Synchronous and Asynchronous Events in Modelica: Proposal for an Improved Hybrid Model

Synchronous and asynchronous events in Modelica: proposal for an im-
proved hybrid model

Ramine Nikoukhah1

Sébastien Furic2

"INRIA Rocquencourt BP 105, 78153 Le Chesnay Cedex, France
> LMS-Imagine, 7 place des Minimes, 42300 Roanne, France

ramine.nikoukhah @inria.fr

Abstract

The event synchronism in Modelica has been a subject
of contradictory interpretations. An interpretation in-
spired by Scicos formalism [2] has been shown to
provide desirable properties. In this interpretation, all
independent events are assumed asynchronous; that
includes events generated by the sample keywords.
But in analogy with the way multi-rate systems are
modeled in Simulink, it is desirable also to consider
sample generated events as synchronous. In this pa-
per, we propose a special treatment for the keyword
sample to overcome this dilemma.

Keywords: Modelica, Scicos, synchronism, real-time
code generation

1. Introduction

In [1], it is argued that all Modelica events should be
considered asynchronous unless they are derived ex-
plicitly from a single event. This is in contrast to Dy-
mola’s implementation where all events are con-
sidered potentially synchronous, by default. In Dy-
mola, simultaneity is interpreted as synchronism. In
[1] it is shown that the asynchronous point of view not
only leads to the generation of more efficient code but
it can also allow for separate compilation of isolated
modules.

It may be argued that with the asynchronous point of
view, non-deterministic behavior becomes an issue.
But the problem of non-determinism here is not worse
than in the fully synchronous context because the
reason for non-determinism in hybrid systems is the
finite precision of the numerical solver. Indeed, it is
not more nondeterministic to assume that two events:
time > 3 and x < 2, where x is a continuous time vari-
able, are asynchronous than assuming that they are
potentially synchronous.

furic@amesim.com

Asynchronous means that even if the two events occur
(in theory) at exactly the same time, one is considered
to occur just before or after. In the synchronous con-
text, the formalism considers also the case of the two
events happening simultaneously and treats it differ-
ently. However in practice, since events such as x < 2
are detected by the zero-crossing mechanism of the
numerical solver, there is very little chance that two
events be detected simultaneously even if theoretically
they are simultaneous. So in the synchronous context,
the non-determinism is even worse: not only there are
three possible outcomes in the presence of two zero-
crossing events but the user is lead to believe that it
can count on simultaneous detection when in most
cases the result is completely unpredictable.

The sample generated events, even though not pro-
duced by the zero-crossing mechanism during the
simulation, should naturally be considered as inde-
pendent and thus asynchronous as well. But this goes
against the usual practices in Modelica where syn-
chronism is often implicitly assumed. In this paper we
propose a very special interpretation of the sample
keyword which not only leads to models in accord
with our asynchronous framework but assures syn-
chronism among sample generated events.

2. Asynchronous framework

In the asynchronous interpretation of the Modelica
specification, two events are considered synchronous
only if they can be traced back to a single event
source. For example in the following model:

when sample(0, 1) then
d =pre(d) + 1;

end when;

when d > 3 then

a=pre(a)+ 1;

The Modelica Association

677

Modelica 2008, March 3¢ — 4t 2008

R. Nikoukhah, S. Furic

end when;

the event d > 3 is synchronous with the event
sample(0, 1). The former is the source of the latter.
But in

der(x) =x;

when sample(0, 1) then
d =pre(d) + 1;

end when,;

when x > 3 then
a=pre(a) + 1;

end when;

the two events are not synchronous. There is no
unique source of activation at the origin of these
events. So these events are considered asynchronous
even if the two events are activated simultaneously;
even if we can prove mathematically that they always
occur simultaneously.

The basic assumption is that events detected by the
zero-crossing mechanism of the numerical solver (or
an equivalent mechanism used to improve perform-
ance) are always asynchronous. So even if they are de-
tected simultaneously by the solver, by default they
are treated sequentially in an arbitrary order.

3. Special case of sample construct

Under the asynchronous assumption, and by treating
the sample keyword as a macro, the following pro-
gram:

model M

Boolean b;

equation
b = sample(0, 1);
when f(b) then

... gb)...
end when;

end M;
can be expanded as follows:
model M
discrete time Integer k(start=0);

Boolean b;

equation
when time >=k then
k =prek) + 1;
end when,;
b = false;
when change(k) and f(true) then
... g(true)...

end when;

end M;
This means that we are lead to assume that different
sample statements generate asynchronous events (we
also lose periodicity information contained in the ar-
guments of the sample). For example, in the model:

when sample(0, 1) then
b=a;

end when;

when sample(0, 1) then
a=b+1;

end when;

the variables a and b are evaluated in an arbitrary or-
der and no algebraic loop is detected..

