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Abstract 

Virtual product development allows us to recognize 
and evaluate the characteristics of a new product on 
the basis of simulation at an early stage without hav-
ing to build a physical model. Currently the most, 
widely spread commercial CAE systems do not offer 
direct support to external dynamic simulation appli-
cations. Conversely, dynamic simulation of a de-
tailed model is required to maintain good correlation 
between the behaviour of the real product and its 
virtual counterpart. In this paper it will be presented, 
that using a partially automated workflow a conven-
ient Modelica model translation can be achieved 
from the output of a mechanical CAD system, allow-
ing the final model to be extended independently 
with new elements from other simulation domains, 
considering Dymola-based multi-domain simulation. 
A .NET-based integrated tool for mechatronic model 
editing and online / offline visualization support us-
ing advanced 3D (and stereo) techniques will also be 
emphasized in this article. 

 

Keywords: Pro/Engineer, Mechatronics, Collision, 
Modelica, Dymola Simulation, Stereo, 3D Visualiza-
tion 

1 Introduction 

Virtual engineering offers a completely new aspect 
of product development, as thereby all sections of 
the product life cycle can be independently analyzed 
and in parallel continuously optimized in the virtual 
world. Simulation makes the practical verification of 
the desired behaviour possible in early development 
stages. 

It is very cumbersome to manually create a paramet-
ric simulation model representing a complex product 
that has been designed in a CAD system. Addition-
ally it is often the case that in machine production a 
family of component parts with varying parameters 
has to be designed repeatedly. Nevertheless the 
product planning is usually an iterative practice: 

some internal model parameters must be fine-tuned, 
according to model assessment or verification proc-
esses. This implies that an automated model conver-
sion is highly demanded in order to accomplish a 
good workflow. The designing engineer can inspect 
the behaviour of the given virtual product by utiliz-
ing a dynamic simulation of that. For a convenient 
iterative workflow a solution have to be provided to 
automate the conversion between the standard output 
format of the source CAD system and the input for-
mat of the target simulator. 

In this article it will be presented that using Robot-

Max, our .NET-based mechatronic model authoring 
and visualization application mechanical CAD data 
from the widely-spread Pro/Engineer CAD environ-
ment can be imported, new mechatronic components 
can be added, thus multi-domain Modelica models 
can be generated and the results of the Dymola-based 
multi-domain simulation can be visualized in a con-
venient way, even in 3D stereo using various 3D 
technologies, for example by exploiting autostereo 
monitors, polarizer- or liquid crystal shutter glasses. 

 

2 Translation from CAD data to 

Modelica models 
 

We have interposed an own developed tool into the 
design workflow to achieve automated conversion to 
Modelica models from a Pro/E CAD model assem-
bly (e.g. for mechanics: geometry, mass / inertia pa-
rameters, joints). 

Similar work has been done in [1], but using the 
AutoCAD Mechanical Desktop system, and a differ-
ent, shallower structure of Modelica models. Our 
approach allows a 3rd party to extend the mechanical 
model with additional elements from other engineer-
ing domains in such a way that a designer can still 
change / fine tune parameters in the CAD environ-
ment (and re-export the mechanical model), without 
sacrificing the extra work that another expert might 
have already done within the other model domains, 
where there might be connections to the previous 
mechanical model. 
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2.1 Basic steps of the translation process 
 

There is a large amount of commercial and non-
commercial applications (e.g.: “3D_Evolution” or 
“TransMagic”) available on the market offering na-
tive conversion between common standard (STEP, 
IGES) and other well-known (AutoCAD, CATIA, 
Inventor, Pro/Engineer, SolidWorks, Unigraphics, 
etc.) CAD data formats. Thus without subsequent 
restrictions it is assumed our source data is available 
in the format that our CAD system (Pro/Engineer) is 
able to import. 

