
Automatic Model Conversion to Modelica

for Dymola-based Mechatronic Simulation

Tamás Juhász, M. Sc. and Ulrich Schmucker, Dr. Sc. techn.

Fraunhofer Institute for Factory Operation and Automation, Magdeburg, Germany

Tamas.Juhasz@iff.fraunhofer.de and Ulrich.Schmucker@iff.fraunhofer.de

Abstract

Virtual product development allows us to recognize
and evaluate the characteristics of a new product on
the basis of simulation at an early stage without hav-
ing to build a physical model. Currently the most,
widely spread commercial CAE systems do not offer
direct support to external dynamic simulation appli-
cations. Conversely, dynamic simulation of a de-
tailed model is required to maintain good correlation
between the behaviour of the real product and its
virtual counterpart. In this paper it will be presented,
that using a partially automated workflow a conven-
ient Modelica model translation can be achieved
from the output of a mechanical CAD system, allow-
ing the final model to be extended independently
with new elements from other simulation domains,
considering Dymola-based multi-domain simulation.
A .NET-based integrated tool for mechatronic model
editing and online / offline visualization support us-
ing advanced 3D (and stereo) techniques will also be
emphasized in this article.

Keywords: Pro/Engineer, Mechatronics, Collision,
Modelica, Dymola Simulation, Stereo, 3D Visualiza-
tion

1 Introduction

Virtual engineering offers a completely new aspect
of product development, as thereby all sections of
the product life cycle can be independently analyzed
and in parallel continuously optimized in the virtual
world. Simulation makes the practical verification of
the desired behaviour possible in early development
stages.

It is very cumbersome to manually create a paramet-
ric simulation model representing a complex product
that has been designed in a CAD system. Addition-
ally it is often the case that in machine production a
family of component parts with varying parameters
has to be designed repeatedly. Nevertheless the
product planning is usually an iterative practice:

some internal model parameters must be fine-tuned,
according to model assessment or verification proc-
esses. This implies that an automated model conver-
sion is highly demanded in order to accomplish a
good workflow. The designing engineer can inspect
the behaviour of the given virtual product by utiliz-
ing a dynamic simulation of that. For a convenient
iterative workflow a solution have to be provided to
automate the conversion between the standard output
format of the source CAD system and the input for-
mat of the target simulator.

In this article it will be presented that using Robot-

Max, our .NET-based mechatronic model authoring
and visualization application mechanical CAD data
from the widely-spread Pro/Engineer CAD environ-
ment can be imported, new mechatronic components
can be added, thus multi-domain Modelica models
can be generated and the results of the Dymola-based
multi-domain simulation can be visualized in a con-
venient way, even in 3D stereo using various 3D
technologies, for example by exploiting autostereo
monitors, polarizer- or liquid crystal shutter glasses.

2 Translation from CAD data to

Modelica models

We have interposed an own developed tool into the
design workflow to achieve automated conversion to
Modelica models from a Pro/E CAD model assem-
bly (e.g. for mechanics: geometry, mass / inertia pa-
rameters, joints).

Similar work has been done in [1], but using the
AutoCAD Mechanical Desktop system, and a differ-
ent, shallower structure of Modelica models. Our
approach allows a 3rd party to extend the mechanical
model with additional elements from other engineer-
ing domains in such a way that a designer can still
change / fine tune parameters in the CAD environ-
ment (and re-export the mechanical model), without
sacrificing the extra work that another expert might
have already done within the other model domains,
where there might be connections to the previous
mechanical model.

Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation

The Modelica Association 719 Modelica 2008, March 3rd − 4th, 2008

2.1 Basic steps of the translation process

There is a large amount of commercial and non-
commercial applications (e.g.: “3D_Evolution” or
“TransMagic”) available on the market offering na-
tive conversion between common standard (STEP,
IGES) and other well-known (AutoCAD, CATIA,
Inventor, Pro/Engineer, SolidWorks, Unigraphics,
etc.) CAD data formats. Thus without subsequent
restrictions it is assumed our source data is available
in the format that our CAD system (Pro/Engineer) is
able to import.

