
Design and validation of an annotation-concept
for the representation of 3D-geometries in Modelica

Thomas Hoeft1 Christoph Nytsch-Geusen1, 2
1Fraunhofer Institute for Computer Architecture and Software Technology

Kekuléstraße 7, 12489 Berlin, Germany
2University of Arts Berlin, Hardenbergstraße 33, 10623 Berlin, Germany

christoph.nytsch@first.fraunhofer.de

Abstract

Simulation models of complex technical systems
need beside the description of their physical behav-
iors also a representation of their 3-dimensional ge-
ometry and topology. Up to now, the Modelica lan-
guage specification [1] includes only rules for 2D-
primitives in form of specialized annotations. Start-
ing from this point, this paper illustrates the design
and validation of an advanced annotation-concept for
embedded 3D-geometries in physical models. The
basic idea consists in the combination of specialized
3D-annotions for classes and objects with a standard-
ized description of 3D-geometries and topologies.
Therefore the X3D-standard [2] is used by the au-
thors. Based on the founded similarities and parallel-
isms in the object-oriented concept of Modelica and
the node concept of X3D an annotation concept for
the embedding of the 3D-geometries was designed.
Further an extension for the Modelica-simulator
MOSILAB [3] in form of a 3D-editor plug-in was
developed for the generation of X3D/Modelica-
scenes and the validation of the new annotation con-
cept. Finally the annotation-concept was evaluated in
a simulation use case, where the physical model of a
simplified Pool-Billiard game [4] was combined with
its 3D-geometry description.
Keywords: 3D-annotation concept; X3D; 3D-
representation of physical models; 4D-animation

1 Introduction

Up to now the Modelica language specification does
not comprise means of expressions for code inte-
grated description of 3D-geometries. The first fun-
damental analysis and conceptual work in this direc-
tion was done by [5]. Two alternative ways were
discussed by the author for the integration of 3D ob-
ject information in Modelica:

1. Definition of a basic set of “graphical classes”,
which make a representation of primitive 3D ob-
jects (e.g. Triangle, Sphere) and position opera-
tions with this objects (e.g. Translation, Rota-
tion) in user defined physical models possible.

2. Direct integration of the 3D object information
as “graphical annotations” into the physical
models self.

Further the embedding of external graphical formats
like STL, VRML or DXF in Modelica models as
annotations information was shortly discussed in this
paper.
The Modelica-simulator Dymola [6] supports with
an additional software component the visualization
of 3D-objects, mainly for the MultiBody-Library.
For this, external definitions of 3D-shapes via dxf-
files are utilized.
In our approach for a model integrated representation
of 3D objects, we have introduced Extensible 3D
Graphics (X3D) - an open international standard for
3D on the Web and the official successor of VRML -
into the Modelica language as a new annotation-type.
We think this approach offers a number of important
advantages:
• X3D represents a sophisticated (and international

accepted) concept for complex and hierarchical
structured 3D-scenes, which fits well to the ob-
ject-oriented Modelica language concept.

• The prototype-concept of X3D allows an effi-
cient integration in the object-oriented concept
of Modelica.

• The annotation concept of Modelica supports the
X3D integration by adding the 3D-geometrical
information as X3D-strings on class level or ob-
ject level. Modelica-tools, which don’t under-
stand those X3D-annotations, are not bothered.

• The use of X3D in Modelica classes enables a
simple export of the 3D representation of a
physical model as a X3D-scene.

Design and Validation of an Annotation-Concept for the Representation of 3D-Geometries in Modelica

The Modelica Association 735 Modelica 2008, March 3rd − 4th, 2008

2 Annotation concept for 3D-object
representation in Modelica

For the integration and validation of X3D in the
Modelica language we have done following three
steps:
1. Design of an annotation concept for the repre-

sentation of 3D-geometries in Modelica
This comprises
• the definition of the language subset of X3D,

which is necessary for the representation of
3D-objects in Modelica,

• the definition of the annotation syntax for
X3D information,

• the Modelica class definition of a set of 3D-
primitives as a base for complex 3D-scenes,

• the rules to instantiate this 3D-classes in
physical models and

• a syntax for the coupling between the X3D
object attributes and the Modelica variables
for 3D-animated simulation experiments.

