

Comment- and Indentation Preserving Refactoring
 and Unparsing for Modelica

Peter Fritzson, Adrian Pop, Kristoffer Norling, Mikael Blom
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
{petfr, adrpo, x06krino, x06mikbl}@ida.liu.se

Abstract
In this paper we present a strategy for comment- and
indentation preserving refactoring and unparsing for
Modelica. The approach is general, but is currently be-
ing implemented for Modelica in the OpenModelica
environment. We believe this to be one of the first un-
parsing approaches that can preserve all user-defined
indentation and comment information, as well as fulfill-
ing the principle of minimal replacement at refactor-
ings.

Keywords: Refactoring, comments, unparsing,, Mode-
lica.

1 Introduction
Integrated programming environments, e.g. InterLisp
[11] and Eclipse [12] provide various degrees of sup-
port for program transformations intended to improve
the structure of programs – so-called refactorings [5]
(see also Section 10).

Such operations typically operate on abstract syntax
tree (AST) representations of the program. Therefore
the program needs to be converted to tree form by pars-
ing before refactoring, and be converted back into text
by the process of unparsing, also called pretty printing
This is supported by a number of environments (Sec-
tion 10).

However, a well-known problem is that of preserv-
ing comments and user-defined indentation while per-
forming refactorings. Essentially all current environ-
ments either loose the comments (except for special
comments that are part of the language syntax and AST
representation), or move them to some other place.
User-defined indentation is typically lost and replaced
by machine-generated standard indentations. This is
accepted by some developers, but judged as unaccept-
able by others. However, if the objective only is to im-
prove indentation, then a semi-automatic indenter can
be used instead (Section 8.3).

Currently Modelica-based tools are handling only dec-
laration comments that are part of the model and are
discarding or moving all the other comments, i.e. the
ones between /* */ and after //…. Such behavior is
highly undesirable from a user perspective and heavily
affects the ease-of-use of code-versioning tools.

A goal for the work presented here is to support
Modelica code refactoring with minimal disruption of
user-defined comments and indentation. In this paper
we present such an approach for unparsing in conjunc-
tion with refactorings.

2 Comments and Indentation
Regard the following contrived Modelica example. It
has one declaration comment which is part of the lan-
guage syntax, and two “textual” comments Itemcomm
and MyComm which would be eliminated by a conven-
tional parser. It is also nicely hand formatted so that the
start positions of each component name in the text are
vertically aligned.
record MODIFICATION "Declaration comment"

 Boolean finalItem; //Itemcomm
 Each /* MyComm */ eachRef;
 ComponentRef componentReg;

end MODIFICATION;

Assume that this is parsed and unparsed by a conven-
tional (comment-preserving) unparser, putting two
blanks between the type and the component name of
each component. The manual indentation would be
lost, and the “textual” comments would be moved to
some standard positions (or be lost):
record MODIFICATION "Declaration comment"

 Boolean finalItem; //Itemcomm
 Each eachRef; /* MyComm */
 ComponentRef componentReg;

end MODIFICATION;

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica

The Modelica Association 657 Modelica 2008, March 3rd − 4th, 2008

3 Refactorings
Below we make some general observations and give
examples of refactorings.

3.1 The Principle of Minimal Replacement

For a refactoring to have minimal disruption on the
existing code, it is desired that it supports the principle
of minimal replacement:

• When replacing a subtree, the minimal subtree that
contains the change should be replaced.

This also has the consequence of minimal loss or
change of comments. For example, if a name (an identi-
fier) is changed, only the identifier node in the tree
should be replaced, not the surrounding subtree.

3.2 Some Examples of Refactorings

Here we mention a few common refactorings. There are
also numerous, more advanced and specialized refac-
torings.

• Component name change. Change name of a com-
ponent name in a record. For example:

record MODIFICATION "Declaration comment"
 Boolean finalItem; //Itemcomm
 Each /* MyComm */ eachRef;
 ComponentRef componentReg;
end MODIFICATION;

The name of the component reference name is cur-
rently componentReg, which is an error. It should
be componentRef. We would like to change the
name both in the declaration and all its uses, thus
avoiding updating all named references by hand,
which would be quite tedious.

