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Abstract more, the results are not affected by any truncation

errors, resulting from numerical differentiation using
Modeling and simulation of physical systems is, igivided difference methods.

general, a complex iterative process. Asserted models

are necessarily based on simplifications, and in mamyis work is concerned with AD of Modelica mod-
cases are subject to improvement and optimization.dR. Modelica is essentially targeted towards modeling
this context, a wide range of applications of sensitivigomplex systems that can be described by differential

analysis can assist the modeling process, from par&figjebraic equation (DAE) systems:

eter fitting and optimization through model validation

to statistical analysis and experimental design. These F(t,x,x,p) =0, x(0) =xo(p) 1)
common methods, among others, drew increasin ) 1 _
attention to a research area of scientific computing, i\_/&erex €R", peR™, F I R#MME — RN Assuming
Automatic Differentiation (AD) of program code. Théhat 9F /dx is non-singular for allp & R™, and that
main objective of this work is to compute derivative@%/dP is Smooth enough, sensitivity analysis requires
of variables in Modelica models using AD concep@e sensmwtlesdx_/dp (_)f solution variables with re-

to assist sensitivity analysis applications. It is showPeCt to perturbations in the parameters. These can be

how Open Modelica Compiler (OMC) and Otheg:alcula_te_d_ by solving the original DAE system (1) and
tools simplify the implementation of ADModelica M Sensitivity systems:

a prototype of an AD-based tool for Modelica. As OF 0% | OF x| 0F _
a proof of concept, an application in the field of ox gp  Jx gp " op T 2)
biochemical networks is presented. Tp(o) - Tp(xo(p))

obtained by explicit differentiation of (1) with respect

feyWC_’m!S: OSG”S,'\B:V'SVI_A”?;YS'T{ A,“tma“c E'ffo p [14]. Additionally, the sensitivitiesdx;/dx;
erentiation, Open Modelica, Biochemical Networks ¢ o i variables(, with respect to other specific

variablesx; might be needed.
1 Introduction

This paper presents first experiences with a prototype
AD is a methodology that refers to algorithmiof a tool, ADModelica, that augments Modelica mod-
techniques for semantic augmentation of numericgs with Modelica code for computing certain sensi-
programs with additional code for derivative contivities, with minimal user efforts. Aiming at the full-
putations [6]. For many reasons, AD is a bettsupport of Modelica language constructs, we imple-
choice over other ways for computing derivativesiented a first version, which supports most basic con-
such as symbolic differentiation and finite differencgtructs of Modelica. The rest of the paper is structured
methods. In contrast to symbolic differentiation toolss follows. Section 2 introduces basic terminologies
an AD tool does not generate the derivative formugand algorithmic aspects of AD. The Generalization of
explicitly, but it computes the numerical values dhe introduced concepts into the Modelica framework
efficient derivative formulas expressed as a prograimclarified in Sect. 3. Section 4 presents the ADMod-
Nevertheless, the derivative values using AD are @éca tool and briefly discusses some design and imple-
accurate as the values of those generated by symbpientation issues. In Sect. 5, applications in the field
algebra packages up to machine precision. Furthef-Biochemical Engineering using a special library is

The Modelica Association 669 Modelica 2008, March 3¢ — 4t 2008



A. Elsheikh, S. Noack, W. Wiechert

presented. Finally, conclusions are presented andd(x) andb(x) be intermediate values that depend on
ture work is discussed in Sect. 6. an independent variabbe and letc := f(a,b). Then

by using the chain rule;lxc the derivative of the de-

. . . endent variable with respect tox is computed as:

2 Introduction to Automatic Differ- " 3t P ot P

entiation UxC:= 9a Oxa+ b Oxb (3
Many techniques such as numerical differentiatic;ﬂ"e chain rule is associative. yf:= f(g(x)), 6y/c9x
or computer algebra methods are used to compﬁ?@_ b? computed by forwardly .accumulatlng the
derivatives. However, AD has proved to be superig_fer'v‘"‘t'ves (ie.of/ ‘?9 and dg/dx) in t_he computa-
over other ways for obtaining derivatives in terms Nl path from the independent variable(s) (eg.
computational efficiency, numerical precision and dit2 the dependent variable(s) (8g. By exploiting the

cretization parameters. ADIC [2] and ADIFOR [1] arélssociativity of the chain-rule, the augmented program

examples of a wide range of AD tools for differentiatS 9€nerated to evaluaféx) and the partial derivatives

ing C and Fortran programs respectively. In this s¢&f f simultaneously.

tion, some basic terminologies of AD are introduced. _
2.3 Why AD for Modelica?

