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Abstract 

In 1977, Christopher Alexander, Sara Ishikawa 
and Murray Silverstein published the book “A Pat-
tern Language: Towns, Buildings, Construction” [1].  
Although the topic of the book was architecture, it 
inspired Erich Gamma, Richard Helm, Ralph John-
son and John Vlissides in their approach to pattern 
based software development.  This ultimately led to 
the publication, in 1994, of the book “Design Pat-
terns: Elements of Reusable Object-Oriented Soft-
ware” [2] (also known as the “Gang of Four” or 
“GoF” book) which launched a major movement in 
the software development community toward pattern 
based software design.  The idea behind the pattern 
movement is to formally identify sound design solu-
tions to common problems. 

Since the publication of “Design Patterns” there 
have been numerous books published on the topic of 
software patterns.  Several of these books dealt with 
the sub-topic of anti-patterns [3,4].  In contrast to a 
normal pattern, anti-patterns are an attempt to iden-
tify common bad practices and ways they can be 
refactored using sound design patterns. 

The emphasis of the pattern community is, un-
derstandably, on object-oriented languages with pro-
cedural semantics.  This paper will build on previous 
work [5] identifying patterns in Modelica.  These 
design patterns include how medium properties can 
be handled in a flexible way, how to deal with sys-
tems with varying causality and differential index, 
idealized plant control and, finally, coordination be-
tween models.  In addition, this paper includes some 
extensive discussion of anti-patterns to avoid redun-
dant code, awkward data management and inflexible 
models. 

This paper continues the discussion on patterns 
within the Modelica community with the hope that 
this will encourage others to contribute patterns of 
their own.  One obvious benefit of such efforts will 
be additional resources for Modelica developers to 
make the process of developing models in Modelica 
easier.  In addition, we expect that many of the pat-

terns discussed will also generate proposals for im-
proving the Modelica language through new features 
and semantics. 
 
Keywords: patterns, anti-patterns 

1 Background 

When Alexander et. al., published their work, 
each pattern included four principle aspects, the pat-
tern name, the context in which the pattern applied, 
the problem the pattern attempted to address and the 
proposed solution.  This paper will focus primarily 
on the problem and solution. 

In September of 2006, Mark Dominus wrote an 
essay in his blog [6] in which he concluded with the 
following statement: 

 
“Patterns are signs of weakness in programming 
languages.  When we identify and document one, 
that should not be the end of the story. Rather, 
we should have the long-term goal of trying to 
understand how to improve the language so that 
the pattern becomes invisible or unnecessary.” 

 
This statement triggered quite a bit of controversy 
and many people argued with this assertion, not the 
least of which was Ralph Johnson [7], co-author of 
the original “Design Patterns” book who argued that 
patterns are simply manifestations of high level con-
cepts beyond the scope of language semantics. 

In this paper the assumption will be that the truth 
lies somewhere in between.  Some patterns are sim-
ply manifestations of design decisions made in the 
development of a given language.  Other patterns 
appear to address missing expressiveness in the un-
derlying language.  In some cases, patterns are sim-
ply introduced to encourage consistency and read-
ability above and beyond what is really the purview 
of language designers.  Along with the patterns 
themselves some discussion will be included indicat-
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ing to what degree each pattern (or anti-pattern, as 
the case may be) could be mitigated by changes in 
the language or standard library. 

2 Design Patterns 

2.1 Architecture Pattern 

2.1.1 Problem 
While building models to support a variety of 

systems and/or subsystems a large collection of 
models with many structural similarities have been 
developed.  Adding additional models involves con-
structing models either by copy and pasting large 
chunks from previous models or dragging and drop-
ping the complete model from scratch. 

There are two distinct issues being discussed.  
The first is the amount of work required to create a 
new model.  The second is about redundancy be-
tween models.  This pattern focuses on the former 
and the latter is discussed as part of the DRY anti-
pattern in Section 3.1. 

2.1.2 Solution 
When significant structural similarities exist be-

tween system or subsystem models then these mod-
els can be formulated in terms of architectures.  In 
doing so, each model becomes simply a variation of 
the architecture with the various interfaces replaced 
by implementations that are appropriate for that spe-
cific model. 