• Function name change. Change the name of a func-
tion, both the declaration and all call sites.

• Add record component. Add a new component dec-
laration to record. In MetaModelica, that would also
mean putting an underscore '_' at the correct posi-
tion in all patterns for that record type with posi-
tional matching.

• Add function formal parameter. Add an input or
output formal parameter to a function. The question
is, how much is possible to do automatically? Add-
ing arguments to recursive calls to the function itself
is no great problem, but calls from other functions
can be more problematic since meaningful input
data needs to be provided. This can be handled eas-
ily in those cases a default value can be passed to
the function's new formal parameter.

4 Representing Comments and User-
Defined Indentation

How should information about comments and user de-
fined indentation be represented in the internal (AST)
program representation? There are basically two possi-
bilities for a chunk of code, e.g. a model:

• Tree. The AST representation is the main storage
(the TRUTH). Comments and indentation as extra
nodes/attributes in the AST.

• Text. The text representation, including indentation
and comments, is the main storage (the TRUTH).

The tree approach may seem natural, since the refactor-
ings and the compiler operate on the tree representa-
tion. However, it has some disadvantages:

• Since white space and comments can appear essen-
tially anywhere, between nodes, associated with
nodes, the AST will become cluttered and increase
the required memory usage and complexity of the
tree, perhaps by a factor 2-3.

• The large number of extra nodes in the AST may
complicate code accessing and traversing the tree.

Regarding the text representation we make the follow-
ing observations:

• The text representation exists from the start, since
this is the storage form used in the file system. En-
vironments like Eclipse use text buffers for direct
interaction with the programmer.

• The text representation includes all indentation and
comment information, and is compact.

• The structure of the program in the text representa-
tion is not apparent, and cannot be easily manipu-
lated.

Why not combine the advantages of each representa-
tion, and try to avoid the disadvantages?

• Use the text representation as the basic storage for-
mat including indentation and comment informa-
tion. The text might be conceptually divided into
chunks, where for example each class definition
gives rise to a text chunk.

• Use the tree representation for compilation and
refactoring. Create it when needed and keep it dur-
ing the current session. Create it piece-wise, e.g. for
one class at a time.

• Create a mapping from the tree representation to the
text representation; each node in the tree has a cor-
responding position and size in the text representa-
tion. Create this mapping when needed, for appro-
priate pieces (e.g. class definitions) of the total
model.

P. Fritzson, A. Pop, K. Norling, M. Blom

The Modelica Association 658 Modelica 2008, March 3rd − 4th, 2008

5 Implementation
The following strategy is used for the implementation

5.1 Base Program representation

The text representation is the TRUTH, the source, and
the AST representation is a secondary representation
derived from the source, used during compilation and
refactoring.

The class information attribute of a class definition
in the AST should be extended, e.g. with the byte start
position (directly addressing within a file), or by a text
chunk corresponding to the text of a class declaration.
A package which contains classes would instead refer
to the definitions of those classes.

Text positions and text sizes of each AST node
should be indirectly associated with each AST node.

5.2 The Parser

The following special considerations need to be ad-
dressed by the parser:

• In order not to clutter the produced AST tree, the
parser produces two trees: a standard AST tree, and
a positioning tree (produced in parallel) with the
same number of nodes, containing text positions and
sizes of each subtree.

• The parser should return the start text position and
text size of each built AST tree. Moreover, if there
are any comments within the AST tree text range, a
list of the start positions and sizes of these com-
ments should be associated with the parallel tree
node.

• The pure AST tree should be clean and not cluttered
with position and comment information.

• As mentioned, a text position tree with the same
number of nodes and children as the AST is created
in parallel to the AST. The positioning tree is only
produced when needed for refactorings or text posi-
tioning, and thrown away when not needed.

For example, a child nr 3 of a node at level 2, will find
its text positions in the parallel tree in the node at level
2 and child nr 3.

5.3 The Scanner

The text position and size of each token is returned to-
gether with the token itself.