The translation from a CAD source file to Modelica 
description needs the following basic steps: 

- Assuming the CAD model has already been im-
ported into Pro/Engineer, you can export the hier-
archy and geometry information of the actual 
model to VRML files simply through a click over 
the File menu “Save as…” command. Note that in a 
general case you get a main hierarchy file and the 
geometries of the subsequent parts in separate 
.WRL files. Geometry information is essential if 
you want to model collision between the parts dur-
ing the simulation (see section 3.1 for further in-
formation). 

- SimMechanics is a single-domain extension of the 
Simulink environment developed by MathWorks, 
and can be used for modelling and simulation of 
mechanical systems. Under Pro/Engineer environ-
ment the freely available Pro/E-to-SimMechanics 
plug-in [2] lets you export the given CAD assembly 
to a single (so called “Physical Modeling XML”) 
descriptor file, which is invented to ease the gen-
eration of SimMechanics models out of Pro/E data 
in an automated way. The result XML file contains 
global hierarchy-, constraint- and physical parame-
ter information (inertia-tensors, masses, etc.), but 
no geometries at all. 

- We developed an application (it is called Robot-

Max) the core logic of which processes the afore-
mentioned XML descriptor file matching with 
VRML hierarchy/geometry files, thus generating an 
internal multibody model out of the CAD informa-
tion. In RobotMax the internal (original) model can 
be extended interactively with various electrome-
chanical elements (e.g.: with parametrical motors 
from a model library: see section 4.1) to form a 
more complex mechatronic (multi-domain) model. 
Finally, our tool is able to export its final mecha-
tronic model to Modelica models using the built-in 
conversion module, and on demand by the same 
time it propagates the geometry to DXF format 
mesh files, in order to use those as visualizing 
shapes in Dymola environment. 

2.2 Building a draft hierarchy out of XML in-

formation 

 

A single “Physical Modelling XML” file enumerates 
all parts (= XML bodies) in the original root CAD 
assembly (= XML subsystem) from which it was 
created. The special RootGround part represents a 
fixed point in the environment. Each normal XML 
rigid body entry contains information about the 
physical parameters (mass, inertia, surface area, vol-
ume, etc.) of the given Pro/E part and has at least 
two coordinate frames in World space: the one that 
defines the location of the centre of gravity (CG) of 
the rigid body, the other that shows the origin trans-
formation of the body’s geometry (CS1). XML bod-
ies can carry any number of additional frames (CS2, 

CS3 …), which all have a unique integer ID: these 
unique numbers are used by us to find the corre-
sponding parts between joints. 

As it was mentioned before, the XML file also con-
tains information about joints, which represent the 
constraints of the original CAD assembly. Each 
XML joint (Ji) has two integer IDs that are uniquely 
referencing two different frames (these are named 
“Base” and “Follower” in a SimMechanics model). 

The special weld joints are used to mount two rigid 
parts together with no degrees of freedom left be-
tween those. There can also be a series of primitive 
joints between two frames, representing various de-
grees of rotational / translational freedom between 
those parts. In the hierarchy this always implies the 
following sequence: “Follower” � “J1” � … � 
“JN” � “Base”, where “a � b” shows that “a” is the 
child of “b” in the hierarchy (i.e. it inherits all trans-
formation from that). Using the XML Joints’ frame 
references you could build a skeleton (a draft hierar-
chy) of XML bodies. Unfortunately this does not 
imply automatically that the final hierarchical model 
is also ready: the geometries of the possibly colliding 
(but point-sized so far) bodies are still missing at this 
point. 

