
Sensitivity Analysis of Modelica Applications
via Automatic Differentiation

Elsheikh, Atya1 Noack, Stephan2 Wiechert, Wolfgang1
1 Siegen University, Department of Simulation, {elsheikh,wiechert}@simtec.mb.uni-siegen.de

2 Research Center Jülich GmbH, Institute of Biotechnology 2,s.noack@fz-juelich.de

Abstract

Modeling and simulation of physical systems is, in
general, a complex iterative process. Asserted models
are necessarily based on simplifications, and in many
cases are subject to improvement and optimization. In
this context, a wide range of applications of sensitivity
analysis can assist the modeling process, from param-
eter fitting and optimization through model validation
to statistical analysis and experimental design. These
common methods, among others, drew increasing
attention to a research area of scientific computing, i.e.
Automatic Differentiation (AD) of program code. The
main objective of this work is to compute derivatives
of variables in Modelica models using AD concepts
to assist sensitivity analysis applications. It is shown
how Open Modelica Compiler (OMC) and other
tools simplify the implementation of ADModelica,
a prototype of an AD-based tool for Modelica. As
a proof of concept, an application in the field of
biochemical networks is presented.

Keywords: Sensitivity Analysis, Automatic Dif-
ferentiation, Open Modelica, Biochemical Networks

1 Introduction

AD is a methodology that refers to algorithmic
techniques for semantic augmentation of numerical
programs with additional code for derivative com-
putations [6]. For many reasons, AD is a better
choice over other ways for computing derivatives
such as symbolic differentiation and finite difference
methods. In contrast to symbolic differentiation tools,
an AD tool does not generate the derivative formula
explicitly, but it computes the numerical values of
efficient derivative formulas expressed as a program.
Nevertheless, the derivative values using AD are as
accurate as the values of those generated by symbolic
algebra packages up to machine precision. Further-

more, the results are not affected by any truncation
errors, resulting from numerical differentiation using
divided difference methods.

This work is concerned with AD of Modelica mod-
els. Modelica is essentially targeted towards modeling
complex systems that can be described by differential
algebraic equation (DAE) systems:

F(t,x, ẋ, p) = 0, x(0) = x0(p) (1)

wherex∈Rn, p∈Rm, F : R2·n+m+1 → Rn. Assuming
that ∂F/∂x is non-singular for allp ∈ Rm, and that
∂x/∂ p is smooth enough, sensitivity analysis requires
the sensitivities∂x/∂ p of solution variables with re-
spect to perturbations in the parameters. These can be
calculated by solving the original DAE system (1) and
msensitivity systems:

∂F
∂ ẋ · ∂ ẋ

∂ p + ∂F
∂x · ∂x

∂ p + ∂F
∂ p = 0,

∂x
∂ p(0) = ∂

∂ p(x0(p))
(2)

obtained by explicit differentiation of (1) with respect
to p [14]. Additionally, the sensitivities∂xi/∂x j

of certain variablesxi with respect to other specific
variablesx j might be needed.

This paper presents first experiences with a prototype
of a tool, ADModelica, that augments Modelica mod-
els with Modelica code for computing certain sensi-
tivities, with minimal user efforts. Aiming at the full-
support of Modelica language constructs, we imple-
mented a first version, which supports most basic con-
structs of Modelica. The rest of the paper is structured
as follows. Section 2 introduces basic terminologies
and algorithmic aspects of AD. The Generalization of
the introduced concepts into the Modelica framework
is clarified in Sect. 3. Section 4 presents the ADMod-
elica tool and briefly discusses some design and imple-
mentation issues. In Sect. 5, applications in the field
of Biochemical Engineering using a special library is
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presented. Finally, conclusions are presented and fu-
ture work is discussed in Sect. 6.

2 Introduction to Automatic Differ-
entiation

Many techniques such as numerical differentiation
or computer algebra methods are used to compute
derivatives. However, AD has proved to be superior
over other ways for obtaining derivatives in terms of
computational efficiency, numerical precision and dis-
cretization parameters. ADIC [2] and ADIFOR [1] are
examples of a wide range of AD tools for differentiat-
ing C and Fortran programs respectively. In this sec-
tion, some basic terminologies of AD are introduced.