2. Development of a 3D-editor for the generation
and validation of Modelica models, which
contain 3D-objects, described in X3D
This comprises
• the definition of a set of 3D-base objects and

their attributes, which shall be supported by
the editor,

• the design and the implementation of the
construction interface for 3D-scenes and

• the integration of the 3D-editor in the MOSI-
LAB-IDE [3] as a plug-in.

3. Evaluation of the annotation-concept with the
help of a use case
The analyzed system model and its graphical
representation
• have to have a nontrivial recursive hierarchi-

cal structured geometry and
• have to include static and animated sub-

components.

2.1 Graphical representation in X3D

The X3D specification uses a hierarchical node con-
cept by the use of the XML-Syntax. A single node is
described by its node type and a number of fields
(node attributes). Each field has to be declared with
one of the 26 X3D data types. The following simple
X3D-scene, composed of a blue and a red ball, ex-
plains the main features of X3D for our use in the
context with Modelica. In a first step, a reusable pro-

totype Ball is defined with the ProtoDeclare node.
The first subnode, named ProtoInterface, contains
the field declarations, for which values can be set
during the instantiation of the prototype:
<X3D profile="Immersive">
 <Scene>
 <ProtoDeclare name="Ball">
 <ProtoInterface>
 <field accessType="initializeOnly"
 name="radius" type="SFFloat" value="1.0"/>
 <field accessType="initializeOnly"
 name="diffuseColor" type="SFColor"
 value="0.8 0.8 0.8"/>
 <field accessType="initializeOnly"
 name="translation" type="SFVec3f"
 value="0.0 0.0 0.0"/>
 ...
 </ProtoInterface>

The second subnode, named ProtoBody, defines the
functionality of the prototype. The three-dimensional
geometry of the ball is described by the node for the
X3D-primitive Sphere and its optical appearance
(diffuseColor, transparency …) by the Material-
node. The ball position and orientation is defined by
the Transform-node with the fields translation and
rotation. Further, the code snippet shows some con-
nections between a nodeField of a subnode within
the ProtoBody-node and a declared protoField of the
ProtoInterface-node. This concept makes the access
to these quantities possible during the instantiation of
the prototype:

 <ProtoBody>
 <Transform>
 <IS>
 <connect nodeField="translation"
 protoField="translation"/>
 ...
 </IS>
 <Shape>
 <Sphere>
 <connect nodeField="radius"
 protoField="radius"/>
 </Sphere>
 <Appearance>
 <Material>
 <connect nodeField="diffuseColor"
 protoField="diffuseColor"/>
 ...
 </Material>
 </Appearance>
 </Shape>
 </Transform>
 </ProtoBody>
 </ProtoDeclare>

In the second step, the both objects ballBlue and
ballRed with the prototype Ball are instantiated,
whereas the radius value is set on the typical size for
a billiard ball (2.65 cm) and the diffuseColor value is
set on the RGB-values for blue and red. The red ball
is displaced from the origin at 25 cm by setting the
value of the transform field:

T. Hoeft, C. Nytsch-Geusen

The Modelica Association 736 Modelica 2008, March 3rd − 4th, 2008

 <ProtoInstance name="Ball">
 <MetadataString name="ballBlue"/>
 <fieldValue name="diffuseColor"
 value="0.0 0.0 1.0"/>
 <fieldValue name="radius" value="0.0265"/>
 </ProtoInstance>

 <ProtoInstance name="Ball">
 <MetadataString name="ballRed"/>
 <fieldValue name="diffuseColor"
 value="1.0 0.0 0.0"/>
 <fieldValue name="radius" value="0.0265"/>
 <fieldValue name="translation"
 value="0.25 0.0 0.0"/>
 </ProtoInstance>
 </Scene>
</X3D>

Figure 1 shows the visualization of this short X3D-
scene. As the example illustrates, X3D has not a real
object-oriented concept, but the ProtoDeclare-node
with its ProtoInterface and ProtoBody subnodes has
strong parallelism to the object composition in Mod-
elica.