The translation from a CAD source file to Modelica
description needs the following basic steps:

- Assuming the CAD model has already been im-
ported into Pro/Engineer, you can export the hier-
archy and geometry information of the actual
model to VRML files simply through a click over
the File menu “Save as…” command. Note that in a
general case you get a main hierarchy file and the
geometries of the subsequent parts in separate
.WRL files. Geometry information is essential if
you want to model collision between the parts dur-
ing the simulation (see section 3.1 for further in-
formation).

- SimMechanics is a single-domain extension of the
Simulink environment developed by MathWorks,
and can be used for modelling and simulation of
mechanical systems. Under Pro/Engineer environ-
ment the freely available Pro/E-to-SimMechanics
plug-in [2] lets you export the given CAD assembly
to a single (so called “Physical Modeling XML”)
descriptor file, which is invented to ease the gen-
eration of SimMechanics models out of Pro/E data
in an automated way. The result XML file contains
global hierarchy-, constraint- and physical parame-
ter information (inertia-tensors, masses, etc.), but
no geometries at all.

- We developed an application (it is called Robot-

Max) the core logic of which processes the afore-
mentioned XML descriptor file matching with
VRML hierarchy/geometry files, thus generating an
internal multibody model out of the CAD informa-
tion. In RobotMax the internal (original) model can
be extended interactively with various electrome-
chanical elements (e.g.: with parametrical motors
from a model library: see section 4.1) to form a
more complex mechatronic (multi-domain) model.
Finally, our tool is able to export its final mecha-
tronic model to Modelica models using the built-in
conversion module, and on demand by the same
time it propagates the geometry to DXF format
mesh files, in order to use those as visualizing
shapes in Dymola environment.

2.2 Building a draft hierarchy out of XML in-

formation

A single “Physical Modelling XML” file enumerates
all parts (= XML bodies) in the original root CAD
assembly (= XML subsystem) from which it was
created. The special RootGround part represents a
fixed point in the environment. Each normal XML
rigid body entry contains information about the
physical parameters (mass, inertia, surface area, vol-
ume, etc.) of the given Pro/E part and has at least
two coordinate frames in World space: the one that
defines the location of the centre of gravity (CG) of
the rigid body, the other that shows the origin trans-
formation of the body’s geometry (CS1). XML bod-
ies can carry any number of additional frames (CS2,

CS3 …), which all have a unique integer ID: these
unique numbers are used by us to find the corre-
sponding parts between joints.

As it was mentioned before, the XML file also con-
tains information about joints, which represent the
constraints of the original CAD assembly. Each
XML joint (Ji) has two integer IDs that are uniquely
referencing two different frames (these are named
“Base” and “Follower” in a SimMechanics model).

The special weld joints are used to mount two rigid
parts together with no degrees of freedom left be-
tween those. There can also be a series of primitive
joints between two frames, representing various de-
grees of rotational / translational freedom between
those parts. In the hierarchy this always implies the
following sequence: “Follower” � “J1” � … �
“JN” � “Base”, where “a � b” shows that “a” is the
child of “b” in the hierarchy (i.e. it inherits all trans-
formation from that). Using the XML Joints’ frame
references you could build a skeleton (a draft hierar-
chy) of XML bodies. Unfortunately this does not
imply automatically that the final hierarchical model
is also ready: the geometries of the possibly colliding
(but point-sized so far) bodies are still missing at this
point.

In CAD systems it is quite often the case that more
parts in an assembly share the same name (you can
imagine a “template” part that has been used many
times as a building element). On the contrary, in case
of the target language Modelica, the variable names
must be unique inside each model. Via translating
the mechanical CAD information, a single, pure me-
chanic Modelica model has to be generated first.
This initial model contains only the parametrical
bodies and the mechanical joints, which are con-
nected by “connect” Modelica clauses. All exported
bodies and joints must have an individual, unique
instance name.

T. Juhász, U. Schmucker

The Modelica Association 720 Modelica 2008, March 3rd − 4th, 2008

As the auto-generation of VRML and XML files are
independently done, the partially auto-generated
names inside the result files (e.g.: “Obj01”, “Obj02”
vs. “Obj”, “Obj-1”) will neither be globally unique
nor match each other. In order to find the corre-
sponding entities both in VRML and in XML do-
mains, you have to follow a sophisticated procedure.
This is in the most cases inevitable, because there are
usually less XML bodies than actual VRML geome-
tries. You must know which geometries form to-
gether a single rigid body, if you want to have a con-
sistent collision handling during the simulation.

