
Patterns and Anti-Patterns in Modelica
Dr. Michael M Tiller

Emmeskay, Inc.
Plymouth, MI, USA

mtiller@emmeskay.com

Abstract

In 1977, Christopher Alexander, Sara Ishikawa
and Murray Silverstein published the book “A Pat-
tern Language: Towns, Buildings, Construction” [1].
Although the topic of the book was architecture, it
inspired Erich Gamma, Richard Helm, Ralph John-
son and John Vlissides in their approach to pattern
based software development. This ultimately led to
the publication, in 1994, of the book “Design Pat-
terns: Elements of Reusable Object-Oriented Soft-
ware” [2] (also known as the “Gang of Four” or
“GoF” book) which launched a major movement in
the software development community toward pattern
based software design. The idea behind the pattern
movement is to formally identify sound design solu-
tions to common problems.

Since the publication of “Design Patterns” there
have been numerous books published on the topic of
software patterns. Several of these books dealt with
the sub-topic of anti-patterns [3,4]. In contrast to a
normal pattern, anti-patterns are an attempt to iden-
tify common bad practices and ways they can be
refactored using sound design patterns.

The emphasis of the pattern community is, un-
derstandably, on object-oriented languages with pro-
cedural semantics. This paper will build on previous
work [5] identifying patterns in Modelica. These
design patterns include how medium properties can
be handled in a flexible way, how to deal with sys-
tems with varying causality and differential index,
idealized plant control and, finally, coordination be-
tween models. In addition, this paper includes some
extensive discussion of anti-patterns to avoid redun-
dant code, awkward data management and inflexible
models.

This paper continues the discussion on patterns
within the Modelica community with the hope that
this will encourage others to contribute patterns of
their own. One obvious benefit of such efforts will
be additional resources for Modelica developers to
make the process of developing models in Modelica
easier. In addition, we expect that many of the pat-

terns discussed will also generate proposals for im-
proving the Modelica language through new features
and semantics.

Keywords: patterns, anti-patterns

1 Background

When Alexander et. al., published their work,
each pattern included four principle aspects, the pat-
tern name, the context in which the pattern applied,
the problem the pattern attempted to address and the
proposed solution. This paper will focus primarily
on the problem and solution.

In September of 2006, Mark Dominus wrote an
essay in his blog [6] in which he concluded with the
following statement:

“Patterns are signs of weakness in programming
languages. When we identify and document one,
that should not be the end of the story. Rather,
we should have the long-term goal of trying to
understand how to improve the language so that
the pattern becomes invisible or unnecessary.”

This statement triggered quite a bit of controversy
and many people argued with this assertion, not the
least of which was Ralph Johnson [7], co-author of
the original “Design Patterns” book who argued that
patterns are simply manifestations of high level con-
cepts beyond the scope of language semantics.

In this paper the assumption will be that the truth
lies somewhere in between. Some patterns are sim-
ply manifestations of design decisions made in the
development of a given language. Other patterns
appear to address missing expressiveness in the un-
derlying language. In some cases, patterns are sim-
ply introduced to encourage consistency and read-
ability above and beyond what is really the purview
of language designers. Along with the patterns
themselves some discussion will be included indicat-

Patterns and Anti-Patterns in Modelica

The Modelica Association 647 Modelica 2008, March 3rd − 4th, 2008

ing to what degree each pattern (or anti-pattern, as
the case may be) could be mitigated by changes in
the language or standard library.

2 Design Patterns

2.1 Architecture Pattern

2.1.1 Problem
While building models to support a variety of

systems and/or subsystems a large collection of
models with many structural similarities have been
developed. Adding additional models involves con-
structing models either by copy and pasting large
chunks from previous models or dragging and drop-
ping the complete model from scratch.

There are two distinct issues being discussed.
The first is the amount of work required to create a
new model. The second is about redundancy be-
tween models. This pattern focuses on the former
and the latter is discussed as part of the DRY anti-
pattern in Section 3.1.

2.1.2 Solution
When significant structural similarities exist be-

tween system or subsystem models then these mod-
els can be formulated in terms of architectures. In
doing so, each model becomes simply a variation of
the architecture with the various interfaces replaced
by implementations that are appropriate for that spe-
cific model.

