho-
sen to build our own models for benchmarking us-
ing only Modelica Standard Library components
and examples. Given this bias problem bias, it is
uncertain if we should really present any figures
of speedup at all before our framework has been
tested with independently built models. Even so,
we choose to present our preliminary findings re-
garding performance here for what they are.

The framework can handle Modelica models or
arbitrary size but as usually is the case with par-
allelization, little or no speedup or even a perfor-
mance decrease can be expected when parallelizing
small models as the communication overhead then
becomes a significant factor in simulation time.
Then again, there is probably no need to paral-
lelize small models as these will most likely run
just fine on a singe CPU.

Using these models we have registered speedups
ranging from 0.5 (negative speedup) to 2.3 de-
pending on the structure of the problem and how
we parallelize it. Stiff problems which we can eas-
ily decouple will give us the greatest speedup while
some homogeneous problems might not be suitable
for parallelization at all.

All tests were done on a standard PC-cluster
with the following nodes

• OS: Rocks Linux [19]

• CPU: PIII-800Mhz

• Memory: 512MB

• Network: 100Mbit Ethernet

The cluster is quite old fashioned but still demon-
strates the general effectiveness of our framework.
Is is likely that a more modern cluster with faster
nodes and faster network will increase perfor-
mance as we can then decrease the granularity of
our model partitioning.

Our figures have been derived by comparing to-
tal simulation time on one node to total simula-
tion time using two to six nodes, depending on
the model structure. We wish to stress that we
do not rule out the possibility that a modeling ex-
pert could achieve better performance as he or she
might be better suited to parallelize the models.

5.3 Fault Tolerance

Just as the theory predicts, the error in the mod-
els we have tested is well within normal values
for numerical simulations as long as the TLM pa-
rameters are within physical limits. When we go
outside physical values however, we will inevitably
introduce an error. How large or significant the
error is depends on the model. The modeler is
obviously best suited to be the judge of if this is
within his fault tolerance limits or not. As we
are just working with a simple delay in the time
domain it is generally easy for a domain expert
to see beforehand what effect an extra time delay
will have on his model and if this is acceptable or
not.

For comparison on what a way too large Ttlm,
we present two simulation runs of a standard DC-
Motor example with a ramp as a voltage source as
depicted in figure 4.

R=10

Resistor1

Ground1

L=0.5

Inductor1

EMF1

k=1 Inertia1

J=1

Ground2

tlmElec...

R
am

pV
oltage...

Figure 4: TLM partitioned DC-motor model

329

Parallel Simulation with Transmission Lines in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

� ��� � ��� ��

��

�

�

�

�

�

�

	

�

�
���������� ����������

Figure 5: Plot of voltage over the resistor compo-
nent, Ttlm=0.01, interval length=0.01s

� ��� � ��� ��

��

�

�

�

�

�

�

�

�

�

�
 !"#"$%&��' !"#"$%&��'

Figure 6: Plot of voltage over the resistor compo-
nent, Ttlm=0.1, interval length=0.01s

From figures 5 and 6, we can clearly see that
Ttlm = 0.1 was probably a to high value for most
applications, although it still does show the gen-
eral shape of the result. Still, since it is a delay
in the electrical application domain in a circuit
where the propagation speed is usually very large
and in a model with no capacitor elements, de-
laying the signal by one tenth of a second seams
rather a lot to any electrical engineer. As always,
the modeler must use his judgement when setting
the parameter values, in this case Ttlm.

6 Conclusions

We have been able to parallelize Modelica simula-
tions and to abstract user interaction at a compo-
nent level which we believe will be a usability im-
provement compared to other parallelization tech-
niques. Communication and scheduling are com-
pletely hidden from the user. However, no scien-
tific evaluation has yet been done on the usability
aspects of our work.

Speedup is up to 2.3 times so far but varies

greatly and depends on model structure and if
the model is partitioned successfully. Performance
also depends on accuracy requirements on the
model and is easily configurable by the user. Ad-
ditional advantages with the method are that it
reduces model stiffness if properly used and that
it is also possible to use different solvers for differ-
ent submodels if desired.

7 Future work

Obviously, a usability study is one of the most
important items for future work as that has been
one of the major goals of our work. We would at
the same time like to continue to develop heuristics
for better partitioning of models. This process
might even be automated using such heuristics.
There is also plenty of more work on automatic
estimation of non-physical delays that do not lead
to errors beyond a given tolerance level, perhaps
using static analysis on the model.

A better performance evaluation is also priori-
tized but largely dependent on the availability of
large models. Such models have proven to be dif-
ficult to find.

On the implementation side, a better communi-
cation implementation pattern (e.g. peer to peer)
should be established in order to reduce communi-
cation cost. Also, adaptable value reuse depending
on model dynamics should not be hard to imple-
ment and should lead to a significant decrease in
communication overhead.

More static and dynamic analysis of the perfor-
mance bottlenecks for individual simulations could
be a way of aiding the user in both model parti-
tioning and choosing TLM parameters.

8 Acknowledgments

This work was supported by MathCore
Engineering[9] and Vinnova[8] in the GRID-
Modelica project[10].

References

[1] Peter Fritzson, et al. The Open Source
Modelica Project. In Proceedings of The
2nd International Modelica Conference, 18-
19 March, 2002. Munich, Germany See also:
http://www.ida.liu.se/ projects/OpenModel-
ica.