2.3 Matching hierarchies in XML and VRML

domains

All VRML geometry nodes have a homogenous
transformation matrix (which can arise derived from
their respective parents, recursively), from which
you can derive their global pose (position and orien-
tation) in the 3D world. This derived 4x4 matrix is
also used to transform the local vertices of a given
VRML shape into the global (World) coordinate sys-
tem during rendering, for example. Fortunately the
same pose information is also included in XML file
with CS1 frame of the XML bodies.

First you have to search for matching the position of
all CS1 frames (extracted from XML) with an origin
frame location from VRML geometries being just
imported. If there are more bodies having the same
CS1 frame position, you continue filtering the “can-
didates” by differences in CS1 frame orientation.
Assuming there are still more than one parts with the
same global pose in CS1 (which is blissfully a rare
case), you can compare the names of the XML bod-
ies and VRML shapes (namely just their prefixes:
e.g.: “Obj01” will match with “Obj” or “Obj-1”) to
find the highly demanded single positive match. It is
hardly imaginable that there are more parts in the
CAD assembly with exactly the same pose and
name. This should indicate that there is an error in
the source CAD plan.

It is often the case, that there are subsequent levels in
the VRML geometry hierarchy: in this case these
child shapes are to be merged into the same higher
level geometry.

After assigning the VRML geometry to the corre-
sponding XML bodies, the final, pure mechanic mul-
tibody model can be finally generated. For this sake,
the necessary physical parameters (masses, locations
of CG frames, inertia tensors) have to be substituted
into the final Modelica actors’ parameters.

3 Expanding the standard Modelica

library

The Modelica Standard Library is a standardized and
free package that is developed together with the
Modelica language by the international Modelica
Association [8]. The Mechanics Multibody Library
(MML) is a package in the main library providing 3-
dimensional mechanical components to model me-
chanical systems in a convenient way.

The MML does not include support for rigid body
collision handling. Handling contacts between me-
chanical objects can be very important in many dis-
ciplines of mechatronic simulation (e.g.: robot ma-
nipulating tasks).

3.1 Collision Handling

We extended the MML library with support for colli-
sion handling using a spring and damper material
model, suggested by the article [3], but based on
more robust Bullet collision library in our recent im-
plementation. We discussed the details of our im-
plementation in [4]. In this section it will be pre-
sented what sort of new Modelica components have
been developed for this purpose.

The basic World model in MML represents a global
coordinate system fixed in 3D space origin. The be-
haviour of the basic World model has been extended
via inheritance: from the original base model a Colli-

sion Manager (CM) subclass has been inherited that
is responsible for collision handling in simulation of
multibody systems.

The standard Modelica implementation of rigid bod-
ies (see BodyShape component in MML) needed also
to be extended to handle collision (via communica-
tion with the CM). Our Actor class encapsulates the
physical kinematic- (pose, velocity and acceleration),
dynamic- (mass, location of centre of gravity and
inertia tensor) and material- (stiffness and restitution)
parameters (also initial values of those) of a rigid
body. Note that actors don’t have any geometry in-
formation.

The Shape class extends the Mode-

lica.Mechanics.MultiBody.Visualizers.Advanced.Sha

pe class, offering 3D visualization possibilities in
Modelica environment. Each Shape instance must
connect to a single actor with a respective 4x4 trans-
form of local origin of the geometry. These objects
represent the geometry of the rigid body they con-
nect to. The Collider class is the subclass of Shape,
which can serve the collision geometry of that part.
In order to ease the export to Modelica, these classi-

Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation

The Modelica Association 721 Modelica 2008, March 3rd − 4th, 2008

fications of new shape classes make handling of ge-
ometry orbicular from both the aspect of Modelica
and RobotMax, our CAD translator application.

For online, real time visualization support (see sec-
tion 5.3) each Shape instance has a 7 component
pose vector (3D position + a quaternion orientation)
simply assigned by their local origin frame’s pose.
There is a pre- allocated P pose matrix (dimensions:
7 by N) reserved for the N shape objects, stored in a
shared memory. The shared memory is implemented
in a C++ class, is compiled to a DLL and it offers C
interfaces to Modelica. The columns of P are up-
dated every simulation step by the respective shapes’
poses using the external C function invocation set-

Pose() from the Shape instances’ Modelica source.