For example, building vehicle models by simply
dragging all the usual constituents (e.g. engine,
transmission, chassis, etc) into a diagram can be
quite time consuming and tedious whereas building
them as variations from a standard vehicle architec-
ture (e.g. [8]) can greatly reduce the overhead of cre-
ating and managing such models.

2.2 Singleton Pattern

2.2.1 Problem
When building libraries of models it is some-

times necessary to design the library in such a way
that there is a single instance somewhere that in-
cludes a definitive reference for some information.
The basic idea is that within some scope there is ex-
actly one such instance. The challenge is not simply
how to access that “singleton” object but how to de-
sign the library so that this is handled well for users.

2.2.2 Solution
In languages like Java and C++, the use of the

static qualifier on members provides a language
supported mechanism for ensuring uniqueness within
a given program. The closest equivalent in Modelica
would be a variable declared as constant. How-
ever, the values of constants cannot be changed so
while semantically similar, this is not adequate to
achieve the singleton pattern. Instead, the use of
inner and outer qualifiers is a more common
choice. By referring to an inner instance it is pos-
sible for all outer references to act simply as “point-
ers” to a single object. The use of inner and
outer has an additional advantage (or disadvan-
tage, depending on how strict you need to be) which
is that they can be nested inside each other.

Two immediate examples of the singleton pat-
tern can be found in the Modelica Standard Library.
The first is in the Multibody library. The design of
the library is such that it requires that there is exactly
one instance of the so-called “world” object in the
system to provide a reference coordinate system.
Another example, which exploits the ability to nest
one subsystem (requiring its own internally unique
singleton) inside another subsystem, can be seen in
the StateGraph library [9].

An example where the use of inner and
outer is not currently sufficient is in dealing with
“many to many” interactions. For example, consider
a model of the solar system. Each planet exerts a
gravitational force on all the others. While it is pos-
sible to implement each gravitational force as an in-
dividual component that connects between every
combination of planet instances in a system, it is
more convenient and scalable to have some kind of
(singleton) intermediary component that is somehow
aware of all planet instances and can, within the con-
text of that single model, handle all interactions.
Similar “many to many” requirements can be found
in systems where collisions are possible between
multiple bodies.

2.3 Medium Model Pattern

The medium model pattern is more generally
called the “abstract factory” or “kit” pattern. How-
ever in Modelica the most common use is to repre-
sent medium properties. For this reason the name
“medium model” is used since it is more familiar to
the target audience of this paper having appeared in
previous work [10, 11].

M. Tiller

The Modelica Association 648 Modelica 2008, March 3rd − 4th, 2008

2.3.1 Problem
In a nutshell, the medium model pattern shows

up in models that include multiple configurable types
that must be, in some way, consistent with each
other. As already mentioned, this is something that
occurs often when characterizing the medium of a
given fluid system. The configurable types typically
include (but are not limited to) connector definitions
and some kind of property evaluation model. The
essential point is that many assumptions about a fluid
bind the definition of the connectors and the property
evaluation together (e.g. the number of species). For
example, it would not make sense to combine the
connector a multi-species gas with the properties of
oil.

2.3.2 Solution
As mentioned previously, this approach is called

the “abstract factory” pattern in other languages and
it is usually achieved through abstract methods that
return instances abstract types. The consistency is
assured by the implementation of the abstract fac-
tory. Because Modelica lacks methods or even any
appreciably dynamic object creation, the same effect
is achieved in Modelica using replaceable packages.

By using replaceable packages, it is possible for
models to reference constants and types defined in
the “constraining package” defined or implied in the
replaceable definition. A given “implementation”
(e.g. a specific medium) can then redefine these
types and constants in a consistent way (e.g. so they
all represent the same medium). The following sam-
ple code demonstrates the use of this pattern. First,
an abstract model of the medium must be defined:

partial model AbstractMedium
 constant Integer n “# of Species”;
 connector Fluid
 Pressure p;
 flow MassFlowRate m_dot;
 MassFraction Xi[n-1];
 flow MassFlowRate mXi_dot[n-1];
 end Fluid;

 partial block Properties
 input Pressure p;
 input MassFraction Xi[n-1];
 output SpecificEnergy u;
 output SpecificEnthalpy h;
 end Properties;
end AbstractMedium;