2.1 Basic Concepts

Formally, given a program P that computes a function:

f : x∈ Rn → y∈Rm

with n inputs andm outputs, a new codeP′ is sought
to compute the Jacobianf ′ = ∂y/∂x. The following
terms are commonly used in the context of AD:

• Independent variablesare program input vari-
ables with respect to which derivatives are
sought.

• Dependent variablesare output variables whose
derivatives are desired.

• A derivative objectrepresents some derivative in-
formation, such as a vector of partial derivatives
(∂z/∂x1, ...,∂z/∂xn)T of a variablezwith respect
to a vectorx = (x1,x2, ...,xn)T .

• Any program variable with which a derivative ob-
ject is associated is called anactive variable.

2.2 Algorithmic Aspects of AD

The key concept behind AD is that every computa-
tion, no matter how complex it is, is executed on a
computer as a sequence of a limited set of elemen-
tary operations, such as addition and multiplication,
and intrinsic functions, such as sine and cosine. The
derivative of each of these elementary operations can
be computed by applying the chain rule to combine
the local partial derivatives of each executed operator.
An AD tool operates by systematic application of the
chain rule on the numerical code. For example, let

a(x) and b(x) be intermediate values that depend on
an independent variablex, and letc := f (a,b). Then
by using the chain rule,∇xc the derivative of the de-
pendent variablec with respect tox is computed as:

∇xc :=
∂ f
∂a

·∇xa+
∂ f
∂b

·∇xb (3)

The chain rule is associative. Ify := f (g(x)), ∂y/∂x
can be computed by forwardly accumulating the
derivatives (i.e.∂ f/∂g and ∂g/∂x) in the computa-
tional path from the independent variable(s) (eg.x)
to the dependent variable(s) (eg.y). By exploiting the
associativity of the chain-rule, the augmented program
is generated to evaluatef (x) and the partial derivatives
of f simultaneously.

2.3 Why AD for Modelica?

AD is naturally implemented by Modelica compilers
to provide partial derivatives of functions for solving
the DAE index problem [12]. A DAE system of high
index is transformed into a solvable ODE system by
differentiating some equations selected by Pantelides’s
algorithm [13]. Here, AD is chosen for the fundamen-
tally different task of calculating sensitivities of solu-
tion variables, motivated by the following reasons:

• DAE systems are represented in Modelica by us-
ing components and connectors; internal formu-
las in components and models may be imple-
mented with loops and many branches. There-
fore, it makes sense to utilize existing tools and
concepts of handling DAE systems, used by mod-
elica compilers, for generating derivative formu-
las.

• For a Modelica model that computes a DAE Sys-
tem (1), a lot of common sub-expressions in
F, ∂F/∂x and ∂F/∂ p arise. In many cases,
these common sub-expressions need not to be re-
evaluated if these partial derivatives are computed
using AD.

• Compiler techniques used for reducing the di-
mension of a generated DAE system, can be
adopted by AD for reducing the number of equa-
tions needed to be differentiated , instead of blind
differentiation of all equations, as the DAE sys-
tem (2) suggests [4].

3 Differentiating DAE Systems

Assignments (eg.x := f (y,z)) are the main elemen-
tary units of procedural languages, whereas declara-
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tive equations (eg.f (x(t),y(t),z(t)) = 0) constitute the
main building units of Modelica. While an assignment
is a relation between inputs (a collection of values)
and one output, an equation is a relation between sev-
eral variables, that needs to be fulfilled concurrently.
This conceptual difference has vital consequences on
the way derivatives can be generated for DAE sys-
tems, namely, AD techniques for classical languages,
such as C/FORTRAN, are not necessarily applicable
for equation-based languages.