Figure 1: Simple X3D-scene with two balls

2.2 Physical behavior in Modelica

The Modelica model of the ball describes its physical
behavior with simplified equations of motion of a
concentrated mass. Up to now, the model has not a
representation of its three-dimensional geometry:
import Modelica.SIunits;
...
model Ball
 parameter SIunits.Mass m = 0.2;
 parameter Real f_r = 0.05 “friction coeffient”;
 SIunits.Length x, y;
 SIunits.Velocity v_x, v_y;
equation
 m * der(v_x) = - v_x * f_r; der(x) = v_x;
 m * der(v_y) = - v_y * f_r; der(y) = v_y;
end Ball;

2.3 Integration of X3D in Modelica

Annotations in Modelica can be used as containers
for additional information, which have no influence
on the modeled physical behavior of a model class.
Well known examples are the definitions of graphi-
cal 2D-objects for the model icons or the model
documentation in form of embedded html-Code.
In our concept we have defined a new type of anno-
tations, which contains parts of X3D-scenes as
strings and give a Modelica-model a representation
of its 3D-geometry. These annotations are labeled by
a new element, named Object3D and can be used for
classes and objects:
Use in the class context:
model ClassName
 annotation(Object3D(x3d="X3D-String”))

 ...

end ClassName;

Use in the object context:
model ClassName
 ...
 ClassType objectname
 annotation(Object3D(x3d="X3D-String”));
 ...
end ClassName;

At first, based on this syntax, we have defined a set
of Modelica basic types for the 3D-modeling in the
package BasicBodies:
• Sphere3D,
• Cone3D,
• Box3D,
• Cylinder3D,
• Point3D,
• PolyLine3D.
As an example, the following code shows the im-
plementation of the basic type Sphere 3D:
package BasicBodies
 model Sphere3D annotation(Object3D(x3d = "
 <ProtoDeclare name=\" Sphere3D\">
 <ProtoInterface>
 <field accessType=\" initializeOnly\"
 name=\" radius\" type=\" SFFloat\"
 value=\" 1.0\"/>
 <field accessType=\" initializeOnly\"
 name=\" transparency\" type=\" SFFloat\"
 value=\" 0.0\"/>
 <field accessType=\" initializeOnly\"
 name=\" diffuseColor\" type=\" SFColor\"
 value=\" 0.8 0.8 0.8\"/>
 <field accessType=\" initializeOnly\"
 name=\" translation\" type=\" SFVec3f\"
 value=\" 0.0 0.0 0.0\"/>
 <field accessType=\" initializeOnly\"
 name=\" rotation\" type=\" SFRotation\"
 value=\" 0.0 0.0 1.0 1.0\"/>
 </ProtoInterface>

Design and Validation of an Annotation-Concept for the Representation of 3D-Geometries in Modelica

The Modelica Association 737 Modelica 2008, March 3rd − 4th, 2008

 <ProtoBody>
 <Transform>
 <IS>
 <connect nodeField=\" translation\"
 protoField=\" translation\"/>
 <connect nodeField=\" rotation\"
 protoField=\" rotation\"/>
 </IS>
 <Shape>
 <Sphere>
 <connect nodeField=\" radius\"
 protoField=\" radius\"/>
 </Sphere>
 <Appearance>
 <Material>
 <connect nodeField=\" diffuseColor\"
 protoField=\" diffuseColor\"/>
 <connect nodeField=\" transparency\"
 protoField=\" transparency\"/>
 </Material>
 </Appearance>
 </Shape>
 </Transform>
 </ProtoBody>
 </ProtoDeclare>"));
 end Sphere3D;
end BasicBodies;

The other basic 3D-types are described in a similar
manner. Starting from these basic types, the configu-
ration of complex 3D-models in Modelica can take
place.