Based on this abstract medium model, component
models can then be written that rely on information
from the medium model but without knowledge of
what specific medium model is being used:

model Component
replaceable package MediumModel =
 AbstractMedium;

 MediumModel.Fluid c;
MediumModel.Properties props(
 p=c.p,X=c.X);

equation
// equations in this component
// can reference the pressure
// at the connector, c.p, or
// properties of the fluid,
// e.g. props.h

end Component;

Finally, an implementation of the medium model can
be created by extending from the abstract medium
model:

package RealMedium
 extends AbstractMedium(nspecies=2);
 redeclare model extends Properties
 equation
 // This model may include things
 // like property calculations or
 // an equation of state.
 end Properties;
end RealMedium;

One usability issue with this pattern is that when

it is used in conjunction with the transport of physi-
cal information or behavior it is somewhat counter
intuitive since the redefinitions of the medium model
are propagated from “top down” when users think, at
least conceptually, that the information should be
propagated through connections. For example, the
Component model in the previous sample code
would need to be instantiated with a modification
specifying the medium model, e.g.
Component comp(
redeclare package MediumModel =
 RealMedium);

whereas most users would expect that “somehow“
the type of medium was dictated by what the instace
was connected to. While this is not an issue with the

Patterns and Anti-Patterns in Modelica

The Modelica Association 649 Modelica 2008, March 3rd − 4th, 2008

pattern in general, it is an important consideration for
language designers and tool vendors.

2.4 Adapter Pattern

2.4.1 Problem
When working with architectures, it is necessary

for the subsystem models to be developed so that
they satisfy the interface prescribed by the architec-
ture. However, there are many cases where the sub-
system model might be developed independently
from an architecture and as a result it does not con-
form to any specific interface. This situation may
come about because the subsystem models were de-
veloped before the architecture or perhaps they were
developed in an architecturally neutral way to avoid
dependence on a particular architecture or to support
multiple architectures.

2.4.2 Solution
In these circumstances, it may be necessary to

develop adaptor components. Such components pro-
vide a mapping from the interface that the subsystem
currently has to the interface that is to be supported.
There are two variations of this pattern. In the first
case, the subsystem is developed independently from
any particular interface. In this case, the develop-
ment of an adapter for the subsystem is a “one time
only” process since other subsystems are unlikely to
share the exact same interface (and if they do, they
should probably be refactored as described in Sec-
tion 3.1).

The other case is where the subsystem has been
developed according to a specific interface (one that
presumably other subsystems satisfy). In this case, a
general adaptor could be constructed that maps one
interface onto another. Such an adaptor could then
be used as an adaptor for multiple subsystems. This
kind of adaptor pattern can also be used to imple-
ment compatibility between comparable interfaces
across different architectures.

The following code fragment shows an example
of how the adaptor pattern is implemented. First, let
us consider the one potential (and greatly simplified)
interface for a vehicle model:

partial model VehicleInterfaceA
 RealOutput vehicle_speed;
end VehicleInterfaceA;

Several vehicle models might be developed using
this interface, e.g.

model Vehicle1
extends VehicleInterfaceA(
 vehicle_speed=…);
end Vehicle1;

model Vehicle2
extends VehicleInterfaceA(
 vehicle_speed=…);
end Vehicle2;

Now consider an alternative vehicle model interface
and system architecture definition:

partial model VehicleInterfaceB
RealOutput v_vehicle;
end VehicleInterfaceB;

partial model ArchitectureB
replaceable VehicleInterfaceB vehicle;
…
end ArchitectureB;

An adaptor between the different interfaces could be
developed as follows:

model VehicleAdaptor_A2B
extends VehicleInterfaceB;
replaceable VehicleInterfaceA vehicle;
equation
connect(vehicle.vehicle_speed,
 v_vehicle);

end VehicleAdaptor_A2B;

Using this adaptor it is possible to build a system that
utilizes ArchitectureB but uses an implementa-
tion of VehicleInterfaceA as follows:

model System
extends ArchitectureB(
 redeclare VehicleAdaptor_A2B(
 redeclare Vehicle1 vehicle));
end System;