2.1 Basic Concepts AD is naturally implemented by Modelica compilers
Oto_ provide partial derivatives of functions for solving
trt]Te DAE index problem [12]. A DAE system of high
index is transformed into a solvable ODE system by
differentiating some equations selected by Pantelides’s

with n inputs andm outputs, a new codF is sought algorithm [13]. Here, AD is chosen for the fundamen-
to compute the Jacobiafi = dy/dx. The following tally different task of calculating sensitivities of solu-
terms are commonly used in the context of AD: tion variables, motivated by the following reasons:

e DAE systems are represented in Modelica by us-
ing components and connectors; internal formu-
las in components and models may be imple-
mented with loops and many branches. There-

e Dependent variableare output variables whose ~ fore, it makes sense to utilize existing tools and
derivatives are desired. concepts of handling DAE systems, used by mod-

elica compilers, for generating derivative formu-
¢ A derivative objectepresents some derivative in-  |as.
formation, such as a vector of partial derivatives
(02/0x4, ...,02/dx%,) " of a variablezwith respect
to a vectox = (X1, X2, ..., %) .

Formally, given a program P that computes a functi

f:xeR"—yeR™

¢ Independent variablesre program input vari-
ables with respect to which derivatives are
sought.

e For a Modelica model that computes a DAE Sys-
tem (1), a lot of common sub-expressions in
F, dF /ox and dF /dp arise. In many cases,

e Any program variable with which a derivative ob-  these common sub-expressions need not to be re-

ject is associated is called antive variable evaluated if these partial derivatives are computed
using AD.
2.2 Algorithmic Aspects of AD e Compiler techniques used for reducing the di-

mension of a generated DAE system, can be
adopted by AD for reducing the number of equa-
tions needed to be differentiated , instead of blind
differentiation of all equations, as the DAE sys-

tem (2) suggests [4].

The key concept behind AD is that every computa-
tion, no matter how complex it is, is executed on a
computer as a sequence of a limited set of elemen-
tary operations, such as addition and multiplication,
and intrinsic functions, such as sine and cosine. The
derivative of each of these elementary operations can
be computed by applying the chain rule to combir@ Differentiating DAE Systems

the local partial derivatives of each executed operator.

An AD tool operates by systematic application of thessignments (egx := f(y,z)) are the main elemen-
chain rule on the numerical code. For example, letry units of procedural languages, whereas declara-
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tive equations (egf (x(t),y(t),z(t)) = 0) constitute the 3.2 Utilizing Common Sub-expressions
main building units of Modelica. While an assignmen
is a relation between inputs (a collection of valueé

and one output, an equation is a relation between s . .
eral variables, that needs to be fulfilled concurrentl?/] _deﬁ asg?r:etrr?: é?Easn;st(eSr% (5-)”::?);::;?3 i??ﬁ:;n

This conceptual difference has vital consequences O
the way derivatives can be generated for DAE Sy%quatlons of similar algebraic structure. Excessive re-

t ' ly, AD tech for cl N ggaluatlon of common sub-expressions arisingamd
Sms, namely echniques for classical languag pcan be avoided by dividing the equaties- f in the

?ctjrcgqizti(c:)/r::-(ln):sgzpl\:r; g?jr:ggg necessarily appllca%AE system (5) into a set of binary assignments using
the Abstract Syntax Tree (AST) efas shown in Fig.