In CAD systems it is quite often the case that more 
parts in an assembly share the same name (you can 
imagine a “template” part that has been used many 
times as a building element). On the contrary, in case 
of the target language Modelica, the variable names 
must be unique inside each model. Via translating 
the mechanical CAD information, a single, pure me-
chanic Modelica model has to be generated first. 
This initial model contains only the parametrical 
bodies and the mechanical joints, which are con-
nected by “connect” Modelica clauses. All exported 
bodies and joints must have an individual, unique 
instance name. 
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As the auto-generation of VRML and XML files are 
independently done, the partially auto-generated 
names inside the result files (e.g.: “Obj01”, “Obj02” 
vs. “Obj”, “Obj-1”) will neither be globally unique 
nor match each other. In order to find the corre-
sponding entities both in VRML and in XML do-
mains, you have to follow a sophisticated procedure. 
This is in the most cases inevitable, because there are 
usually less XML bodies than actual VRML geome-
tries. You must know which geometries form to-
gether a single rigid body, if you want to have a con-
sistent collision handling during the simulation. 

 

2.3 Matching hierarchies in XML and VRML 

domains 
 

All VRML geometry nodes have a homogenous 
transformation matrix (which can arise derived from 
their respective parents, recursively), from which 
you can derive their global pose (position and orien-
tation) in the 3D world. This derived 4x4 matrix is 
also used to transform the local vertices of a given 
VRML shape into the global (World) coordinate sys-
tem during rendering, for example. Fortunately the 
same pose information is also included in XML file 
with CS1 frame of the XML bodies. 

First you have to search for matching the position of 
all CS1 frames (extracted from XML) with an origin 
frame location from VRML geometries being just 
imported. If there are more bodies having the same 
CS1 frame position, you continue filtering the “can-
didates” by differences in CS1 frame orientation. 
Assuming there are still more than one parts with the 
same global pose in CS1 (which is blissfully a rare 
case), you can compare the names of the XML bod-
ies and VRML shapes (namely just their prefixes: 
e.g.: “Obj01” will match with “Obj” or “Obj-1”) to 
find the highly demanded single positive match. It is 
hardly imaginable that there are more parts in the 
CAD assembly with exactly the same pose and 
name. This should indicate that there is an error in 
the source CAD plan. 

It is often the case, that there are subsequent levels in 
the VRML geometry hierarchy: in this case these 
child shapes are to be merged into the same higher 
level geometry. 

After assigning the VRML geometry to the corre-
sponding XML bodies, the final, pure mechanic mul-
tibody model can be finally generated. For this sake, 
the necessary physical parameters (masses, locations 
of CG frames, inertia tensors) have to be substituted 
into the final Modelica actors’ parameters. 

 

3 Expanding the standard Modelica 

library 
 

The Modelica Standard Library is a standardized and 
free package that is developed together with the 
Modelica language by the international Modelica 
Association [8]. The Mechanics Multibody Library 
(MML) is a package in the main library providing 3-
dimensional mechanical components to model me-
chanical systems in a convenient way. 

The MML does not include support for rigid body 
collision handling. Handling contacts between me-
chanical objects can be very important in many dis-
ciplines of mechatronic simulation (e.g.: robot ma-
nipulating tasks). 

 

3.1 Collision Handling 

 

We extended the MML library with support for colli-
sion handling using a spring and damper material 
model, suggested by the article [3], but based on 
more robust Bullet collision library in our recent im-
plementation. We discussed the details of our im-
plementation in [4]. In this section it will be pre-
sented what sort of new Modelica components have 
been developed for this purpose. 

The basic World model in MML represents a global 
coordinate system fixed in 3D space origin. The be-
haviour of the basic World model has been extended 
via inheritance: from the original base model a Colli-

sion Manager (CM) subclass has been inherited that 
is responsible for collision handling in simulation of 
multibody systems. 

The standard Modelica implementation of rigid bod-
ies (see BodyShape component in MML) needed also 
to be extended to handle collision (via communica-
tion with the CM). Our Actor class encapsulates the 
physical kinematic- (pose, velocity and acceleration), 
dynamic- (mass, location of centre of gravity and 
inertia tensor) and material- (stiffness and restitution) 
parameters (also initial values of those) of a rigid 
body. Note that actors don’t have any geometry in-
formation. 