2.5 Parametric Behavior Pattern

2.5.1 Problem
In acausal modeling most components tend to

describe the flow of some conserved quantity explic-

M. Tiller

The Modelica Association 650 Modelica 2008, March 3rd − 4th, 2008

itly in terms of the across variables (e.g. i=v*R).
Other components describe the flow of conserved
quantities implicitly in terms of constraints (e.g. an
ideal voltage). However, it is often quite useful to be
able to describe components that describe the flow of
conserved quantities in terms of both implicit and
explicit relations depending on the state of the com-
ponent. The simplest example of such a component
is an electrical diode which either allows no current
(explicit case) or no voltage drop (implicit case).
Another slightly more complicated case would be a
clutch which computes transmitted torque explicitly
in terms of dynamic friction when disengaged or
slipping but computes torque implicitly in terms of a
kinematic relation when locked.

2.5.2 Solution
One “easy” way to describe such behavior is to

compromise on the ideal nature of the behavior. For
example, where an ideal diode might describe the
implicit and explicit behavior using the equations
v=0 and i=0, respectively, a compromise model sac-
rifices the idealization might use the equations
v=G*i and i=v*R, where G is chosen to be very
small (to approximate the v=0 case) and R is chosen
to be very large (to approximate the i=0 case). The
result of this compromise is that the behavior is now
completely explicit in nature. However, another
consequence of this “easy” solution is that the sys-
tem of equations is very likely to be poorly condi-
tioned which means the system will be stiff and slow
to simulate.

A “better” solution (from the modeler’s perspec-
tive at least) is to capture the ideal behavior some-
how. Not only is this possible but it can be a very
elegant and useful way to approach such problems.
The basic premise (which is presented in greater de-
tail in [12]) is to introduce a third variable and de-
scribe the behavior of the original variables in terms
of the third parametric variable. This approach is
frequently used in geometric applications where it is
not possible to use a particular coordinate axis as an
independent variable to describe a line or surface.
The same issue is present, for example, in a diode
where it is not possible to write current explicitly in
terms of voltage nor is it possible to write voltage
explicitly in terms of current. However, it is possible
to write both in terms of a third parametric variable,
e.g.

 off = s<0;
 v = if off then s*unitV else 0;
 i = if off then 0 else s*unitC;

where unitV and unitC are defined as follows:

import Modelica.SIunits.Voltage;
import Modelica.SIunits.Current;
constant Voltage unitV=1;
constant Current unitC=1;

Analysis of this parametric approach shows that
describing this kind of behavior is not simply an is-
sue with the expressiveness of the underlying model-
ing language but with the solution method. While
some basic solution techniques exist to deal with
component models that are either implicit or explicit,
the ability of a component to function in both ways
creates additional complications for the underlying
solver.

One such complication is that switching between
two different sets of equations during a simulation
always brings with it the risk that the differential in-
dex of the system might change. As such, the posed
problem could be a variable index system. In fact, a
clutch model normally leads to a variable index sys-
tem when modeled using the parametric behavior
pattern. However, by understanding this in advance
it is possible to differentiate the equations such that
the index is no longer variable. For this reason, it
would be very useful if investigation into this issue
showed that a general algorithm could be developed
along similar lines. Such an algorithm would most
likely benefit from language features that directly
supported this pattern.

2.6 Perfect Control Pattern

2.6.1 Problem
Physical models typically include sensors and

actuators and these are in turn normally connected to
some kind of control system. One of the burdens
that model developers face is to provide some kind
of actuator control strategy in addition to the base
physical models. In many cases, the model devel-
oper is not particularly interested in the dynamics of
the controller but they need some function in the
model to determine how the actuator will behave and
so therefore implementation of controls is unavoid-
able. Such implementations often take time both to
construct and calibrate and many times they do not
add any significant value to the model.