5.4 The New Unparser

The new unparser will use a combined strategy as fol-
lows, combining existing text with new text generated
by the tree unparser:

• If there exist already indented text associated with a
node, use this text to produce the unparsing text.

• If there is no existing text, this must be a new tree
node produced by the refactoring tool. Call the tree
unparser to convert this subtree into text that is in-
serted into the final unparsing result.

6 Refactoring Process
The following steps are to performed in this order dur-
ing the actual refactoring:

• Traverse the AST and perform insertion/deletion/
replacement of subtrees.

• For each insertion/deletion/replacement operation,
put each such an operation descriptor in a list, to-
gether with the text position and size of the text of
the subtree to be replaced/deleted etc.

• After traversal, sort these operations according to
text position, and perform the operations in the text
in backwards order (take those at the highest text
position first).

7 Example of Function Name Refac-
toring

The example below is used to illustrate the refactorings
and the used combined tree and text chunk representa-
tion.

All loaded models (including the Modelica pack-
age) reside in an un-named top-level scope that we can
call Top. A model may be a top-level model, but more
typically a package which in turn may consist of sub-
packages:
01 within ParentPackage;
02 package pack
03 function addOne "function that adds 1"
04 input Real x = 1.0; // line comment
05 output Real y; /* multiple
06 line
07 comment */
08 algorithm
09 y := x + 1.0;
10 end addOne;
11
12 class myClass
13 Real y;
14 equation
15 y = addOne(5); // Call to addOne
16 end myClass;
17 end pack;

Line numbers are given to help the reader follow the
example. The position tree constructed by the parser is
given in the appendix as it is quite large. A portion of
the abstract syntax tree is also shown in order to under-
stand the example.

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica

The Modelica Association 659 Modelica 2008, March 3rd − 4th, 2008

A function name refactoring will be applied to the ex-
ample which will change the name of the function
"addOne" to "add1", The refactoring can be per-
formed in the OpenModelica environment by loading
the example and calling the interactive API function:

loadFileForRefactoring("Example.mo");
refactorFunctionName(pack.addOne, "add1");

The compiler will execute the first command by calling
the new parser that also builds the position tree together
with the AST:

(ast,posTree) = Parse.refactorParse(file);

The result of the load command is two trees. The sec-
ond (posTree) is the position tree presented (partly) in
the appendix. The first (ast) is the abstract syntax tree
of the loaded file which is presented also in the appen-
dix entirely. Here is just a overview picture of the AST:

Figure 1. AST of the Example.mo file.

The figure shows that the program has one package
with two public elements which are class definitions.

Actually only two refactoring operations are needed
to implement any refactoring: add and delete or add and
replace.

When refactorFunctionName is called the com-
piler will perform these operations:

7.1 Lookup pack.addOne

Lookup of a class definition is performed by walking
the AST while keeping track of a numbered path in the
tree. To reach the addOne identifier, the path: 1, 6, 1, 1,
1, 5, 2, 1, 1 is applied. The path goes via the following
AST nodes in order to reach the desired class name:
PROGRAM [1] / CLASS [6] / PARTS [1] /
PUBLIC [1] / ELEMENTITEM [1] / ELEMENT

[5] / CLASSDEF [2] / CLASS [1] /
IDENT("addOne") [1].

7.2 Lookup Any Uses of pack.addOne

Lookup of the uses are performed by walking the AST,
keeping track of the scope, while keeping track of a
numbered path. To reach the function call of addOne,
the path: 1, 6, 1, 1, 1, 5, 2, 1, 1 is applied. The path
goes via the following AST nodes:
PROGRAM [1] / CLASS [6] / PARTS [1] /
PUBLIC [2] / ELEMENTITEM [1] / ELEMENT
[5] / CLASSDEF [2] / CLASS [6] / PARTS[1]
/ EQUATIONS [1] / EQUATIONITEM [1] /
EQ_EQUALS [2] / CALL[1] / CREF_IDENT [1]
/ IDENT("addOne") [1].