1. The gradient of(t) is computed by forward accu-

mulation of the gradients of the intermediate variables

obtained by differentiating each assignment instead of

direct differentiation of the algebraic formula. An im-

plementation for the DAE systems (4) and (5) looks as

ven that the values oh(t) andB(t) are known for
tfime pointt, v(t) andvp(t) can be computed from

3.1 Example

Consider the DAE System

A=-v, A(0)=Ao follows:
B=v, B(O) Bo 4 A
V= Vimax 24% " B =V
B 20,A= —Op
describing the dynamics of a chemical reaction, in B=v
which a chemical substance with concentratida: 5t UpB = Upv
A(t) is converted to another chemical substance with
concentrationB = B(t). v = v(A,B,t) stands for re- Uy := Vmax- A}
action rate andmax k andly stand for enzymatic pa- Upu = UpVmax: A+ Vimax: HpA;
rameters. The first two ordinary differential equations Uz :=A+K
represent balance equations, whereas the third equa- OpUz = OpA+ Opk; )
tion describes the reaction rate using the well-known Uz 1= Uy - Up;
Michaelis-Menten Kinetics [7]. The sensitivities of Upus := Upug - Uz + Ug - Uplp;
x = (AB,v)T w.r.t. parameterg = (Vmax K, k)" can Ug i= B+ li;
be computed as in (2) by adding the following equa- UpUg := UpB+ Uplg;
tions: Us = ly/Ug;
Ap=—Vp, Ap(0)=0 Dptls := (Dplkc- Us — - Dpla) /U
Bp= 2 Bp(0) =0 (5) V = U3 Us;

Vp = 0pf(A B, Vimax K; Ik) Upv = DpUs - Us + Uz - LpUs;
In this way, common sub-expressions are evaluated
only once, and hence less arithmetic operations are
needed. The assignments can be implemented in Mod-
®) elica with the help of thalgorithm construct.

to (4), where

v A %
M A+ k B+ Iy

f (A7 vamax; k7 Ik) -

ov 0v 0v. ¢ @ 3.3 Limitations

(—a PR _)

Vmax_ Okl While optimizing common sub-expressions works
andAy, By, are similar tov,. Given thatd, = I3 (Iden- well for AD of classical procedural languages, this
tity matrix of size 3), i.e.: may not be the case with equation-based languages.
For example, in the DAE system (4y(0) can be
computed by considering the available value#\()
andB(0). Then,v(0) is used to compute subsequent
values ofA andB, and hence forth. That is, at each
iteration, A(t) and B(t) are used to compute(t).
(5) can be easily implemented in Modelica with thi other words, the valuegt) depends on &) and
help of arrays. Notice that= stands for assignments.B(t). By this way, computing/(t) from A(t) andB(t)

DmeaX:: (1, 07 O)T;
0ok =(0,L0)7; (®)
Oplk  :=(0,0,1)7;
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4.1 Possible Approaches

There are three levels, on which AD of (implicit) DAE
systems can operate:

1. Library level: All library units (i.e. components
and connectors) are differentiated independently
to generate another library that additionally com-
putes parameter sensitivities of variables. Each
component is augmented with code for deriva-
tives.

2. Flat Mode Level: The source code is given as
(or transformed into) pure equations, represented
Figure 1: Abstract Syntax Tree (AST) of= f by elementary Modelica’s constructs, rather than
physical formulation with components and con-
nectors. Sensitivity Equations are added in a new

in (9) does not change the dependency of variables. Modelica model.
However, in general, an equation can be divided into & 5 1o ated C-code level: The generated C-code
set of binary operations if the output variable depends is differentiated ’

on the variables arising in the left hand side of all
intermediate assignments. In [4], the above approaches are discussed in more de

tails. The adopted approach is based on differentia-

" . . , tion on the flat model level. The current supported in-
Additionally, the dimension of the rewritten DAE sys-

: . . ut models, are namely those, which flattened models
tem increases according to the way the Modelica coﬁwE

ier handles local variables. If int giat It ve pure mathematical formulation. Particularly, in-
piier handles local variables. It intermediate resulis g, ,qqels with components, connectors and arrays
local variables are always stored, this exhausts exjr

¢ d tation i Note that. th fth equations expressed &w-loops are supported.
storage and computation ime. Note that, the numt?%wever, some control constructs in Modelica, such

of local variables can be reduced by reusing local Vafl=it \while and others. are not yet supported. As a re-

ables. For example, there is no need to introduce nﬁl\’é’lrk, AD of such classical languages constructs is a

local variablesu, apdus if uy andu, are useq instead. o/ know problem and has been successfully handled
Moreover, excessive use of thigorithmsection may |L6]
e

disable some optimization methods for reducing t

dimension of a DAE system and hence worsen the per: . .