2.6.2 Solution
It is important to point out that this pattern is

very specific to cases where the model developer
simply wants a very good controller but they don’t

Patterns and Anti-Patterns in Modelica

The Modelica Association 651 Modelica 2008, March 3rd − 4th, 2008

need to be very concerned about how such a control
strategy would actually be deployed or implemented
in hardware. In these specific circumstances, it is
often possible to rely on a “perfect” control strategy
to control the device. For example, consider a sim-
ple SISO plant model defined as follows:

model PlantModel
 input Real u;
 output Real y;
protected
 Real dy = der(y);
equation
 2*der(dy) + dy + 4*y = u;
end PlantModel;

model ClosedLoop
 PlantModel plant;
protected
 Real ybar = max(0,time-2);
equation
 plant.u = 10*(ybar-plant.y);
end ClosedLoop;

model PerfectControl
 PlantModel plant;
protected
 Real ybar = max(0,time-2);
equation
ybar = plant.y;
end PerfectControl;

The simulation results from both types of control

can be seen in Figure 1. The basic idea of this pat-
tern is rather than including an explicit equation for
the command to the system an equation prescribing
the output is used. This equation for the output acts
as an implicit equation for the input. It should be
pointed out that this type of approach is limited to
cases where the plant model is sufficiently invertible.

Despite this limitation, this is a useful pattern that
can be used in conjunction with some surprisingly
complex systems. For example, this approach is the
same approach that is employed to create “back-
ward” drive cycle models (models where the vehicle
speed is prescribed and the system resolves the
torque required to meet the speed profile). In addi-
tion, this same pattern can be used in conjunction
with actuators like clutches and valves.

0 1 2 3 4 5

0

2

4
"Perfect" Response Closed Loop Response

0 1 2 3 4 5
-5

0

5

10

15
"Perfect" Command Closed Loop Command

Figure 1: Example of "Perfect" Control Pattern

3 Anti-Patterns

Patterns are primarily useful for intermediate to
advanced users who, having written some substantial
amounts of code, are able to recognize the emer-
gence of patterns and are interested in understanding
how patterns can help them be more productive (as
well as improve consistency and readability among
project members).

However, Modelica is still a relatively new tech-
nology with many new users. As a result, anti-
patterns are probably at least as important as pat-
terns. The reason is that anti-patterns can help nov-
ices to recognize weaknesses in code they have writ-
ten. As such, anti-patterns are almost immediately
applicable. This section introduces several anti-
patterns and discusses refactoring approaches associ-
ated with each pattern.

This is not to say that anti-patterns only apply to
novice users. Because Modelica improves developer
productivity, it is very easy to write a large volume
of code only to realize in hindsight that some anti-
patterns have developed. As a result, the material in
this section is applicable to a wide range of users.
As such, the material in the anti-patterns section
should be of particular interest to tool vendors since
refactoring typically requires tool support.

3.1 DRY Anti-Pattern

3.1.1 Problem
By far, the most common anti-pattern is the use

of “copying and pasting” model code between mod-
els. While this happens for a wide variety of reasons
most of them are ultimately because users are not
aware of the various mechanisms within Modelica

M. Tiller

The Modelica Association 652 Modelica 2008, March 3rd − 4th, 2008

for code reuse. In software development there is
something known as the “DRY principle” where
DRY is an acronym for “Don’t Repeat Yourself”.
The DRY anti-pattern is one where the DRY princi-
ple has not been followed.

The reason that the DRY principle is so impor-
tant (and which has led to the motto that “redun-
dancy is the root of all evil”) is that redundancy cre-
ates many problems. Not only does it lead to ineffi-
ciency when building models it also means signifi-
cantly more work when maintaining those same
models.

3.1.2 Solution
While this is a very common anti-pattern, the

good news is that Modelica contains a rich supply of
language features to help combat it. The first lan-
guage feature all users should become familiar with
is inheritance (specifically, the extends keyword).
Once developers understand inheritance they should
investigate the architecture pattern (described previ-
ously in this paper) which hinges on the replace-
able and redeclare keywords.

One issue that prevents addressing this anti-
pattern is tool support for refactoring. This mani-
fests itself in several ways. First, it should be possi-
ble for users to change the names of components
and/or classes and be assured that all references that
use those names are also adjusted (ideally even if
they are not even currently loaded). Furthermore,
refactoring of existing code often involves the exer-
cises of identifying commonality between existing
models, composing base classes that contain this
common code and then extending the original mod-
els from the base classes. Without tool support, such
refactoring can be very time consuming.