7.3 Apply the Refactoring to the Actual Text

Now that the paths needed for the minimal refactoring
were discovered in the AST, apply these paths to the
position tree and fetch the positions of the elements at
the end of the paths:

• Function name: IDENT, Start:047, End:053
• Function use: IDENT, Start:313, End:319

The text operations are applied bottom-up because oth-
erwise the character positions of the elements below an
applied operation would change. Ordering of text op-
erations is needed to have them applied in a bottom-up
fashion:

• ReplaceText(file, 319, 313, "add1");
• ReplaceText(file, 53, 47, "add1");
• Close(file);
• (ast, posTree) = // re-parse the file

 Parse.refactorParse(file);

After the file is closed either a reparsing is performed
to load the new AST (as exemplified here) or the refac-
toring operations are perfomed on the tree already in
the memory. Of course the best alternative would be to
perform the refactoring during lookup as we have im-
plemented it in the OpenModelica compiler.

As one can notice the comments stay in place so
there is minimal disruption to the text representation.
This is very valuable from a user point of view but also
for code-versioning tools.

7.4 Calculation of the Additional Overhead

There is not too much overhead for the refactoring both
with respect to memory usage and time spent walking
the tree. In the following table we discuss such over-
head and give specific numbers for needed memory
size and time complexity of the refactoring procedure.

P. Fritzson, A. Pop, K. Norling, M. Blom

The Modelica Association 660 Modelica 2008, March 3rd − 4th, 2008

Memory overhead Time overhead

Space is required for stor-
ing the position tree. The
size of this space is two
integers (of 4 bytes) for
each AST node. Also the
list of operations to be
applied to the text needs
memory for storing the
paths and the operations
themselves, but this mem-
ory is negligible com-
pared to the AST and po-
sition tree and can also be
freed.

Example: there are about
50 nodes in the example,
which means an addi-
tional memory of ~
50NrNodes x 2Positions x
4Bytes = 400Bytes are
needed for the position
tree. Or course, the posi-
tion tree could be built on
demand and the freed
when memory is needed.

Walking two trees while
performing the refactoring
has a time impact of
NumberOfNodesWalked x
O(1) to walk a node:
O(NrOfNodesWalked).
Walking the position tree
while and applying the
text operations to the file
is negligible compared to
the refactoring operation.

Example: it took about
0.2 seconds to perform the
function name refactoring
for the example file using
the OpenModelica sys-
tem. Refactoring old
graphical annotations of
the Modelica Standard
Library version 1.6 to the
new style graphical anno-
tations took about 9.6 sec-
onds, which is very good
for such a demanding
refactoring.

8 Unparsers/Prettyprinters versus
Indenters

As mentioned previously, an unparser converts an AST
program representation into (nicely indented) text. A
reformatting indentation tool uses another approach, it
operates directly on the text representation to produce a
more nicely indented text.

8.1 Pretty printers/Unparser Generators

An unparser generator produces an unparser from a
specification, a grammar-like description of unparsing
related aspects of the language. A number of systems
mentioned in Section 8 support unparsing or generation
of unparsers from such specifications.

8.2 OpenModelica Tree Unparser

The current OpenModelica version 1.4 unparser is hand
implemented in MetaModelica, recursively traversing
the AST while generating the Modelica text representa-
tion. It can be invoked by the OpenModelica list
command. Comments are currently lost (except for dec-
laration comments).

8.3 Reformatting Indentation in the OpenMod-
elica Eclipse Plugin

A text reformatting indentation tool operates directly
on the text representation, and analyzes the text by a
combination of scanning and piecemeal heuristic partial
parsing to recognize certain combinations of tokens. It
inserts or removes white space in order to produce a
nice indentation, or improve an existing one. Such
mechanisms are typically invoked by the user on a few
lines at a time, and are not completely automatic, the
user is often required to perform the final adjustments.
An advantage with this approach is that comments are
not lost.

This kind of indentation tool is for example avail-
able for a number of languages in their respective
Emacs modes, or as part of Eclipse plugins, e.g. for
C++, Java, and more recently for Modelica in the
OpenModelica MDT Eclipse plugin.