3.1 Example

Consider the DAE System

Ȧ =−v, A(0) = A0

Ḃ = v, B(0) = B0

v = vmax· A
A+k ·

Ik
B+Ik

(4)

describing the dynamics of a chemical reaction, in
which a chemical substance with concentrationA =
A(t) is converted to another chemical substance with
concentrationB = B(t). v = v(A,B, t) stands for re-
action rate andvmax, k and Ik stand for enzymatic pa-
rameters. The first two ordinary differential equations
represent balance equations, whereas the third equa-
tion describes the reaction rate using the well-known
Michaelis-Menten Kinetics [7]. The sensitivities of
x = (A,B,v)T w.r.t. parametersp = (vmax,k, Ik)T can
be computed as in (2) by adding the following equa-
tions:

Ȧp =−vp, Ap(0) = 0
Ḃp = vp, Bp(0) = 0
vp = ∂

∂ p f (A,B,vmax,k, Ik)
(5)

to (4), where

f (A,B,vmax,k, Ik) = vmax·
A

A+k
· Ik
B+ Ik

(6)

vp = ∇pv = (
∂v

∂vmax
,

∂v
∂k

,
∂v
∂ Ik

)T (7)

andAp,Bp are similar tovp. Given thatJp = I3 (Iden-
tity matrix of size 3), i.e.:

∇pvmax := (1,0,0)T ;
∇pk := (0,1,0)T ;
∇pIk := (0,0,1)T ;

(8)

(5) can be easily implemented in Modelica with the
help of arrays. Notice that := stands for assignments.

3.2 Utilizing Common Sub-expressions

Given that the values ofA(t) andB(t) are known for
a time pointt, v(t) and vp(t) can be computed from
the DAE systems (4) and (5). The third equation
vp = ∂ f/∂ p in the DAE system (5) consists of three
equations of similar algebraic structure. Excessive re-
evaluation of common sub-expressions arising inv and
vp can be avoided by dividing the equationv= f in the
DAE system (5) into a set of binary assignments using
the Abstract Syntax Tree (AST) ofv as shown in Fig.
1. The gradient ofv(t) is computed by forward accu-
mulation of the gradients of the intermediate variables
obtained by differentiating each assignment instead of
direct differentiation of the algebraic formula. An im-
plementation for the DAE systems (4) and (5) looks as
follows:

Ȧ =−v
∂
∂ t ∇pA =−∇pv

Ḃ = v
∂
∂ t ∇pB = ∇pv

u1 := vmax·A;
∇pu1 := ∇pvmax·A+vmax·∇pA;

u2 := A+k;
∇pu2 := ∇pA+ ∇pk;

u3 := u1 ·u2;
∇pu3 := ∇pu1 ·u2 +u1 ·∇pu2;

u4 := B+ Ik;
∇pu4 := ∇pB+ ∇pIk;

u5 := Ik/u4;
∇pu5 := (∇pIk ·u4− Ik ·∇pu4)/u2

4;
v := u3 ·u5;

∇pv := ∇pu3 ·u5 +u3 ·∇pu5;

(9)

In this way, common sub-expressions are evaluated
only once, and hence less arithmetic operations are
needed. The assignments can be implemented in Mod-
elica with the help of thealgorithmconstruct.

3.3 Limitations

While optimizing common sub-expressions works
well for AD of classical procedural languages, this
may not be the case with equation-based languages.
For example, in the DAE system (4),v(0) can be
computed by considering the available values ofA(0)
andB(0). Then,v(0) is used to compute subsequent
values ofA andB, and hence forth. That is, at each
iteration, A(t) and B(t) are used to computev(t).
In other words, the valuesv(t) depends on A(t) and
B(t). By this way, computingv(t) from A(t) andB(t)
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Figure 1: Abstract Syntax Tree (AST) ofv = f

in (9) does not change the dependency of variables.
However, in general, an equation can be divided into a
set of binary operations if the output variable depends
on the variables arising in the left hand side of all
intermediate assignments.