3.2 Kitchen Sink Anti-Pattern

3.2.1 Problem
Another common anti-pattern is the “kitchen

sink” anti-pattern. There are two variations of this
pattern. For component models, the anti-pattern
manifests itself as component models with too many
equations by lumping several distinct types of behav-
ior together into a single component. For subsystem
models, the anti-pattern manifests itself in diagrams
with an unnecessarily large number of components.

3.2.2 Solution
In both of these cases, a “divide and conquer”

approach is required. For the component variation,
this means building component models that heed

Occam’s Razor, “entia non sunt multiplicanda
praeter necessitatem”. In practical terms, this means
building component models that attempt as much as
possible to describe individual effects (e.g. inertia,
compliance, dissipation, etc).

In the case of subsystem models, refactoring is
typically a matter of nesting some tightly coupled
subset of components into a subsystem of their own.
Again, tool support is an issue here. Simulink has a
very convenient feature to take a group of selected
components and lump them into a subsystem model.
Modelica tool vendors would do well to recognize
the value of such functionality (and users would do
well to remind them).

3.3 Literal Data Overload Anti-Pattern

3.3.1 Problem
Modelica supports a wide range of ways to deal

with data handling. In theory, users can bring data in
from an external database, they could read it from
external files, etc. However, the simplest way to
import data into Modelica models is to enter it liter-
ally (e.g. parameter Real table[:,2] =
[0, 1; 1, 2; 2, 3; …]). While there is
nothing wrong with this per se, it leads very quickly
to the literal data overload anti-pattern. The pattern
is characterized by the tendency of models to rely on
literal data. While this is acceptable for simple com-
ponent models, this creates two problems with more
complex models. The first complication is that en-
tering tables of data is often quite inconvenient. The
second complication is that often times any given
parameter cannot be changed independently. For
example data associated with a given electric motor
might bring together the rotor inertia, internal resis-
tance, bearing friction, etc into a set of parameters.
If a different motor is to be used, it is not simply a
matter of changing a single parameter value but the
entire set must be exchanged for another consistent
set representing a different motor.

3.3.2 Solution
Both issues of entering literal data and parameter

set consistency can be handled by creating records to
represent such parameter sets and including the lit-
eral data only in the context of the record definitions.
In addition, it is advisable to make use of the
choices annotation so tools understand how the
data will be used. The result of such refactoring is
that users will only see opaque references to complex
and/or voluminous data sets rather than vast expres-
sions containing literal data. It is also a advisable to
provide useful descriptions of the data sets so tools

Patterns and Anti-Patterns in Modelica

The Modelica Association 653 Modelica 2008, March 3rd − 4th, 2008

can provide users with clear descriptions of available
choices.

3.4 Parameter Data Overload Anti-Pattern

3.4.1 Problem
The previous anti-pattern addresses some of the

issues associated with models that require large
amounts of data. While the aggregation prescribed
for refactoring reduces the number of individual pa-
rameters a complex system with many components
can still contain large numbers of parameter sets (and
even the aggregations themselves may have an un-
wieldy number of parameters). The result is parame-
ter dialogs that contain large numbers of parameter
values and/or choices. In these cases, further con-
solidation doesn’t make sense (since we do not want
to aggregate data together that is actually independ-
ent or unrelated) as a way to address the overload.

3.4.2 Solution
In cases where aggregation is not an appropriate

remedy the standard annotations for grouping pa-
rameters by tab and group can be utilized. Rather
than aggregate the data, the result of using the tab
and group directives is to organize the data into a
“tree” (i.e. the data is presented in a hierarchy where
the first layer is determined by the tab and the next
layers is determined by group). In particular, com-
mon parameters should be organized such that they
appear in the default tab and less common parame-
ters are assigned to later tabs. Tab labels are also an
important consideration since users should be able to
determine quickly, based on the name, whether they
need to look in a particular tab.

4 Language Implications

Many of the “normal” patterns found in [2] do
not appear in this paper. This is primarily because
Modelica does not include concepts like pointers and
methods which are fundamental to many of the pat-
terns. Furthermore, it has been observed that many
of the traditional patterns in software development
essentially boil down to adding an additional level of
indirection to an abstraction. Since there are very
few ways to express this indirection in Modelica, the
number of patterns is fairly limited.