MDT includes support for automatic indentation, as
described here and in [13]. When typing the Return
(Enter) key, the next line is indented correctly. The user
can also correct indentation of the current line or a
range selection using CTRL+I or “Correct Indentation”
action on the toolbar or in the Edit menu.

Indentation can be applied to incomplete code as a
heuristic Modelica scanner is used and the indentation
is based only on the tokens generated by this scanner.
The indenter indents one line at a time. For example,
consider that line four (4) in Figure 2 should be in-
dented. The indenter asks the heuristic scanner to give
tokens from the starting token in backwards direction to
the start of the file until a scope introducer is recog-
nized, which for this particular file is model MoonAn-
dEarth. The reference position of the start of the scope
introducer is computed and line four (4) is indented
from this reference position one indent unit. The inden-
tation result is presented in Figure 2.

Indenting Modelica code is far from trivial when in-
complete (possibly incorrect) code should be indented
correctly. Most of the difficulty comes from Modelica
scopes which are hard to recognize using just a scanner
and some logic behind it. In languages like C/C++ and
Java finding enclosing scopes is very easy as one char-
acter tokens are used for the scope opening and closing:
"{" and "}". In Modelica you need at least two tokens
and much more case analysis to find where a scope
starts and ends. Complications also arise when mixing
if-statements with if-expressions (which was further
complicated by the introduction of conditional declara-
tions in the Modelica language). In this particular case
we implemented a parser emulator that recognizes these
constructs based on scanner tokens delivered back-
wards.

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica

The Modelica Association 661 Modelica 2008, March 3rd − 4th, 2008

Figure 2. Example of code after automatic indentation.

The indenter works well in almost all cases, but
there are cases in which is impossible to find the cor-
rect indentation. For example when the indentation of a
line consisting of "end Name;" is requested and the
scope introducer for Name is not found (that is identi-
fier Name followed backwards by class, model,
package, block, record, connector etc.) then
the indenter fails and returns the indentation of the pre-
vious line.

9 Further Discussion
In this section we address some questions from the re-
viewers:

Question: “A question I have always had is whether
there are any "mistakes" in the grammar that should be
corrected with respect to these issues. Similarly, how
is this handled with the Java tools in Eclipse?”

Answer: The answer to this question highly depends on
the syntactic mistake the user made. For example if an
"end if;" is missing at the end of an equation sec-
tion, but is followed by "end Model;", then such a
mistake can be automatically corrected using a heuristic
parser. However, if an opening scope is missing, i.e.,
model Model (or alternatively an ending scope) there
is no way to know where it should be introduced. There
are a lot of places that can be proposed:

• Just after the enclosing scope starts (after i.e.,
package MyPack introduction) if there exists such
scope or the start of the file if no such scope exists.

• Just after the every existing ending scope of a model
found by going backwards from the end Model;

Right now the Eclipse environment will call the
OpenModelica compiler to parse the file each time the
file is saved. The parsing errors are reported in the
Eclipse environment as a list of errors, but also under-

lined where the error occurs as shown in Figure 3. Of
course if the user selects an entire file and calls the
automatic indentation routine, the indentation will work
correctly if there are no large large grammatical errors
in the file.

Figure 3. Syntax checking.

Question: “Dymola’s pretty printing algorithm does not
appear to be deterministic (it sometimes changes files
for no reason just because they have been re-saved).
Please discuss this deterministic issue and also what
implications the algorithms will have for version con-
trol tools (i.e. avoiding complex or unnecessary
changes since this will complicate "merge" opera-
tions).”

Answer: As exemplified in Sections 3.1 and 7 the dis-
ruption to the actual text is minimal so the code-
versioning tools would have no problem with merging
operations. This was one of our goals when designing
and implementing the refactoring tools presented in the
paper. The algorithms in this paper also apply to Mode-
lica models constructed programmatically because
these can also be viewed as refactorings. In general the
construction of models programmatically is performed
by a visual component diagram editor. The editor will
give commands: addModel(…), addComponent(…),
addConnection(…), etc., to the internal handler of
the textual model (that works on the AST and the posi-
tionTree) which in the case of a file with code format-
ting will minimally disrupt the existing code and add
all the new code correctly indented at the end or in
other appropriate places.