Dymola on the other hand assumes that all events are
synchronous. In particular it assumes that all the
equations in both when clauses in this example may
have to be satisfied simultaneously. That is why Dy-
mola finds an algebraic loop in this example.

This seems reasonable; however Dymola also finds an
algebraic loop in:

when sample(0, 1) then
b=a;

end when;

when sample(0.5, 1) then
a=b+1;

end when;

when clearly no algebraic loop exists in this model.

4. Periodicity information

The periodicity information may not be very useful
for simulation but it is precious for real-time code
generation. It is a lot easier to generate embedded
code for a discrete-time system when the system is
periodic and all the timing information is available

The Modelica Association

678

Modelica 2008, March 3¢ — 4t 2008

Synchronous and Asynchronous Events in Modelica: Proposal for an Improved Hybrid Model

during the code generation process. Consider for ex-
ample the following system, which represents a con-
tinuous time plant with a discrete-time failure detector
and a reconfigurable controller. Different components
of the detector/controller mechanism run at different
frequencies; we say then that the system is multi-rate.

L multifre B=X)
File Diagram Palette Edt View Simulate Format Tools ?
10Hz sapling
Cosave autp conpytation
Sidingwi i
f Plant »—
Ctrl 1
3&) then else
B — ¢
Contrdlles ! i

" 7 ™ selestor
Oy aeadive o]

Consider now the problem of hard real-time code gen-
eration for this mechanism, which contains three basic
frequencies with periods 0.1, 0.5 and 0.35. The events
corresponding to these three clocks are synchronized
at different time instants. In general there could be 7
different situations for which static code generation
must be performed but in this particular case only 5
situations come up. The important information to note
here is that the system will function in a fully periodic
way and the timing of all the situations can be com-
puted in advance thanks to information on the periods
(and offsets if any) of the clocks. It turns out that in
this case, the overall period is 3.5; the timings of dif-
ferent event situations are illustrated below:

/o0&

A Scilab Graphic (20011)
Fichier Cutils Editer

Grphk

s Peiod=35

T
o0 [] 15 20 25 30 35 "0

To model such a system in Modelica, it is common
practice to assume synchronism of independent

sample sources (this is done in particular, by de-
velopers of the Modelica Standard Libraries) and rep-
resent each clock by an independent sample state-
ment.

But in the asynchronous point of view adopted by us,
following the replacement of the sample macros with
the corresponding Modelica code as presented previ-
ously, the clocks become asynchronous. In this frame-
work, it is necessary to use a single clock and derive
the other clocks by sub-sampling; otherwise the beha-
vior of the system will not correspond to the desired
behavior.

5. Synchronous sample

We have seen that on one hand it is desirable to con-
sider all independent events to be asynchronous and
on the other hand, it is convenient to force, depending
on their arguments, sample generated events as syn-
chronous.

The type of synchronism considered here has nothing
to do with the way Dymola enforces synchronism but
it is rather close to Simulink’s way of handling multi-
rate systems and Scicos’ SampleClk blocks. The idea
is to synthesize a basic clock at a precompilation
phase so that all the synchronous clocks defined by
sample statements can be obtained by sub-sampling
the basic clock. The computation of the parameters of
this basic clock is straightforward, see [3] for details.
Here is a simple example:

when sample(0, 2) then
<exprl>;

end when;

when sample(0, 3) then
<expr2>;

end when;

The periods involved in this case are 2 and 3; the peri-
od of the basic clock is obtained by computing the
greatest common divisor of 2 and 3, which is 1. The
overall period in this case is 6, so one way the pre-
compiler could modify the code is as follows:

when sample(0, 1) then
k = mod(pre(k) + 1, 6);
if k == 0 then
<exprl>;
<expr2>;
elseif k == 2 or k == 4 then

The Modelica Association

679

Modelica 2008, March 3¢ — 4t 2008

R. Nikoukhah, S. Furic

<exprl>;
elseif k == 3 then
<expr2>;
end if;
end when;

This way of sub-sampling clocks have already been
introduced in the Modelica specification (see for ex-
ample the fast sample, slow sample example on page
81 of [6]).

Going back to our code now, we see that it contains a
single sample keyword so it is a synchronous code
(assuming no when constructs are present in the rest
of the model). The sample construct can now be ex-
panded as previously described. This construction in
Scicos is referred to as a periodic construction. For
example going back to the detector/controller model
from the previous section, the period of the basic
clock would be 0.05 (the greatest common divisor of
0.1, 0.5 and 0.35) and the periodic solution would
look like the following. Note that the modulo counter
counts from 0 to 69 because the period is 3.5 and the
basic clock’s period is 0.05.