One of the lingering questions from this discus-
sion is to what extent these patterns (or lack of pat-
terns) represent deficiencies in the language. For the
patterns and anti-patterns that are related to redun-
dant code (i.e. Sections 2.1, 3.1 and 3.2) the lan-

guage is well equipped to address these issues al-
though there are certainly ways that tools can assist
model developers in more effectively utilizing those
language features.

Although the Singleton pattern is being used in
several libraries it is this author’s opinion that the
semantics of the language do not mesh as well with
the pattern and modeler needs. The use of inner and
outer in this way has implications for robust model
checking and the dependency on inner elements is
not easily recognized or represented. In addition, the
“many to many” issue mentioned in Section 2.2.2
requires improved expressiveness in the language.

In the case of the medium model pattern, the in-
ability to express type constraints through physical
connections is a serious limitation in the language
and one that is recognized in the design group.
Hopefully this deficiency will be addressed soon.

Section 2.5.2 discusses how behavior can be de-
scribed parametrically. However, there are many
different ways to “phrase” this kind of behavior and
they cannot necessarily be easily recognized by
tools. Having language elements for describing pa-
rametric relationships could not only bring consis-
tency how such behavior is described but it could
also allow tools to automatically deal with variable
index issues that currently burden developers (equa-
tion differentiation, continuity concerns, finite state
machines, etc).

5 Conclusion

The goal of this paper is to identify common pat-
terns and anti-patterns to help users identify easy
solutions for common problems as well as to prompt
discussions within the Modelica design group on
ways the language can be enhanced to either institu-
tionalize some of the best practices in these patterns
or add language features to eliminate the need for
these patterns.

References

1. Alexander, C., Ishikawa, S., and Silverstein,
M., “A Pattern Language: Towns, Buildings,
Construction”, Oxford University Press,
ISBN 0-19-501919-9, 1977.

2. Gamma, E., Helm, R., Johnson, R. and Vlis-
sides, J., ”Design Patterns: Elements of Re-
usable Object-Oriented Software”, Addison-
Wesley, ISBN 0-201-63361-2, 1994.

M. Tiller

The Modelica Association 654 Modelica 2008, March 3rd − 4th, 2008

3. Brown, J. W., Malveau, R. C. and Mowbray,
T. J., “AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis”, John
Wiley and Sons, ISBN 0-471-19713-0, 1998.

4. Laplante, P. A., Neill, C. J., “Antipatterns:
Identification, Refactoring, and Manage-
ment”, CRC Press, ISBN 0-8493-2994-9,
2006

5. Clauss, C., Leitner, T., Schneider, A. and
Schwarz, P., “Object-oriented Modelling of
Physical Systems with Modelica using De-
sign Patterns”, Fraunhofer Institute, 2000

6. Dominus, M., “Design Patterns of 1972”,
http://blog.plover.com/prog/design-
patterns.html

7. Johnson, R., “Design patterns and language
design”,
http://www.cincomsmalltalk.com/userblogs/r
alph/blogView?entry=3335803396

8. Tiller, M., Bowles, P. and Dempsey, M.,
“Development of a Vehicle Modeling Archi-
tecture in Modelica”, 3rd International Mode-
lica Conference, 2003.

9. Otter, M., °Arz´en, K.-E., Dressler I.,
“StateGraph-A Modelica Library for Hierar-
chical State Machines”, 4th International
Modelica Conference, 2005.

10. Newman, C. E., Batteh, J. J., Tiller, M.,
”Spark-Ignited Engine Cycle Simulation in
Modelica”, 2nd International Modelica Con-
ference, 2002.
http://www.modelica.org/events/Conference
2002/papers/p17_Newman.pdf

11. Elmqvist H., Tummescheit, H., Otter, M.,
“Object-Oriented Modeling of Thermo-Fluid
Systems”, 3rd International Modelica Con-
ference, 2003.

12. Tiller, M. M., “Introduction to Physical
Modeling with Modelica”, Kluwer Aca-
demic Publishers, ISBN 0-7923-7367-7,
2001.

Patterns and Anti-Patterns in Modelica

The Modelica Association 655 Modelica 2008, March 3rd − 4th, 2008