The Shape class extends the Mode-

lica.Mechanics.MultiBody.Visualizers.Advanced.Sha

pe class, offering 3D visualization possibilities in 
Modelica environment. Each Shape instance must 
connect to a single actor with a respective 4x4 trans-
form of local origin of the geometry. These objects 
represent the geometry of the rigid body they con-
nect to. The Collider class is the subclass of Shape, 
which can serve the collision geometry of that part. 
In order to ease the export to Modelica, these classi-
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fications of new shape classes make handling of ge-
ometry orbicular from both the aspect of Modelica 
and RobotMax, our CAD translator application. 

For online, real time visualization support (see sec-
tion 5.3) each Shape instance has a 7 component 
pose vector (3D position + a quaternion orientation) 
simply assigned by their local origin frame’s pose. 
There is a pre- allocated P pose matrix (dimensions: 
7 by N) reserved for the N shape objects, stored in a 
shared memory. The shared memory is implemented 
in a C++ class, is compiled to a DLL and it offers C 
interfaces to Modelica. The columns of P are up-
dated every simulation step by the respective shapes’ 
poses using the external C function invocation set-

Pose( ) from the Shape instances’ Modelica source. 

The singleton Collision Manager instance stores in-
formation about the positions, orientations, angular- 
and linear velocities of all Colliders existing in the 
global collision set. At the initial phase of the simu-
lation each Collider instance reports the CM its ge-
ometry, which cannot change during the simulation. 
The CM updates the external collision forces on each 
colliding shape in each simulation step. These shape 
instances propagate the external collision force 
through their connectors to the respective actor in-
stances. 

Unfortunately the Modelica language specification 
being used at the development time (it was version 
2.2.1) did not allow having a collection containing 
polymorphic references to the instances of a user 
defined class (i.e. abstract models) themselves: our 
Modelica arrays can contain only basic data types. 
This introduces a little performance loss: the CM has 
to store duplicated information in separate arrays 
about the positions, orientations, angular- and linear 
velocities of all shapes existing in the global colli-
sion set. 

Some shapes can be individually excluded from col-
lision handling via disabling their collision flags (for 
example in draft motion tests). On the other hand, 
sometimes it is desired (usually for simplified mod-
els) to allow also pairs of bodies to constantly inter-
penetrate each other during the simulation, without 
any internal tension or force between them. For this 
purpose the user of the extended library can assign a 
matrix to the CM containing the IDs of unwanted 
collider pairs. 

There is a permanent bidirectional communication 
between the colliders and the collision manager. The 
external collision response forces and -torques that 
are calculated and responded by the CM, act together 
on the given actors automatically as it was told be-
fore. This is due to the behaviour of bidirectional 
Modelica “connect” equations. 

The Modelica standard has a well-designed interface 
to external software modules [5] (e.g.: Fortan or 
ANSI C: sometimes allowing more powerful algo-
rithm implementation). Accordingly, we were not 
confined to implement the whole collision manager 
class in pure Modelica. For the algorithmic core 
functionality of collision detection and -response 
calculation the C interface could be used: 

For each supported collider shape type a C++ class 
had to be implemented, having parameters similar to 
their Modelica counterparts. These classes are in-
stantiated at the initial phase of simulation: as soon 
as a Modelica Collider is initiated, the corresponding 
C++ constructor is invoked from Modelica code, 
through our C interface wrapper. 

In each simulation step the C++ part of the CM up-
dates the pose of all C++ shapes via their Modelica 
counterparts’ pose, and invokes the main method to 
query the actual collision forces and -torques for all 
active geometry in the scene. In the background the 
free Bullet library [7] is being used to query collision 
information among our rigid bodies (these are being 
treated as independent ones, no joint-constraints are 
introduced here). The penetration checking function-
ality of Bullet is done the following way: 

For each pair of shape types, a certain collision algo-
rithm is assigned, by using an internal dispatcher. 
The collision detection library part of Bullet can re-
trieve contact points between any triangular geome-
try types (for some concave-convex case the primi-
tive geometry types – such as sphere or cylinder – 
need to be tessellated to triangles). The used algo-
rithms are a modified version of the GJK algorithm 
[6] with the EPA - Expanding Polythope Algorithm 
for convex-convex cases, and GIMPACT for the 
cases involving concave geometry. 