10 Related Work
The term refactoring and its use in a general and sys-
tematic sense was introduced by Martin Fowler et al
[5], also based on earlier work, even though similar

P. Fritzson, A. Pop, K. Norling, M. Blom

The Modelica Association 662 Modelica 2008, March 3rd − 4th, 2008

code transformation operations were previously avail-
able, e.g. in the InterLisp environment [11].

Early work in interactive integrated programming
environments including unparsing/pretty printing sup-
porting a specific language was done in the InterLisp
system for the Lisp language [11], common principles
and experience of early interactive Lisp environments
are described in [16], a generic editor/unparser/parser
generator used for Pascal (and later Ada) in the DICE
system [9], [10], the integrated Mjölner environment
with mullti-language editing and unparsing support
[17]. None of these approaches preserve comments
when unparsing, except the InterLisp environment
where the comments were already part of the AST
which was just pretty printed with a more readable in-
dentation. However, also in the InterLisp case, all hand
indentation and white space added by the user is lost,
and text style comments (not part of the AST) are also
lost.

Many parser generation systems, e.g. ANTLR [14],
Eli [6], CoCo [15], also support unparsing from the
generated AST, but do not support preservation of
comments and hand-made indentation.

11 Conclusions
We have given a preliminary description of refactorings
together with an approach for comment- and indenta-
tion preserving unparsing. This is currently ongoing
work. Part of the unparser and the refactorings are im-
plemented. A full prototype implementation is expected
to be completed early spring 2008.

12 Acknowledgements
This work has been supported by the Swedish Founda-
tion for Strategic Research (SSF) in the RISE and
VISIMOD projects, by Vinnova in the Safe and Secure
Modeling and Simulation project, and by the Swedish
Research Council (VR).

References
[1] Peter Fritzson, Peter Aronsson, Håkan Lundvall,

Kaj Nyström, Adrian Pop, Levon Saldamli, and
David Broman. The OpenModelica Modeling,
Simulation, and Software Development Envi-
ronment. Simulation News Europe, 44/45, Dec
2005. http://ww.ida.liu.se/projects/OpenModelica

[2] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pp., Wiley-IEEE Press, 2004.

[3] Peter Fritzson, Adrian Pop, and Peter Aronsson.
Towards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica. In
Proc. of the 4th International Modelica Confer-
ence, Hamburg, Germany, March 7-8, 2005.

[4] The Modelica Association. The Modelica Lan-
guage Specification Version 3.0, September
2007. http://www.modelica.org.

[5] Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts. Refactoring: Improv-
ing the Design of Existing Code. Addison
Wesley, June 1999.

[6] Uwe Kastens, William M. Waite, and Anthony
M. Sloane,. Generating Software from Specifica-
tions. ISBN 0763741248. Jones and Bartlett Pub-
lishers. 2007.

[7] William W Pugh; Steven J Sinofsky. A new lan-
guage-independent prettyprinting algorithm.
Ithaca, NY : Dept. of Computer Science, Cornell
University, 1987.

[8] Martin Mikelsons. Prettyprinting in an interactive
programming environment. In Proc. of ACM
SIGPLAN SIGOA symposium on Text manipula-
tion. Portland, Oregon, 1981.

[9] Peter Fritzson. Towards a Distributed Program-
ming Environment based on Incremental Compi-
lation. 161 pages. PhD thesis no 109, Linköping
University, April 13 1984.

[10] Peter Fritzson. Symbolic Debugging through In-
cremental Compilation in an Integrated Environ-
ment, Journal of Systems and Software, 3, pp.
285–294, 1983.

[11] Teitelman, Warren. INTERLISP Reference Man-
ual. Xerox Palo Alto Research Center, Palo Alto,
CA, 1974.

[12] Eclipse website. http://www.eclipse.org. Refer-
enced Nov 2007.