The singleton Collision Manager instance stores in-
formation about the positions, orientations, angular-
and linear velocities of all Colliders existing in the
global collision set. At the initial phase of the simu-
lation each Collider instance reports the CM its ge-
ometry, which cannot change during the simulation.
The CM updates the external collision forces on each
colliding shape in each simulation step. These shape
instances propagate the external collision force
through their connectors to the respective actor in-
stances.

Unfortunately the Modelica language specification
being used at the development time (it was version
2.2.1) did not allow having a collection containing
polymorphic references to the instances of a user
defined class (i.e. abstract models) themselves: our
Modelica arrays can contain only basic data types.
This introduces a little performance loss: the CM has
to store duplicated information in separate arrays
about the positions, orientations, angular- and linear
velocities of all shapes existing in the global colli-
sion set.

Some shapes can be individually excluded from col-
lision handling via disabling their collision flags (for
example in draft motion tests). On the other hand,
sometimes it is desired (usually for simplified mod-
els) to allow also pairs of bodies to constantly inter-
penetrate each other during the simulation, without
any internal tension or force between them. For this
purpose the user of the extended library can assign a
matrix to the CM containing the IDs of unwanted
collider pairs.

There is a permanent bidirectional communication
between the colliders and the collision manager. The
external collision response forces and -torques that
are calculated and responded by the CM, act together
on the given actors automatically as it was told be-
fore. This is due to the behaviour of bidirectional
Modelica “connect” equations.

The Modelica standard has a well-designed interface
to external software modules [5] (e.g.: Fortan or
ANSI C: sometimes allowing more powerful algo-
rithm implementation). Accordingly, we were not
confined to implement the whole collision manager
class in pure Modelica. For the algorithmic core
functionality of collision detection and -response
calculation the C interface could be used:

For each supported collider shape type a C++ class
had to be implemented, having parameters similar to
their Modelica counterparts. These classes are in-
stantiated at the initial phase of simulation: as soon
as a Modelica Collider is initiated, the corresponding
C++ constructor is invoked from Modelica code,
through our C interface wrapper.

In each simulation step the C++ part of the CM up-
dates the pose of all C++ shapes via their Modelica
counterparts’ pose, and invokes the main method to
query the actual collision forces and -torques for all
active geometry in the scene. In the background the
free Bullet library [7] is being used to query collision
information among our rigid bodies (these are being
treated as independent ones, no joint-constraints are
introduced here). The penetration checking function-
ality of Bullet is done the following way:

For each pair of shape types, a certain collision algo-
rithm is assigned, by using an internal dispatcher.
The collision detection library part of Bullet can re-
trieve contact points between any triangular geome-
try types (for some concave-convex case the primi-
tive geometry types – such as sphere or cylinder –
need to be tessellated to triangles). The used algo-
rithms are a modified version of the GJK algorithm
[6] with the EPA - Expanding Polythope Algorithm
for convex-convex cases, and GIMPACT for the
cases involving concave geometry.

Our pair-wise collision response calculation method
(spring and damper technique: dependent on penetra-
tion velocity, relative motion of colliding parts, ma-
terial stiffness- and restitution parameters) is dis-
cussed in [4]. A single invoke on the external C++
library can solve the collision response for the whole
system at once, thus the external forces on the Mode-
lica colliders can be updated in each simulation step.

3.2 Abstract joint models allowing domain inde-

pendency

Our purpose is to simulate articulated multibody
mechatronic systems having multiple rigid bodies
connected by joints. The original test CAD models,
which we seized to test our conversion process, have
either no motor information, or this information is

T. Juhász, U. Schmucker

The Modelica Association 722 Modelica 2008, March 3rd − 4th, 2008

not accessible from the outside (i.e. cannot be ex-
ported from) the CAD system. This implies that in
RobotMax all XML joints will be converted first to
abstract ones by default (prismatic, revolute and
spherical joints, or serial combination of those are
supported in the entire system). Note that spherical
joints (allowing 3 rotational degrees of freedom in
their coupling centre point) are always passive: they
cannot be actuated in the original manner.