formance. Finally, side effects implied by the enforce 2 Overview of ADModelica

order of sub-expressions evaluation result in slightiigure 2 shows the corresponding Modelica imple-

different results for state variables. mentation of the DAE system (9). The user specifies
the independent variables. If not specified, all parame-
ters are considered as independent variables. To every
variablev of type Real an array representing the gradi-

. . L. ent of that variabley_v is associated. The array’s size
4 Automatic Differentiation of represents the number of independent variables. Each
Moddica Code entry of the array represents the derivative vfith re-

spect to an independent variable. To each active vari-

o able, a gradient is associated. ADModelica follows a
ADModelica is a prototype of a source-to-source ARynservative strategy that considers all variables and

tool that strives to support Modelica programs. Theyameters active. In that case, non-interesting param-
source-to-source approach employs a combinationg@f < nhave the zero gradients.

classical- and equation-based compiler technigues to
transform a program source code into a new sour 8
code that computes the derivatives. This section gives
a quick overview of the implementation of ADModelimplementing an AD tool from scratch, supporting
ica. a wide set of Modelica grammar, would be an ex-

Design and I mplementation
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model ADSimpleReacticon
Real A{start=1),EB{start=0),v;
E=al[3] g A,g_B,g wv;
parameter Eeal wvmaz=1;

omc
Compiler

XML
Modelica

Modelica
lat Mode

Input
Model

constant Reall[3] g_wmaz={1,0,0};
parameter Eesal k=1;
constant Real[3] g_k={0,1,0};
parameter Eeal Ik=1;
constant Reall[3] g Ik={0,0,1};
protected
Eegal locDl,loc02,loe03,loc0d, loc(s;
Beal g_loell,g loc02,g_locd3, g locCd, g loch;
equation
der (A]l=-vw;
der {B) =v;
fiw = vmazx
algorithm
loc0l :
locd2
loc03

* (B/(R+E)) * (Ik/(B+Ik});
Tmaz*h;

Atk

loc0l/loc02;

ADModelica
XML

Parser

XML
Model

Derived
Model

—

ASTs

Visualizer

Analyzer

Unparser

AST’s

loc0d BE+Ik;
locOb = Ik/loc04;
b = loc03*1loclh;
//Derivatives:
equation
for i in 1:3 loop
der (g Ali])=-g_v[il;
der{g_B[i])=g_w[i];
end for;
algorithm
for i in 1:
g_locOl :
g locd2
g_locO3 :
g locOd
g_locOb :
g_vlil]
end for;

loop

g_wmaz [1] *B+vmaz*g B[i]

g_R[il+g_k[i];

(g _locl*locl2-locll*g_loc02) / {loch2”2)
g_EBlil+g_Tk[i];

(g _Tk[i]*loc0d-Tk*g_locl4) /{locld4"2)
g_locl3*loc05+1locd3*g_loc5;

L[ | N | I | B [

end ADSimpleReaction;

Figure 2: Implementation of the DAE system (4) and
its Sensitivity Equations (5)

tools and software are utilized by ADModelica, par-
ticularly OMC [5]. OMC allows communication with
other tools through the CORBA interface. Figure 3

e Visualizing ASTs:
pensive and error-prone process. Therefore, existing

Figure 3: The Architecture of ADModelica

differentiate all equations laying in all Strongly
Connected Components (SCCs) of the computa-
tional path from the independent variable(s) to
the dependent variable(s).

e Unparsing: The differentiated model is gener-

ated with additional code for derivatives.

Producing graphs of the
ASTs was proven to be useful during the course
of development, for finding potential semantical
mistakes.

shows the main steps performed to generate a Mod-
elica model that computes additional required derivg- Application

tives. These steps are summarized as follows:

e Flattening: A high-level model is transformed to
a model with pure mathematical equations, usi

the Open Modelica Compiler (OMC). ADModel2t

ica makes use of the CORBA interface, offeredyStems with Modelica [11]. ge _
rameters expressing the characteristics of enzymatic

by OMC.