Additionally, the dimension of the rewritten DAE sys-
tem increases according to the way the Modelica com-
piler handles local variables. If intermediate results of
local variables are always stored, this exhausts extra
storage and computation time. Note that, the number
of local variables can be reduced by reusing local vari-
ables. For example, there is no need to introduce new
local variablesu4 andu5 if u1 andu2 are used instead.
Moreover, excessive use of thealgorithmsection may
disable some optimization methods for reducing the
dimension of a DAE system and hence worsen the per-
formance. Finally, side effects implied by the enforced
order of sub-expressions evaluation result in slightly
different results for state variables.

4 Automatic Differentiation of
Modelica Code

ADModelica is a prototype of a source-to-source AD
tool that strives to support Modelica programs. The
source-to-source approach employs a combination of
classical- and equation-based compiler techniques to
transform a program source code into a new source
code that computes the derivatives. This section gives
a quick overview of the implementation of ADModel-
ica.

4.1 Possible Approaches

There are three levels, on which AD of (implicit) DAE
systems can operate:

1. Library level: All library units (i.e. components
and connectors) are differentiated independently
to generate another library that additionally com-
putes parameter sensitivities of variables. Each
component is augmented with code for deriva-
tives.

2. Flat Model Level: The source code is given as
(or transformed into) pure equations, represented
by elementary Modelica’s constructs, rather than
physical formulation with components and con-
nectors. Sensitivity Equations are added in a new
Modelica model.

3. Generated C-code level: The generated C-code
is differentiated.

In [4], the above approaches are discussed in more de-
tails. The adopted approach is based on differentia-
tion on the flat model level. The current supported in-
put models, are namely those, which flattened models
have pure mathematical formulation. Particularly, in-
put models with components, connectors and arrays
with equations expressed asfor-loops are supported.
However, some control constructs in Modelica, such
asif, while and others, are not yet supported. As a re-
mark, AD of such classical languages constructs is a
well-know problem and has been successfully handled
[6].

4.2 Overview of ADModelica

Figure 2 shows the corresponding Modelica imple-
mentation of the DAE system (9). The user specifies
the independent variables. If not specified, all parame-
ters are considered as independent variables. To every
variablev of type Real an array representing the gradi-
ent of that variableg_v is associated. The array’s size
represents the number of independent variables. Each
entry of the array represents the derivative ofv with re-
spect to an independent variable. To each active vari-
able, a gradient is associated. ADModelica follows a
conservative strategy that considers all variables and
parameters active. In that case, non-interesting param-
eters have the zero gradients.

4.3 Design and Implementation

Implementing an AD tool from scratch, supporting
a wide set of Modelica grammar, would be an ex-
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Figure 2: Implementation of the DAE system (4) and
its Sensitivity Equations (5)

pensive and error-prone process. Therefore, existing
tools and software are utilized by ADModelica, par-
ticularly OMC [5]. OMC allows communication with
other tools through the CORBA interface. Figure 3
shows the main steps performed to generate a Mod-
elica model that computes additional required deriva-
tives. These steps are summarized as follows:

• Flattening: A high-level model is transformed to
a model with pure mathematical equations, using
the Open Modelica Compiler (OMC). ADModel-
ica makes use of the CORBA interface, offered
by OMC.

• Transforming to intermediate format: The
ModelicaXML parser [15] parses an input model
to an easy-to-handle format, in which the AST
representation of the equations are implicitly in-
herited. The ASTs are extracted into intermediate
format in Java classes.

• Analyzing: The dimension of the generated DAE
system is reduced by removing alias equations
(s.a.x = y andx+y = 0 ) [9]. The computational
path between variables is computed [3, 8].

• Differentiating: The ASTs of the derivatives are
computed. A conservative strategy is to differ-
entiate all equations. However, it is enough to

Figure 3: The Architecture of ADModelica

differentiate all equations laying in all Strongly
Connected Components (SCCs) of the computa-
tional path from the independent variable(s) to
the dependent variable(s).

• Unparsing: The differentiated model is gener-
ated with additional code for derivatives.