[13] Adrian Pop, Peter Fritzson, Andreas Remar, El-
mir Jagudin, and David Akhvlediani. OpenMode-
lica Development Environment with Eclipse In-
tegration for Browsing, Modeling, and Debug-
ging. In Proceedings of the 5th International
Modelica Conference (Modelica'2006), Vienna,
Austria, Sept. 4-5, 2006.

[14] http://www.antlr.org. ANTLR. Accessed Nov
2007.

[15] Hanspeter Mössenböck, Markus Löberbauer, and
Albrecht Wöß. The Compiler Generator Coco/R.
http://www.ssw.uni-linz.ac.at/coco/. Accessed
Nov 2007.

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica

The Modelica Association 663 Modelica 2008, March 3rd − 4th, 2008

[16] Erik Sandewall. Programming in an Interactive
Environment: The “LISP” Experience, Comput-
ing Surveys, 10:1, Mar. 1978.

[17] J. Lindskov, M. Knudsen, O. Löfgren, Ole Lehr-
mann-Madsen, and Boris Magnusson (Eds.). Ob-
ject-Oriented Environments - The Mjølner Ap-
proach. Prentice Hall, 1993.

Appendix
Here we give (parts of) the generated position tree (posAST) for the code in the example section. The start and
end are given in character offsets. The nodes that have -1 as start/end position do not actually exist in the text, but
they appear in here to have 1-to-1 mapping to the AST definitions.

(Program, (Start: 1, End: 366, {
 (list<Class>, (Start: 23, End: 366, {
 (Class, (Start: 23, End: 366, { (Ident, (Start: 31, End: 35)
 (Boolean Partial, (Start: -1, End: -1) (Boolean Final, (Start: -1, End: -1)
 (Boolen Ecapsulated, (Start: -1, End: -1) (Restriction, (Start: 23, End: 30)
 (ClassDef, (Start: 35, End: 356, {
 (list<ClassPart>, (Start: 38, End: 356, {
 (ClassPart, (Start: 38, End: 356, {
 (list<ElementItem>, (Start: 38, End: 356, {
 (ElementItem, (Start: 38, End: 264, {
 (Element, (Start: 38, End: 264, {
 (Boolean final, (Start: -1, End: -1)
 (Option<RedeclareKeywords>, (Start: -1, End: -1)
 (InnerOuter, (Start: -1, End: -1)
 (Ident, (Start: -1, End: -1)
 (ElementSpecEL5, (Start: 38, End: 264, {
 (Boolean replaceable, (Start: -1, End: -1)
 (Class, (Start: 53, End: 264, {
 (Ident, (Start: 47, End: 53)
 (Boolean Partial, (Start: -1, End: -1)
 (Boolean Final, (Start: -1, End: -1)
 (Boolen Ecapsulated, (Start: -1, End: -1)
 (Restriction, (Start: 38, End: 46)
 (ClassDef, (Start: 53, End: 264, {
 (list<ClassPart>, (Start: 53, End: 264, {
 (ClassPart, (Start: 80, End: 250, {
 (list<ElementItem>, (Start: 80, End: 221, {
 (ElementItem, (Start: 80, End: 100, {
 (Element, (Start: 80, End: 100, {
 (Boolean final, (Start: -1, End: -1)
 (Option<RedeclareKeywords>,(Start: -1, End: -1)
 (InnerOuter, (Start: -1, End: -1)
 (Ident, (Start: 91, End: 92)
 (ElementSpecEL3, (Start: 91, End: 100, {
 (ElementAttributes, (Start: 80, End: 85, {
 (Boolean flow, (Start: -1, End: -1)
 (Variability, (Start: -1, End: -1)
 (Direction, (Start: 80, End: 85)
 (ArrayDim, (Start: -1, End: -1)
 })
 (TypeSpec, (Start: 86, End: 90, {
 (Path, (Start: 86, End: 90, {
 (Ident, (Start: 86, End: 90)
 })
 (Option<ArrayDim>, (Start: -1, End: -1)
 })
 ... // truncated text due to its large size
 }) (Option<String>, (Start: -1, End: -1)
 }) (Info, (Start: -1, End: -1)
 })
 })
 (Within, (Start: 1, End: 7,
 (Path, (Start: 8, End: 22, {(Ident, (Start: 8, End: 22)})
)