Modeling the dynamics of metabolic reaction net-
m?orks has a wide spectrum of applications. Special

ention has been paid to modeling biochemical
In general, the pa-

reactions (eg. reaction rate, enzyme activation/inhi-
Transforming to intermediate format: The bition constants, etc.) are one of the largest source
ModelicaXML parser [15] parses an input modejf uncertainty in modeling metabolic networks, and
to an easy-to-handle format, in which the AS@re not necessarily known. Their values might be
representation of the equations are implicitly irestimated by fitting them to measured data, resulted
herited. The ASTs are extracted into intermediat@®m stimulus-response experiments [16]. Estimating
format in Java classes. the correct values of parameters can reveal hidden
Ij:nformation about the system. However, even in that

Analyzing: The dimension of the generated DA .
. ) . ._case, the asserted model alone does not explain the
system is reduced by removing alias equations

(s.a.x=yandx+y=0) [9]. The computational underlying behavior.

ath between variables is computed [3, 8]. ) . . .
P P 3. 8l Understanding the functions of enzymatic reactions

Differentiating: The ASTs of the derivatives arewithin a metabolic network can be achieved by
computed. A conservative strategy is to diffemeasuring changes to directed perturbations of certain
entiate all equations. However, it is enough foarameters (eg. quantity of a certain enzyme). While

The Modelica Association
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independent variables, 49 of which are parameters
corresponding to enzymatic characteristics and 15
concentrations variables.  The dimension of the
generated DAE is 12,270. It takes about 35 seconds
to get the network and corresponding sensitivities
simulated.

Investigations on the dynamics of metabolic network
models mostly follow a system perturbation starting
from a stationary state. In this example, the network
is stimulated by a pulse of the input metabolite PEP.
Results show that responses of following metabolite
pools are very fast (e.g. PYR) or delayed (e.g. AC-
COA). Especially in the case of the output metabo-
lite LYS the concentration change is rather low in the
given time frame. The results are used to identify some
model parameters, which show a higher sensitivity in
the instationary case directly after system perturbation,
as well as others, which generally do not have any sig-
nificant influence on the corresponding flux.

6 Summary and Future Work

Figure 4: A dynamic Metabolic Network This work shows that AD is a natural choice for com-
puting sensitivities of solution variables for Modelica
models. ADModelica is a prototype of a source-to-

this can be experimentally difficult or impracticalsource AD tool for the Modelica language. It follows
it is easier to quantify the effect of these changése flat model approach, as it is easy to implement be-
using a validated model [17]. This can be achieveduse it does not consist of high-level language con-
by computing the sensitivities of reaction rates amtructs. ADModelica utilizes OMC by using CORBA
concentration to parameteds /dp and dc/dp, and communication. Potential improvements of ADMod-
the sensitivities of reaction rates to concentration elica can be achieved by making more use of OMC.
metabolitesdr /dc. Using these sensitivities, the welDMC access a lot of facilities that can be utilized by
known quantities of Metabolic Control Theory, i.eADModelica. Examples involve, but are not limited
the concentration and flux control coefficie@¥ and to:

CF, can be calculated [10, 7].
e Symbolic manipulation of algebraic equations

In Figure 4, a dynamic metabolic network model
including reactions of the tricarbon acid cycle is
shown. The network has been implemented using a
specialized library for biochemical networks, making o Utilizing the Dependency Flow Graph (DFG) of

use of many object-oriented features of the Modelica yariables for decomposing a large resorted DAE

Ianguage. Various classes (eg Enzyme, Metabolites, System in Block Lower Triangular (BLT) format
Reactions) are the main common objects. Objects into smaller DAE systems

are connected via interfaces for potential variables

(e.g. concentration) and flux variables (e.g. reactiorThese facilities are used for optimizing common sub-
rate r). The dimension of the corresponding DAEXxpressions, reducing the number of equations needed
system of the flattened model is 690. The numbertof be differentiated and computing sensitivities of
non-trivial equations is 182. It takes few milli-secondgariables w.r.t. other (non input) variables. Although,
to simulate the network using Dymola (Dynasim ABhese are partially implemented by ADModelica, it is
Sweden). The model was differentiated w.r.t. 6krtainly better to rely on the reliable well-maintained

e Anintermediate format for computational graphs
for DAE systems
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and continuously growing OMC. [11]
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