Our pair-wise collision response calculation method 
(spring and damper technique: dependent on penetra-
tion velocity, relative motion of colliding parts, ma-
terial stiffness- and restitution parameters) is dis-
cussed in [4]. A single invoke on the external C++ 
library can solve the collision response for the whole 
system at once, thus the external forces on the Mode-
lica colliders can be updated in each simulation step. 

 

3.2 Abstract joint models allowing domain inde-

pendency  
 

Our purpose is to simulate articulated multibody 
mechatronic systems having multiple rigid bodies 
connected by joints. The original test CAD models, 
which we seized to test our conversion process, have 
either no motor information, or this information is 
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not accessible from the outside (i.e. cannot be ex-
ported from) the CAD system. This implies that in 
RobotMax all XML joints will be converted first to 
abstract ones by default (prismatic, revolute and 
spherical joints, or serial combination of those are 
supported in the entire system). Note that spherical 
joints (allowing 3 rotational degrees of freedom in 
their coupling centre point) are always passive: they 
cannot be actuated in the original manner. 

We implemented abstract joint models in Modelica 
for prismatic and revolute joints, which are exactly 
the pure mechanical constraints, representing the 
allowed single degree of translational or rotational 
freedom between their 3D frame connectors. These 
abstract joint models have a one dimensional ‘Drive’ 
flange, as you can see on Figure 1: 

 
Figure 1: Abstract model of a revolute joint 

 

If the ‘Drive’ flange connector is not connected from 
the outside in the container Modelica model, an ab-
stract joint will be equivalent to an ideal, free joint. 
On the contrary, connecting a motor’s drive part to 
the drive flange of these joints makes actuated joints 
in the final mechatronic model. For the details please 
refer to section 4.2. 

Using this abstraction we could decouple the pure 
mechanical model from other electromechanical 
components: these can be exported to a separate top-
level Modelica model. 

 

4 Adding electromechanical compo-

nents to the internal model in Ro-

botMax 
 

Our goal is to support the simulation of the dynamic 
behaviour of the product being designed in the 
source CAD system. Assuming you have a CAD 
model of an industrial robot having a few joints that 
should be actuated by motors, you could easily ask 
what kind of motors should be applied in order to 
achieve a pre-defined speed along the desired path of 
the tool centre point, or to stay below the maximal 
allowed positioning error. 

Unfortunately, we can’t seize so far any description 
of the possibly occurring electromechanical compo-
nents from the Pro/E CAD system, which we could 
embed automatically into the final mechatronic 
model at the end of the conversion process. 

You can say that the requirement of having motors in 
an articulated multibody system is more than desir-
able. Without such elements you could not simulate / 
verify the active dynamic behaviour of a moving 
virtual structure. 

 

4.1 The Motor Library in RobotMax 

 

We developed an XML-based extensible Object Li-
brary that can contain parametric components of any 
modelling domain. The special modelling domain of 
electromechanical components (motors) will be em-
phasized in this section. For example the Motor Da-
tabase inside the Object Library contains motor 
classes (e.g.: DC motors or induction machines) as 
entries. 

Every class in the library has an absolute path refer-
ence to the Modelica implementation of the model 
represented by it. These classes enumerate their pa-
rameters, which all must have a unique name (refer-
ring to their respective variables in the Modelica 
model). Each parameter must also have a type (Float, 
Integer, String, etc.) and a Boolean flag indicating 
whether its actual value is editable by the user. For 
example changing the gear ratio parameter in a final 
motor instance is still allowed. A general parameter 
can also have a physical unit (like ‘Ohm’ or ‘kg·m2’: 
one should use SI standard units, unless it is not 
specified here differently), minimum / maximum 
limits and a descriptive comment optionally. 