P. Fritzson, A. Pop, K. Norling, M. Blom

The Modelica Association 664 Modelica 2008, March 3rd − 4th, 2008

Here is another version of the example with character positions for end and start of a Modelica construct:
[001]within[007] [008]ParentPackage;[022]
[023]package[030] [031]pack[035]
[036] [038]function[046] [047]addOne[053] [054]"function that adds 1"[076]
[077] [080]input[085] [086]Real[090] [091]x[092] [093]=[094] [095]1.0;[099]
 [100]// line comment[115]
[116] [119]output[125] [126]Real[130] [131]y;[133]
 [139]/* multiple
 line
 comment */[221]
[222] [224]algorithm[233]
[234] [237]y[238] [239]:=[241] [242]x[243] [244]+[245] [246]1.0;[250]
[251] [253]end[256] [257]addOne;[264]
[265]
[266] [268]class[273] [274]myClass[281]
[282] [286]Real[290] [291]y;[293]
[294] [296]equation[304]
[305] [309]y[310] [311]=[312] [313]addOne[319](5);[323] [324]// Call to addOne[341]
[342] [344]end[347] [348]myClass;[356]
[357]end[360] [361]pack;[366]

Parts of the abstract syntax tree (AST) of the Example.mo in the example section is presented below. The AST
has exactly the same structure as the position tree.

adrpo@KAFKA /c/home/adrpo/doc/projects/modelica2008/
$ omc +d=dump Example.mo
Absyn.PROGRAM([
 Absyn.CLASS(Absyn.IDENT("pack"),
 false, false, false, Absyn.R_PACKAGE,
 Absyn.PARTS(
 [Absyn.PUBLIC(
 [Absyn.ELEMENTITEM(
 Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED , "function",
 Absyn.CLASSDEF(false,
 Absyn.CLASS(Absyn.IDENT("addOne"),
 false, false, false, Absyn.R_FUNCTION,
 Absyn.PARTS(
 [Absyn.PUBLIC(
 [Absyn.ELEMENTITEM(
 Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED, "comp",
 Absyn.COMPONENTS(Absyn.ATTR(false, Absyn.VAR, Absyn.INPUT,[]),
 Absyn.PATH(Absyn.IDENT("Real")),
 [Absyn.COMPONENTITEM(
 Absyn.COMPONENT(Absyn.IDENT("x"),[],
 SOME(Absyn.CLASSMOD([], SOME(Absyn.REAL(1.0))))), NONE)]),
 Absyn.INFO("Example.mo", false, 4, 4, 4, 22)), NONE)),
 Absyn.ELEMENTITEM(
 Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED , "component",
 Absyn.COMPONENTS(Absyn.ATTR(false, Absyn.VAR, Absyn.OUTPUT, []),
 Absyn.PATH(Absyn.IDENT("Real")),
 [Absyn.COMPONENTITEM(Absyn.COMPONENT("y",[],
 NONE), NONE)]),
 Absyn.INFO("Example.mo", false, 5, 4, 5, 17)), NONE))]),
 Absyn.ALGORITHMS(
 ALGORITHMITEM(
 ALG_ASSIGN(
 Absyn.CREF(Absyn.CREF_IDENT("y", [])),
 Absyn.BINARY(
 Absyn.CREF(Absyn.CREF_IDENT("x", [])),
 Absyn.ADD,
 Absyn.REAL(1.0)))))],
 SOME("function that adds 1")),
 Absyn.INFO("Example.mo", false, 3, 3, 10, 13))
 ... // truncated text due to its large size
], // end of Absyn.CLASS list
 Absyn.WITHIN(Absyn.IDENT("ParentPackage")
) // end Absyn.PROGRAM

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica

The Modelica Association 665 Modelica 2008, March 3rd − 4th, 2008