We implemented abstract joint models in Modelica
for prismatic and revolute joints, which are exactly
the pure mechanical constraints, representing the
allowed single degree of translational or rotational
freedom between their 3D frame connectors. These
abstract joint models have a one dimensional ‘Drive’
flange, as you can see on Figure 1:

Figure 1: Abstract model of a revolute joint

If the ‘Drive’ flange connector is not connected from
the outside in the container Modelica model, an ab-
stract joint will be equivalent to an ideal, free joint.
On the contrary, connecting a motor’s drive part to
the drive flange of these joints makes actuated joints
in the final mechatronic model. For the details please
refer to section 4.2.

Using this abstraction we could decouple the pure
mechanical model from other electromechanical
components: these can be exported to a separate top-
level Modelica model.

4 Adding electromechanical compo-

nents to the internal model in Ro-

botMax

Our goal is to support the simulation of the dynamic
behaviour of the product being designed in the
source CAD system. Assuming you have a CAD
model of an industrial robot having a few joints that
should be actuated by motors, you could easily ask
what kind of motors should be applied in order to
achieve a pre-defined speed along the desired path of
the tool centre point, or to stay below the maximal
allowed positioning error.

Unfortunately, we can’t seize so far any description
of the possibly occurring electromechanical compo-
nents from the Pro/E CAD system, which we could
embed automatically into the final mechatronic
model at the end of the conversion process.

You can say that the requirement of having motors in
an articulated multibody system is more than desir-
able. Without such elements you could not simulate /
verify the active dynamic behaviour of a moving
virtual structure.

4.1 The Motor Library in RobotMax

We developed an XML-based extensible Object Li-
brary that can contain parametric components of any
modelling domain. The special modelling domain of
electromechanical components (motors) will be em-
phasized in this section. For example the Motor Da-
tabase inside the Object Library contains motor
classes (e.g.: DC motors or induction machines) as
entries.

Every class in the library has an absolute path refer-
ence to the Modelica implementation of the model
represented by it. These classes enumerate their pa-
rameters, which all must have a unique name (refer-
ring to their respective variables in the Modelica
model). Each parameter must also have a type (Float,
Integer, String, etc.) and a Boolean flag indicating
whether its actual value is editable by the user. For
example changing the gear ratio parameter in a final
motor instance is still allowed. A general parameter
can also have a physical unit (like ‘Ohm’ or ‘kg·m2’:
one should use SI standard units, unless it is not
specified here differently), minimum / maximum
limits and a descriptive comment optionally.

Figure 2: An example entry in our motor library

Figure 2 shows a screenshot of our library’s browser
dialog displaying the parameters of our DC perma-
nent magnet motor class. The user can also edit here
the highlighted gear ratio, before it will be inserted to
the internal model in RobotMax.

Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation

The Modelica Association 723 Modelica 2008, March 3rd − 4th, 2008

The instances of a class are enumerated in the library
after each class declaration, defining the actual / ini-
tial values for each parameter in all occurring in-
stances. The instances must have a global unique ID
(a primary key along that column), which is always
required in a relational database (e.g.: during search-
ing).

4.2 Our actuated joint models in Modelica

For the most mechatronic simulation purposes one
has to set continuous reference values of the active
joints in the system (defining position, velocity or
acceleration parameters of those) in order to make
the parts follow a pre-defined trajectory. A well-
designed controller should be introduced that mini-
mizes the error between the actual and the reference
values of each joint in every single moment.

We implemented 1-1 parametrical, translation- and
rotation based drive model in Modelica (for pris-
matic- and revolute joints, respectively), which con-
tain a separated control- and actuator part, and is de-
coupled from the given joints’ mechanical part.
Figure 3 shows our general model for an actuated
joint:

Figure 3: The schema of our joint drive subsystem

The general “jointDrive” actuator model has a re-
placeable motor and gear component. If a component
is declared replaceable in Modelica it means that one
can transparently exchange the implementation of
this part with another model, unless the given exter-
nal connector interfaces are kept intact.

As it was told before, the pure mechanical model
was exported to a separate Modelica text file. As
long as the names of the joint entries are not chang-
ing, we will find the way to connect the respective
‘Drive’ connectors in both models. Thus the user can
experiment with fine-tuning the motor parameters
and simulate the new model without the need to redo
the CAD / XML conversion process from the begin-
ning again.