• Visualizing ASTs: Producing graphs of the
ASTs was proven to be useful during the course
of development, for finding potential semantical
mistakes.

5 Application

Modeling the dynamics of metabolic reaction net-
works has a wide spectrum of applications. Special
attention has been paid to modeling biochemical
systems with Modelica [11]. In general, the pa-
rameters expressing the characteristics of enzymatic
reactions (eg. reaction rate, enzyme activation/inhi-
bition constants, etc.) are one of the largest source
of uncertainty in modeling metabolic networks, and
are not necessarily known. Their values might be
estimated by fitting them to measured data, resulted
from stimulus-response experiments [16]. Estimating
the correct values of parameters can reveal hidden
information about the system. However, even in that
case, the asserted model alone does not explain the
underlying behavior.

Understanding the functions of enzymatic reactions
within a metabolic network can be achieved by
measuring changes to directed perturbations of certain
parameters (eg. quantity of a certain enzyme). While
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Figure 4: A dynamic Metabolic Network

this can be experimentally difficult or impractical,
it is easier to quantify the effect of these changes
using a validated model [17]. This can be achieved
by computing the sensitivities of reaction rates and
concentration to parameters∂ r/∂ p and ∂c/∂ p, and
the sensitivities of reaction rates to concentration of
metabolites∂ r/∂c. Using these sensitivities, the well
known quantities of Metabolic Control Theory, i.e.
the concentration and flux control coefficientsCM and
CF , can be calculated [10, 7].

In Figure 4, a dynamic metabolic network model
including reactions of the tricarbon acid cycle is
shown. The network has been implemented using a
specialized library for biochemical networks, making
use of many object-oriented features of the Modelica
language. Various classes (e.g. Enzyme, Metabolites,
Reactions) are the main common objects. Objects
are connected via interfaces for potential variables
(e.g. concentrationc) and flux variables (e.g. reaction
rate r). The dimension of the corresponding DAE
system of the flattened model is 690. The number of
non-trivial equations is 182. It takes few milli-seconds
to simulate the network using Dymola (Dynasim AB,
Sweden). The model was differentiated w.r.t. 64

independent variables, 49 of which are parameters
corresponding to enzymatic characteristics and 15
concentrations variables. The dimension of the
generated DAE is 12,270. It takes about 35 seconds
to get the network and corresponding sensitivities
simulated.

Investigations on the dynamics of metabolic network
models mostly follow a system perturbation starting
from a stationary state. In this example, the network
is stimulated by a pulse of the input metabolite PEP.
Results show that responses of following metabolite
pools are very fast (e.g. PYR) or delayed (e.g. AC-
COA). Especially in the case of the output metabo-
lite LYS the concentration change is rather low in the
given time frame. The results are used to identify some
model parameters, which show a higher sensitivity in
the instationary case directly after system perturbation,
as well as others, which generally do not have any sig-
nificant influence on the corresponding flux.

6 Summary and Future Work

This work shows that AD is a natural choice for com-
puting sensitivities of solution variables for Modelica
models. ADModelica is a prototype of a source-to-
source AD tool for the Modelica language. It follows
the flat model approach, as it is easy to implement be-
cause it does not consist of high-level language con-
structs. ADModelica utilizes OMC by using CORBA
communication. Potential improvements of ADMod-
elica can be achieved by making more use of OMC.
OMC access a lot of facilities that can be utilized by
ADModelica. Examples involve, but are not limited
to:

• Symbolic manipulation of algebraic equations

• An intermediate format for computational graphs
for DAE systems

• Utilizing the Dependency Flow Graph (DFG) of
variables for decomposing a large resorted DAE
system in Block Lower Triangular (BLT) format
into smaller DAE systems

These facilities are used for optimizing common sub-
expressions, reducing the number of equations needed
to be differentiated and computing sensitivities of
variables w.r.t. other (non input) variables. Although,
these are partially implemented by ADModelica, it is
certainly better to rely on the reliable well-maintained
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and continuously growing OMC.
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