2.4 Coupling of the physical and geometrical
model description

The decisive connection between the variables of the
physical model and field-values of its X3D-
representation is realized by the introduction of the
annotation-element coupling. The syntax is defined
as follows:

model ClassName
 annotation(Object3D(x3d="X3D-String”,
 coupling(protoFieldName1={v1,v2,0.0},
 protoFieldName2={v3}, ...)))
 ...
end ClassName;

At this, protoFieldName stands for the field in the
3D-representation, which shall be updated dynami-
cally during the simulation (e.g. the object position
or its size or color) and v1, v2, v3 the corresponding
Modelica variables. Thus, a physical model can have
a number of coupled protoFields.
The next code piece shall illustrate this coupling
concept with the help of the ball example in para-
graphs 2.2 and 2.3. For this purpose, the ProtoInter-
face definition of the X3D description is integrated
as an annotation on the class level, because this in-
formation concerns only the class interface. The Pro-
toDeclare node is omitted, because this information
is implicit contained in the Modelica class-name it-
self:

...
import BasicBodies3D;
...
model Ball annotation(Object3D(x3d="
 <ProtoInterface>
 <field accessType=\" initializeOnly\"
 name=\" radius\" type=\" SFFloat\"
 value=\" 0.0265\"/>
 ...
 <field accessType="initializeOnly"
 name=\" translation\" type=\" SFVec3f\"
 value=\" 0.0 0.0 0.0\"/>
 </ProtoInterface>"),
 coupling(translation={x,y,0.0});

The representation of the 3D-geometry of the class
Ball takes place by the instantiation of the basic 3D-
type Sphere3D as an object within the class:

 BasicBodies3D.Sphere3D ball
 annotation(Object3D(x3d="
 <ProtoBody>
 <ProtoInstance
 name=\" BasicBodies3D.Sphere3D\">
 <MetadataString name=\" ball\"/>
 <connect nodeField=\" radius\"
 protoField=\" radius\"/>
 ...
 <connect nodeField=\" translation\"
 protoField=\" translation\"/>
 </ProtoInstance>
 </ProtoBody>")));
 parameter SIunits.Mass m = 0.2;
 parameter Real f_r = 0.05 “friction coeffient”;
 SIunits.Length x, y;
 SIunits.Velocity v_x, v_y;
equation
 m * der(v_x) = - v_x * f_r; der(x) = v_x;
 m * der(v_y) = - v_y * f_r; der(y) = v_y;
end Ball;

3 Use case Pool-Billard game for
validating the annotation concept

In the use case, which shall validate our annotation
concept for embedded 3D-geometry representations,
we have used a model of a simplified Pool-Billiard
game with three balls and one hole [4]. This simula-
tion model suits well to the problem, because its ge-
ometry is hierarchical structured and includes static
(table) and dynamic sub-components (billiard balls).

3.1 Modeling process

In the first step, a leg model (class TableLeg) from
the billiard table shall be configured from the three
submodels bottom (type Cylinder3D), adapter (type
Cone3D) and shaft (type Cylinder3D):
import BasicBodies.*
...
model TableLeg annotation(Object3D(x3d="
 <ProtoInterface>
 <field accessType=\" initializeOnly\"
 name=\" bottom.height\" type=\" SFFloat\"
 value=\" 0.025\"/>

T. Hoeft, C. Nytsch-Geusen

The Modelica Association 738 Modelica 2008, March 3rd − 4th, 2008

 <field accessType=\" initializeOnly\"
 name=\" bottom.radius\" type=\" SFFloat\"
 value=\" 0.125\"/>
 ...
 <field accessType=\" initializeOnly\"
 name=\" translation\" type=\" SFVec3f\"
 value=\" 0.0 0.0 0.0\"/>
 <field accessType=\" initializeOnly\"
 name=\" rotation\" type=\" SFRotation\"
 value=\" 0.0 0.0 1.0 0.0\"/>
 </ProtoInterface>"));