5 Simulation and visualization

The workflow presented so far had been finally ex-
tended with a motion planning task, which can be
carried out right before the Modelica export step, in
order to define a continuous-time function in a con-
venient way for each joint’s path.

5.1 Defining motions and simulating the model

RobotMax – our .NET-based CAD translator / envi-
ronment editor application – offers keyframe-based
motion planning and has built-in support for inverse
kinematics that was used in the following example to
model a palette manipulating motion with an indus-
trial robot model. The user can also fine-tune the
motion by interactively adjusting the values of the
selected servos.

The following image sequence shows the three basic
steps of the CAD to SIM process (in Pro/E � Ro-
botMax � Dymola order), presented so far:

Figure 4: The Dymola simulation of an industrial
robot-arm designed in Pro/Engineer and converted

by RobotMax using the presented workflow

T. Juhász, U. Schmucker

The Modelica Association 724 Modelica 2008, March 3rd − 4th, 2008

5.2 Creating test scenarios in RobotMax

The Scene Editor in RobotMax can be used to create
various static / dynamic scenarios, allowing testing
the interaction between the actual virtual product
(that is being designed in CAD) and its environment,
which is usually modelled separately or is sometimes
simply neglected. For example a bumpy road can be
added to the 3D world in case of testing a new car
suspension assembly. VRML geometry can be im-
ported, or the user can create new static / dynamic
objects from primitives with the interactive tools in
RobotMax. The parameters (materials, dimensions,
positions, etc.) are interactively changeable (in case
better precision is needed, can be set also manually)
and the modifications can be undone, thus allowing
an iterative approach of testing with various scenar-
ios. Multiple viewports and various alignment tools
are helping you to make the test setup as precise (and
as informative) as possible.

5.3 Problem of online visualization

The Dymola simulator [9] being used in our project
has a 3D viewer (animation) support for multibody
models containing 3D geometry, but has a limited
functionality and is not user friendly enough.

If you want to visualize the simulation results from a
3rd party application while Dymola is running in the
background, the poses of the various geometries
have to be gathered and transmitted to the viewer
application online. Although Dymola stores the out-
put of a simulation in a file (in Matlab® format), this
file is exclusively locked: thus no other application
can read from that file until the simulation finishes.
Another solution had to be found to access pose in-
formation during the simulation.

5.4 Visualization in RobotMax

Our idea to transfer data to a viewer was to query it
from the shared memory containing the P matrix of
actual shape-poses (see section 3.1). On a viewer
side there is usually no need to update the pose of the
objects after each solver step (e.g.: a step size of 1
ms would lead to 1000 frames/second required re-
fresh rate). The problem can be turned around: you
can retrieve (poll) the actual pose of any shape from
the shared memory at a desired, smaller frequency
(e.g.: 50 Hz).

The RobotMax has all functionalities a modern 3D
viewer application requires, with multiple orthogonal
or perspective viewports, interactive camera setup

and built-in support for advanced 3D visualization
techniques – including real 3D methods such as auto-
stereo (for monitors with lenticular lens layer), time-
interleaved (for liquid crystal shutter goggles), spec-
tral-interleaved (for red-cyan anaglyph spectacles) or
dual output (for two projectors and polarizer glasses)
– representing the actual internal model in 3D. For a
broader overview of these techniques please refer to
the article [10].

If the user switches RobotMax to online visualization
mode, it polls the pose information for each shape
continuously and updates the viewports with the pre-
set frequency only.

In order to be able to inspect the simulation results
multiple times, there is a support for offline visuali-
zation, of course. A simulation output file can be
parsed by an external application only after it has
been completely written and released by Dymola. In
offline visualization mode RobotMax invokes Dy-
mola with the generated Modelica models (according
to the process described in Section 2) and waits for
the lock of the result file to be released.

The sequences of samples of each simulation signal
are stored in this file, including input / output vari-
ables, state variables and their derivatives. In Ro-

botMax after parsing all the exported signals into
memory, the signals belonging to the world trans-
formation matrices are used to setup a keyframe
animation, which can be sought and played back
from a desired position at the desired speed.