 
Figure 2: An example entry in our motor library 

 

Figure 2 shows a screenshot of our library’s browser 
dialog displaying the parameters of our DC perma-
nent magnet motor class. The user can also edit here 
the highlighted gear ratio, before it will be inserted to 
the internal model in RobotMax. 
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The instances of a class are enumerated in the library 
after each class declaration, defining the actual / ini-
tial values for each parameter in all occurring in-
stances. The instances must have a global unique ID 
(a primary key along that column), which is always 
required in a relational database (e.g.: during search-
ing). 

 

4.2 Our actuated joint models in Modelica 

 

For the most mechatronic simulation purposes one 
has to set continuous reference values of the active 
joints in the system (defining position, velocity or 
acceleration parameters of those) in order to make 
the parts follow a pre-defined trajectory. A well-
designed controller should be introduced that mini-
mizes the error between the actual and the reference 
values of each joint in every single moment. 

We implemented 1-1 parametrical, translation- and 
rotation based drive model in Modelica (for pris-
matic- and revolute joints, respectively), which con-
tain a separated control- and actuator part, and is de-
coupled from the given joints’ mechanical part. 
Figure 3 shows our general model for an actuated 
joint: 

 
Figure 3: The schema of our joint drive subsystem 

 

The general “jointDrive” actuator model has a re-
placeable motor and gear component. If a component 
is declared replaceable in Modelica it means that one 
can transparently exchange the implementation of 
this part with another model, unless the given exter-
nal connector interfaces are kept intact. 

As it was told before, the pure mechanical model 
was exported to a separate Modelica text file. As 
long as the names of the joint entries are not chang-
ing, we will find the way to connect the respective 
‘Drive’ connectors in both models. Thus the user can 
experiment with fine-tuning the motor parameters 
and simulate the new model without the need to redo 
the CAD / XML conversion process from the begin-
ning again. 

 

5 Simulation and visualization 
 

The workflow presented so far had been finally ex-
tended with a motion planning task, which can be 
carried out right before the Modelica export step, in 
order to define a continuous-time function in a con-
venient way for each joint’s path. 

 

5.1 Defining motions and simulating the model 
 

RobotMax – our .NET-based CAD translator / envi-
ronment editor application – offers keyframe-based 
motion planning and has built-in support for inverse 
kinematics that was used in the following example to 
model a palette manipulating motion with an indus-
trial robot model. The user can also fine-tune the 
motion by interactively adjusting the values of the 
selected servos. 

The following image sequence shows the three basic 
steps of the CAD to SIM process (in Pro/E � Ro-
botMax � Dymola order), presented so far: 

 
Figure 4: The Dymola simulation of an industrial 
robot-arm designed in Pro/Engineer and converted 

by RobotMax using the presented workflow 
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5.2 Creating test scenarios in RobotMax 
 

The Scene Editor in RobotMax can be used to create 
various static / dynamic scenarios, allowing testing 
the interaction between the actual virtual product 
(that is being designed in CAD) and its environment, 
which is usually modelled separately or is sometimes 
simply neglected. For example a bumpy road can be 
added to the 3D world in case of testing a new car 
suspension assembly. VRML geometry can be im-
ported, or the user can create new static / dynamic 
objects from primitives with the interactive tools in 
RobotMax. The parameters (materials, dimensions, 
positions, etc.) are interactively changeable (in case 
better precision is needed, can be set also manually) 
and the modifications can be undone, thus allowing 
an iterative approach of testing with various scenar-
ios. Multiple viewports and various alignment tools 
are helping you to make the test setup as precise (and 
as informative) as possible. 

 

5.3 Problem of online visualization 

 

The Dymola simulator [9] being used in our project 
has a 3D viewer (animation) support for multibody 
models containing 3D geometry, but has a limited 
functionality and is not user friendly enough. 