B=%]

=

L Untitled

File Diagram Palette Edit View Simulate Format Tools 7

-

Counter
-———
Modulo 70

. ¢
event select

u u hAAAAALALLLLL LD

An alternative procedure consists of constructing a
vector of time instants where events occur over a
single period (in this case [0,2,3,4]) and generate
events using independent event sources corresponding
to time instances which, modulo 6, are mapped to the
elements of this vector.

This construction can be more efficient for simulation
but the periodic solution has the advantage of yielding
a synchronous code. For the detector/controller ex-
ample, the non-periodic (asynchronous) construction
looks like the following. To keep the diagram simple

we have only drawn two of the activation links out of
possible 7 (actually 5 in this particular case).

A Untitled E]@
File Diagram Palette Edit View Simulate Format Tools 7
N
l l VVVYYY
Event union
Multiple
Frequency
IIVVVVV
e}
<] ?]

Periodic solutions are also desirable for real-time code
generation because the embedded code can be driven
by a hardware fixed frequency clock.

6. Implications of the proposal

By admitting that the asynchronous assumption on in-
dependent event generators is the correct interpreta-
tion, if the special treatment proposed for the sample
keyword is not used, most discrete-time models in use
won’t operate properly. The reason is that, despite
some recommendations in the language specification,
synchronism of independent sample sources is as-
sumed by library developers (in particular, by de-
velopers of the Modelica Standard Libraries). This
practice, mostly driven by analogy with other prac-
tices frequently encountered in Simulink-based mod-
eling, conflicts with the asynchronous assumption
made in our hybrid model.

To impose synchronism among various discrete-time
models, instead of relying on the usage of identical
sample keywords, synchronization signals should be
used. This issue has been discussed in [5] where activ-
ation signals have been introduced.

Even though the use of activation signals is a power-
ful modeling mechanism that should be considered in
future Modelica, for the special case of periodic event
clocks, the treatment of the sample keyword as pro-
posed in this paper avoids the need for there usage. In-
deed, by assuming this treatment, backward compatib-
ility for discrete-time models would be guaranteed.
The precompilation phase makes the necessary modi-

The Modelica Association

680

Modelica 2008, March 3¢ — 4t 2008

Synchronous and Asynchronous Events in Modelica: Proposal for an Improved Hybrid Model

fications that assure the synchronization of isolated
models that are related to each other simply because
they include identical sample keywords. The back-
ward compatibility is also assured in the case of
multi-rate systems (when non identical sample
keywords are present in the model)..

7. Conclusion

We have proposed to interpret the sample keyword in
Modelica in a special manner in such a way as to as-
sure synchronism between these keywords yet staying
within the asynchronous framework proposed in [1].

The implementation consists of isolating the sample
keywords in the flat Modelica model. If only one such
keyword is present, then it is transformed as explained
in the paper. If more than one sample is present in the
model, the necessary clock computations are per-
formed and all the sample constructs are replaced by
conditional statements driven by a single sample, as
illustrated on an example in the paper. This sample is
then transformed as in the previous case.

Beside backward compatibility (no Modelica model
needs to be altered), allowing the usage of independ-
ent sample keywords to model synchronous multi-rate
systems provides valuable information for real-time
code generation. However some issues remain to be
solved with this approach, especially the way sample
constructs are translated at the type level (they prob-
ably can not be abstracted away during type computa-
tion since the public information they carry may inter-
fere with compatibility checks of models).

Using Modelica for real-time embedded code genera-
tion has great potentials. Unlike most code generation
environments, in Modelica the execution semantics
can be broken up into very fine grains and manipu-
lated symbolically. In most cases this means that real-
time code can be obtained without having to use pree-
mption. This issue will be examined in a future paper.

References

[1] Nikoukhah, R., "Hybrid dynamics in Modelica:
Should all events be considered synchronous",
in Proc. EOOLT Workshop at ECOOP'07, Ber-
lin, 2007.

(2]

(3]

(4]

(5]

(6]

Campbell, S. L., Chancelier, J. Ph., and
Nikoukhah, R., “Modeling and Simulation in
Scilab/Scicos”, Springer, 2005.

Caspi, P., Curic, A., Maignan, A., Sofronis, C.
and Tripakis, S., "Translating Discrete-Time
Simulink to Lustre”, in Embedded Software,
Lecture Notes in Computer Science, Springer,
2003.

Otter, M., Elmgqvist, H. and Mattsson, S. E.,
“Hybrid Modeling in Modelica based on the
Synchronous Data Flow Principle”, CACSD’99,
Aug; 1999, Hawaii.

Nikoukhah, R., “Extensions to Modelica for ef-
ficient code generation and separate compila-
tion”, in Proc. EOOLT Workshop at ECOOP’07,
Berlin, 2007.

Modelica Association, “Modelica - A Unified
Object-Oriented Language for Physical Systems
Modeling. Language Specification, version
3.0”, 2007, available from www.modelica.org.

The Modelica Association

681

Modelica 2008, March 3¢ — 4t 2008