Figure 5: anaglyph mode 3D visualization, screenshot

On Figure 5 a screenshot can be seen that was taken
in RobotMax showing the red-cyan spectral-
separated anaglyph stereo image of the previous in-
dustrial robot-arm example at initial pose at the very
beginning of the simulation.

Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation

The Modelica Association 725 Modelica 2008, March 3rd − 4th, 2008

6 Conclusion and future work

A highly automated, convenient conversion work-
flow from Pro/Engineer CAD data to multi-domain
Modelica simulation models has been presented in
this paper. The relevant online / offline visualization
methods – with advanced 3D techniques within the
same integrated tool used for model translation –
were also discussed here. For a schematic overview
of the presented workflow see Figure 6.

V
R
M
L

g
e
o
m
e
tr
y

o
ff
lin
e
 v
iz
.

getPose

se
tP
os
e

 XM
L

Dymola

Pro/Engineer

RobotMax

Parts Assembly

Pro/E-to-SM

PlugIn

Shared

Memory
Modelica

models o
n
lin
e
 v
iz
.

.mat

CM

Figure 6: schematic process overview

In our future implementation we will use the
Pro/ToolKit API to directly access data of other,
newly added components in Pro/Engineer WildFire
3, such as springs, dampers and motors, and translate
these elements also into the final Modelica models.
Using this interface the functionality of the Pro/E-to-
SimMechanics plug-in can be completely replaced
later by our implementation.

There is a free Modelica library – called BondLib,
available at [11] – for bond-graph represented analog
electronic circuits, including a full implementation of
Spice models. The presented CAD conversion proc-
ess can be generalized to introduce complex models
of electrics / electronics domain, to be converted to
Modelica. We will investigate the possibilities to
introduce OrCAD layout plans and P-Spice models
into our virtual mechatronic workflow.

In the next version of our RobotMax tool we will
implement a 2D Plot functionality to be able to in-
spect simulation signals as 2D curves in a given
viewport. Our collision response calculation in tan-
gential space (which is currently very simplified) has
to be improved to achieve more realistic friction
forces and –torques between contacting bodies.

References

[1] Engelson, V.; Bunus, P.; Popescu, L.;
Fritzson, P.: “Mechanical CAD with Multi-
body Dynamic Analysis Based on Modelica
Simulation”; In Proceedings of the 44th Scan-
dinavian Conference on Simulation and
Modeling (SIMS-2003), September 18-19,
2003, Västerås, Sweden

[2] MathWorks: SimMechanics Translators:
http://www.mathworks.com/products/simme
chanics/description5.html

[3] Otter, M.; Elmqvist, H.; Díaz López, J.:
”Collision Handling for the Modelica Multi-
Body Library”; In Proceedings of the 4th In-
ternational Modelica Conference, March 7-8,
2005, Hamburg, pp. 45-53

[4] Juhasz, T.; Konyev, M.; Rusin, V.;
Schmucker, U.: ”Contact Processing in the
Simulation of CLAWAR”; In Proceedings of
10th CLAWAR International Conference,
16-18 July 2007, Singapore, pp. 583-590.

[5] Fritzson, P.: “Principles of Object-Oriented
Modeling and Simulation with Modelica
2.1”, Wiley Press 2004, ISBN 0-471-471631,
pp. 311-322.

[6] Gilbert, E. G.; Johnson, D. W.; Keerthi, S.
S.: ”A Fast Procedure for Computing the
Distance between Complex Objects in Three-
Dimensional Space”; In IEEE Trans. Robot-
ics and Automation 4 (Vol2), April 1988, pp.
193-203.

[7] Bullet 3D Collision Detection Library:
http://www.bulletphysics.com/Bullet

[8] Modelica Association –
http://www.modelica.org

[9] Dynasim AB: Dymola 6 –
http://www.dynasim.com/index.htm

[10] Juhasz, T.; Vajta, L.: “The Role of 3D Simu-
lation in the Advanced Robotic Design, Test
and Control”, International Journal of Ad-
vanced Robotic Systems – Cutting Edge Ro-
botics 2005, ISBN 3-86611-038-3; pp. 47-61.

[11] Cellier, F.: BondLib – Modelica library:
http://www.modelica.org/libraries/BondLib

T. Juhász, U. Schmucker

The Modelica Association 726 Modelica 2008, March 3rd − 4th, 2008