If you want to visualize the simulation results from a 
3rd party application while Dymola is running in the 
background, the poses of the various geometries 
have to be gathered and transmitted to the viewer 
application online. Although Dymola stores the out-
put of a simulation in a file (in Matlab® format), this 
file is exclusively locked: thus no other application 
can read from that file until the simulation finishes. 
Another solution had to be found to access pose in-
formation during the simulation. 

 

5.4 Visualization in RobotMax 

 

Our idea to transfer data to a viewer was to query it 
from the shared memory containing the P matrix of 
actual shape-poses (see section 3.1). On a viewer 
side there is usually no need to update the pose of the 
objects after each solver step (e.g.: a step size of 1 
ms would lead to 1000 frames/second required re-
fresh rate). The problem can be turned around: you 
can retrieve (poll) the actual pose of any shape from 
the shared memory at a desired, smaller frequency 
(e.g.: 50 Hz). 

The RobotMax has all functionalities a modern 3D 
viewer application requires, with multiple orthogonal 
or perspective viewports, interactive camera setup 

and built-in support for advanced 3D visualization 
techniques – including real 3D methods such as auto-
stereo (for monitors with lenticular lens layer), time-
interleaved (for liquid crystal shutter goggles), spec-
tral-interleaved (for red-cyan anaglyph spectacles) or 
dual output (for two projectors and polarizer glasses) 
– representing the actual internal model in 3D. For a 
broader overview of these techniques please refer to 
the article [10]. 

If the user switches RobotMax to online visualization 
mode, it polls the pose information for each shape 
continuously and updates the viewports with the pre-
set frequency only. 

In order to be able to inspect the simulation results 
multiple times, there is a support for offline visuali-
zation, of course. A simulation output file can be 
parsed by an external application only after it has 
been completely written and released by Dymola. In 
offline visualization mode RobotMax invokes Dy-
mola with the generated Modelica models (according 
to the process described in Section 2) and waits for 
the lock of the result file to be released. 

The sequences of samples of each simulation signal 
are stored in this file, including input / output vari-
ables, state variables and their derivatives. In Ro-

botMax after parsing all the exported signals into 
memory, the signals belonging to the world trans-
formation matrices are used to setup a keyframe 
animation, which can be sought and played back 
from a desired position at the desired speed. 

 

 
Figure 5: anaglyph mode 3D visualization, screenshot 

 

On Figure 5 a screenshot can be seen that was taken 
in RobotMax showing the red-cyan spectral-
separated anaglyph stereo image of the previous in-
dustrial robot-arm example at initial pose at the very 
beginning of the simulation. 
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6 Conclusion and future work 
 

A highly automated, convenient conversion work-
flow from Pro/Engineer CAD data to multi-domain 
Modelica simulation models has been presented in 
this paper. The relevant online / offline visualization 
methods – with advanced 3D techniques within the 
same integrated tool used for model translation – 
were also discussed here. For a schematic overview 
of the presented workflow see Figure 6. 
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Figure 6: schematic process overview 

 

In our future implementation we will use the 
Pro/ToolKit API to directly access data of other, 
newly added components in Pro/Engineer WildFire 
3, such as springs, dampers and motors, and translate 
these elements also into the final Modelica models. 
Using this interface the functionality of the Pro/E-to-
SimMechanics plug-in can be completely replaced 
later by our implementation. 

There is a free Modelica library – called BondLib, 
available at [11] – for bond-graph represented analog 
electronic circuits, including a full implementation of 
Spice models. The presented CAD conversion proc-
ess can be generalized to introduce complex models 
of electrics / electronics domain, to be converted to 
Modelica. We will investigate the possibilities to 
introduce OrCAD layout plans and P-Spice models 
into our virtual mechatronic workflow. 

In the next version of our RobotMax tool we will 
implement a 2D Plot functionality to be able to in-
spect simulation signals as 2D curves in a given 
viewport. Our collision response calculation in tan-
gential space (which is currently very simplified) has 
to be improved to achieve more realistic friction 
forces and –torques between contacting bodies. 
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