Cylinder3D bottom annotation(Object3D(x3d="
 <ProtoInstance name=\" Cylinder3D\">
 <MetadataString name=\" bottom\"/>
 <connect nodeField=\" radius\"
 protoField=\" bottom.radius\"/>
 <connect nodeField=\" height\"
 protoField=\" bottom.height\"/>
 ...
 <IS>
 <fieldValue name=\" translation\"
 value=\" 0.0 -0.4 0.0\"/>
 </IS>
 </ProtoInstance>"));

Cone3D adapter annotation(Object3D(x3d="
 <ProtoInstance name=\" Cone3D\">
 ...
 </ProtoInstance>"));

 Cylinder3D shaft annotation(Object3D(x3d="
 <ProtoInstance name=\" Cylinder3D\">
 ...
 </ProtoInstance>"));
end TableLeg;

Figure 2 shows the visualization of the previous de-
fined 3D-representation of the TableLeg model class.

Figure 2: 3D-representation of the TableLeg model

On the next hierarchy level the submodels for the
billiard table model are instantiated from two prede-
fined model classes (TableLeg, Border) and from
two 3D basic types classes (Box3D, Cylinder3D).
The model class BillardTable includes the submod-
els for the plate, the borders, the legs and the hole.
Figure 3 shows the visualization of this table model.

model BillardTable annotation(Object3D(x3d="
 <ProtoInterface>
 <field accessType=\" initializeOnly\"
 name=\" hole.height\" type=\" SFFloat\"
 value=\" 0.081\"/>
 <field accessType=\" initializeOnly\"
 name=\" hole.radius\" type=\" SFFloat\"
 value=\" 0.15\"/>
 ...
 </ProtoInterface>"));
 parameter SIunits.Length width,length;

 Box3D plate annotation(Object3D(x3d="
 <ProtoInstance name=\" Box3D\">
 <MetadataString name=\" plate\"/>
 <fieldValue name=\" size\"
 value=\" 2.54 0.08 1.27\"/>
 <fieldValue name=\" diffuseColor\"
 value=\" 0.0 1.0 0.0\"/>
 <fieldValue name=\" translation\"
 value=\" 0.0 0.0 0.0\"/>
 </ProtoInstance>"));

 Border borderUp annotation(Object3D(…));
 Border borderDown annotation(Object3D(…));
 Border borderLeft annotation(Object3D(…));
 Border borderRight annotation(Object3D(…));

 Cylinder3D hole annotation(Object3D(x3d="
 <ProtoInstance name=\" Cylinder3D\">
 ...
 <connect nodeField=\" height\"
 protoField=\" hole.height\"/>
 <connect nodeField=\" radius\"
 protoField=\" hole.radius\"/>
 <IS><fieldValue name=\" translation\"
 value=\" 1.26 0.0 -0.635\"/></IS>
 </ProtoInstance>"));

 TableLeg legDownLeft annotation(Object3D(x3d="
 <ProtoInstance name=\" TableLeg\">
 <MetadataString name=\" legDownLeft\"/>
 <fieldValue name=\" translation\"
 value=\" -1.06 -0.375 0.5\"/>
 </ProtoInstance>"));

 TableLeg legDownRight annotation(Object3D(…));
 TableLeg legUpLeft annotation(Object3D(…));
 TableLeg legUpRight annotation(Object3D(…));
end BillardTable;

Figure 3: 3D-representation of the BillardTable model

Design and Validation of an Annotation-Concept for the Representation of 3D-Geometries in Modelica