330

K. Nyström, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

 [2] Peter Fritzson, Peter Aronsson, H̊akan Lund-
vall, Kaj Nyström, Adrian Pop, Levon Sal-
damli, and David Broman. The OpenModel-
ica Modeling, Simulation, and Software De-
velopment Environment. In Simulation News
Europe, Issue 44/45, December 2005.

[3] The OpenModelica Users
Guide, version 1.3.2, Apr 2006.
http://www.ida.liu.se/projects/OpenModelica

[4] The Modelica Association. The Model-
ica Language Specification Version 2.2,
March 2005. http://www.modelica.org. ac-
cessed 2005-05-02

[5] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
940 pp., ISBN 0-471-471631, Wiley-IEEE
Press, 2004.

[6] Michael Tiller. Introduction to Physical Mod-
eling with Modelica. 366 pages. ISBN 0-7923-
7367-7, Kluwer Academic Publishers, 2001.

[7] Peter Aronsson and Peter Fritzson, Task
Merging and Replication using Graph
Rewriting, Tenth International Workshop
on Compilers for Parallel Computers,
Amsterdam Netherlands, Jan 8-10 2003

[8] Vinnova, http://www.vinnova.se, accessed
2005-05-02

[9] Mathcore Engineering,
http://www.mathcore.com, accessed 2005-
05-02

[10] The GridModelica Project, http:
//www.ida.liu.se/labs/pelab/
modelica/GridModelica.html, ac-
cessed 2005-05-02

[11] A. Fettweiss, Digital Filter Structures Re-
lated to Classical Filter Networks. Arch. Elek.
Übertragungst., 23(2):79-89, 1971

[12] P.B. Johns and M.A. Brien, Use of the Trans-
mission Line Modeling (t.l.m.) Method to
Solve Non-Linear Lumped Networks, The Ra-
dio Electron and Engineer, 50:59-70, Jan/Feb
1980

[13] Petter Krus, Modelling of Mechanical Sys-
tems Using Rigid Bodies and Transmission

Line Joints, ASME journal of Dynamic Sys-
tems, Measurements and Control, 1995

[14] S.H. Pulko, A. Mallik, R. Allen, and P.B.
Johns. Automatic Timestepping in TLM
Routines for the Modelling of Thermal Dif-
fusion Processes. Int. Journal of Numerical
Modelling: Electronic Networks, Devices and
Fields, 3:127 136, 1990.

[15] P.Krus, A. Jansson, J-O. Palmberg and K.
Weddfelt. Distributed simulation of hydrome-
chanical systems. In Third Bath International
Fluid Power Workshop, Bath, UK, 1990.

[16] Iakov Nakhimovski, Contributions to the
Modeling and Simulation of Mechanical Sys-
tems with Detailed Contact Analysis. Ph.D
Thesis, Linköping University, Dept. of Com-
puter and Information Science, April 2006.

[17] The Dymola modeling tool, http://www.
dynasim.com accessed 2005-05-02

[18] The telegraphers equations, http://en.
wikipedia.org/wiki/Transmission_
line#Telegrapher.27s_equations,
accessed 2005-05-02

[19] Rocks Linux, http://www.
rocksclusters.org, accessed 2005-
07-20

331

Parallel Simulation with Transmission Lines in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

332

K. Nyström, P. Fritzson

	Proceedings2006_Vol1.pdf
	Session1a_Header.pdf
	1a1_10091.pdf
	1Introduction
	2The plant model
	3Control system model
	3.1Low level controllers
	3.2Supervisory control

	4Model parametrisation and validation of the reference transient
	5Improving the start-up transient
	6Conclusions and future work
	7References

	1a2_10019.pdf
	Abstract
	Keywords : Combined Cycle Power Plant, Steady State Modelling, Inverse Problems

	1. Introduction
	2. The LEDA Solver
	3. General presentation of a combined cycle pow
	4. The Rio Bravo component model library
	5. The Rio Bravo model
	6. Model calibration
	7. The thermodynamic properties
	8. The simulation results
	9. Conclusion
	
	
	References

	Appendix

	1a3_10129.pdf
	Session1b_Header.pdf
	1b1_10100.pdf
	1b3_10143.pdf
	Session1c_Header.pdf
	1c1_10034.pdf
	1c2_10112.pdf
	1c3_10049.pdf
	Session1d_Header.pdf
	1d1_10051.pdf
	1d2_10080.pdf
	1d3_10111.pdf
	Session2a_Header.pdf
	2a1_10083.pdf
	2a2_10075.pdf
	2a3_10029.pdf
	Session2b_Header.pdf
	2b1_10061.pdf
	Introduction
	Fuel System Modeling
	Background
	Fuel Pump Assembly
	Hydraulics
	Vehicle Fuel System

	Results
	Model Calibration
	Model Sensitivity
	Revised Model and Simulations
	Drive Cycle Simulations
	Model Usage Scenarios

	Conclusions

	2b2_10056.pdf
	2b3_10036.pdf
	Session2c_Header.pdf
	2c1_10031.pdf
	2c2_10097.pdf
	2c3_10105.pdf
	Session2d_Header.pdf
	2d1_10088.pdf
	2d2_10024.pdf
	2d3_10149.pdf
	Session3a_Header.pdf
	3a1_10043.pdf
	3a2_10048.pdf
	3a3_10089.pdf
	Session3b_Header.pdf
	3b1_10121.pdf
	3b2_10150.pdf
	3b3_10063.pdf
	Session3c_Header.pdf
	3c1_10136.pdf
	3c2_10094.pdf
	3c3_10137.pdf
	Session3d_Header.pdf
	3d1_10099.pdf
	3d2_10102.pdf