The Modelica Association 739 Modelica 2008, March 3rd − 4th, 2008

The class SystemModel integrates the static table
model and the three physical ball models. The physi-
cal model of the simplified Pool-Billiard game shall
be drafted only roughly in this paper. A detailed de-
scription is given in [4]. The implementation of this
example was realized with the language extension
for Modelica for model structural dynamics from the
GENSIM project [7, 8]. The different events of a
billiard game (reflections, collisions) and a varying
number of balls can be efficiently described with the
concept of object-oriented statecharts and object dy-
namics:

...
model SystemModel
 annotation(Object3D(...));
 parameter Integer n_balls = 3;
 parameter Real v_x, v_y;
 parameter Real d_balls = 0.0572;
 parameter Real d_holes = 0.15;
 Point p[n_balls];

 dynamic Ball bw annotation(Object3D(x3d="
 <ProtoInstance name=\" Ball\">
 <MetadataString name=\" bw\"/>
 <fieldValue name=\" diffuseColor\"
 value=\" 1.0 1.0 1.0\"/>
 <fieldValue name=\" translation\"
 value=\" 0.8 0.066 -0.2\"/>
 </ProtoInstance>"));

 dynamic Ball bb annotation(Object3D(x3d="
 <ProtoInstance name=\" Ball\">
 <MetadataString name=\" bb\"/>
 <fieldValue name=\" diffuseColor\"
 value=\" 0.0 0.0 0.0\"/>
 <fieldValue name=\" translation\"
 value=\" 0.6 0.066 -0.2\"/>
 </ProtoInstance>"));

 dynamic Ball bc annotation(Object3D(x3d="
 <ProtoInstance name=\" Ball\">
 <MetadataString name=\" bc\"/>
 <fieldValue name=\" diffuseColor\"
 value=\" 0.0 0.0 1.0\"/>
 <fieldValue name=\" translation\"
 value=\" 0.4 0.066 -0.2\"/>
 </ProtoInstance>"));

 BillardTable t(width = 1.27, length = 2.54)
 annotation(Object3D(x3d="
 <ProtoInstance name=\" BillardTable\">
 <MetadataString name=\" t\"/>
 </ProtoInstance>"));

 event Boolean disappear_bw(start = false);
 event Boolean collision_bw_bb(start = false);
 ...
equation
 disappear_bw =
 if((p[1].x-0.0)^2+(p[1].y-0.0)^2)^0.5<d_holes
 then true else false;
 collision_bw_bb =
 if((p[2].x-p[1].x)^2+(p[2].y-p[1].y)^2)^0.5
 <d_balls then true else false;
 ...
statechart
 state SystemSC extends State;
 State startState(isInitial=true);
 State Playing, GameOver;

 transition Playing->Playing
 event disappear_bw action
 disconnect(bw.p,p[1]); remove(bw);
 bw:=new Ball(d=d_balls, width=t.width,
 length = t.length,
 x(start = 1.27/2.0),
 y(start = 0.6));
 connect(bw.p,p[1]);
 end transition;

 transition Playing->Playing
 event collision_bw_bb action
 v_x := bw.v_x; v_y := bw.v_y;
 bw.v_x := bb.v_x; bw.v_y := bb.v_y;
 bb.v_x := v_x; bb.v_y := v_y;
 end transition;
 end SystemSC;
 end SystemModel;

Figure 4 illustrates the complete system model with
the static and dynamic model parts.

Figure 4: 3D-representation of the SystemModel

3.2 Simulation experiment

Figure 5: Simulation experiment for the Pool-Billiard
game over 4 seconds.
Figure 5 shows the positions of the white and the
black ball during a simulation period of 4 seconds.

T. Hoeft, C. Nytsch-Geusen

The Modelica Association 740 Modelica 2008, March 3rd − 4th, 2008

After 0.2 seconds, the white ball collides with the
black ball. After 1.0 second, the black ball is re-
flected twice in a short time period on the top side on
the billiard-table and both balls collide again be-
tween its reflections. After 2.3 and 2.5 seconds the
balls reflect on the left border. At 2.95 seconds the
white ball drops into the hole. At the end, the white
ball is set again on its starting position.
Figure 6 to Figure 9 show the 4D-animation of the
same simulation experiment. Because the calculated
x- and y-coordinates of both ball models are con-
nected with their 3D-representations by the annota-
tion-element coupling (compare with paragraph 2.4),
a 4D-animation (3 space coordinates plus the time)
of the experiment can be automatically generated.

Figure 6: Simulation experiment at time=0 seconds

Figure 7: Simulation experiment at time=0.2 seconds

Figure 8: Simulation experiment at time=2.3 seconds

Figure 9:Simulation experiment at time=2.95 seconds

4 Development of a 3D-Model editor

For the validation of the previous described annota-
tion concept for 3D-geometries in Modelica, a 3D-
model editor is being developed by the authors. This
editor supports the definition of 3D-scenes and gen-
erates the Modelica-code with the embedded X3D-
description. Because the editor is implemented as a
plug-in for the graphical user interface of the simula-
tion tool MOSILAB [3], the 3D-modeling works
close together with the other modeling features of the
MOSILAB-IDE (compare with Figure 10).

Figure 10: 3D-model editor as plug-in for the simula-
tion tool MOSILAB .

5 Conclusions

The new designed annotation-concept for the
representation of 3D-geometries in Modelica, based
on the X3D-standard, offers a number of advantages
and new perspectives:
• An integrated description of the equation based

physical behavior and a corresponding represen-
tation of the 3D geometry in a unitary Modelica-
model is an excellent precondition for an effi-
cient communication between the physical and
the geometrical model aspects.

• The use of X3D and its ProtoDeclare-concept
fits well to the object-oriented concept of Mode-
lica.

• 3D-objects, based on Modelica standard types,
can be added directly to the physical models and
could be connected by the coupling-annotation
element.

• The modeling process of complex 3D-scenes can
take place recursively on a multitude of hierar-
chical layers, because each Modelica/X3D-class
can be reused on the next hierarchy-level (see

Design and Validation of an Annotation-Concept for the Representation of 3D-Geometries in Modelica

The Modelica Association 741 Modelica 2008, March 3rd − 4th, 2008

the modeling process of the billiard table in
chapter 3.1).

• The use of the standard X3D-format for the
modeling of the 3D-geometries within the Mode-
lica language enables the import and export of
3D-scenes from/to X3D.

• Future works will focus on a closer integration
of the 3D-editor in the simulation tool MOSI-
LAB.

References

[1] Modelica Association Modelica - A Unified
Object-Oriented Language for Physical Sys-
tems Modeling. Language Specification,
Version 3.0, September 2007.

[2] Brutzman D. and Daly L. X3D: Extensible
3D Graphics for Web Authors. The Morgan
Kaufmann Series in Interactive 3D Technol-
ogy, 2007.

[3] MOSILAB-Homepage:
http://www.mosilab.de

[4] Nytsch-Geusen C. The use of the UML
within the modelling process of Modelica-
models. EOOLT´2007, 1st International
Workshop on Equation-Based Object-
Oriented Languages and Tools, Berlin 2007.

[5] Engelson V. 3D Graphics and Modelica – an
integrated approach. Linköping Electronic
Articles in Computer and Information Sci-
ence. Linköping universitet, 2000.

[6] Dymola-Homepage: http://www.dynasim.se
[7] Nytsch-Geusen C. et al. MOSILAB: Devel-

opment of a Modelica based generic simula-
tion tool supporting model structural dynam-
ics. Proceedings of the 4th International
Modelica Conference, TU Hamburg-
Harburg, Hamburg, 2005.

[8] Nytsch-Geusen C. et al. Advanced modeling
and simulation techniques in MOSILAB: A
system development case study. Proceedings
of the 5th International Modelica Confer-
ence, Arsenal Research, Wien, 2006.

T. Hoeft, C. Nytsch-Geusen

The Modelica Association 742 Modelica 2008, March 3rd − 4th, 2008