For example, building vehicle models by simply 
dragging all the usual constituents (e.g. engine, 
transmission, chassis, etc) into a diagram can be 
quite time consuming and tedious whereas building 
them as variations from a standard vehicle architec-
ture (e.g. [8]) can greatly reduce the overhead of cre-
ating and managing such models. 

2.2 Singleton Pattern 

2.2.1 Problem 
When building libraries of models it is some-

times necessary to design the library in such a way 
that there is a single instance somewhere that in-
cludes a definitive reference for some information.  
The basic idea is that within some scope there is ex-
actly one such instance.  The challenge is not simply 
how to access that “singleton” object but how to de-
sign the library so that this is handled well for users. 

2.2.2 Solution 
In languages like Java and C++, the use of the 

static qualifier on members provides a language 
supported mechanism for ensuring uniqueness within 
a given program.  The closest equivalent in Modelica 
would be a variable declared as constant.  How-
ever, the values of constants cannot be changed so 
while semantically similar, this is not adequate to 
achieve the singleton pattern.  Instead, the use of 
inner and outer qualifiers is a more common 
choice.  By referring to an inner instance it is pos-
sible for all outer references to act simply as “point-
ers” to a single object.  The use of inner and 
outer has an additional advantage (or disadvan-
tage, depending on how strict you need to be) which 
is that they can be nested inside each other. 

Two immediate examples of the singleton pat-
tern can be found in the Modelica Standard Library.  
The first is in the Multibody library.  The design of 
the library is such that it requires that there is exactly 
one instance of the so-called “world” object in the 
system to provide a reference coordinate system.  
Another example, which exploits the ability to nest 
one subsystem (requiring its own internally unique 
singleton) inside another subsystem, can be seen in 
the StateGraph library [9]. 

An example where the use of inner and 
outer is not currently sufficient is in dealing with 
“many to many” interactions.  For example, consider 
a model of the solar system.  Each planet exerts a 
gravitational force on all the others.  While it is pos-
sible to implement each gravitational force as an in-
dividual component that connects between every 
combination of planet instances in a system, it is 
more convenient and scalable to have some kind of 
(singleton) intermediary component that is somehow 
aware of all planet instances and can, within the con-
text of that single model, handle all interactions.  
Similar “many to many” requirements can be found 
in systems where collisions are possible between 
multiple bodies. 

2.3 Medium Model Pattern 

The medium model pattern is more generally 
called the “abstract factory” or “kit” pattern.  How-
ever in Modelica the most common use is to repre-
sent medium properties.  For this reason the name 
“medium model” is used since it is more familiar to 
the target audience of this paper having appeared in 
previous work [10, 11]. 
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2.3.1 Problem 
In a nutshell, the medium model pattern shows 

up in models that include multiple configurable types 
that must be, in some way, consistent with each 
other.  As already mentioned, this is something that 
occurs often when characterizing the medium of a 
given fluid system.  The configurable types typically 
include (but are not limited to) connector definitions 
and some kind of property evaluation model.  The 
essential point is that many assumptions about a fluid 
bind the definition of the connectors and the property 
evaluation together (e.g. the number of species).  For 
example, it would not make sense to combine the 
connector a multi-species gas with the properties of 
oil. 

2.3.2 Solution 
As mentioned previously, this approach is called 

the “abstract factory” pattern in other languages and 
it is usually achieved through abstract methods that 
return instances abstract types.  The consistency is 
assured by the implementation of the abstract fac-
tory.  Because Modelica lacks methods or even any 
appreciably dynamic object creation, the same effect 
is achieved in Modelica using replaceable packages. 

By using replaceable packages, it is possible for 
models to reference constants and types defined in 
the “constraining package” defined or implied in the 
replaceable definition.  A given “implementation” 
(e.g. a specific medium) can then redefine these 
types and constants in a consistent way (e.g. so they 
all represent the same medium).  The following sam-
ple code demonstrates the use of this pattern.  First, 
an abstract model of the medium must be defined: 
 
partial model AbstractMedium  
  constant Integer n “# of Species”; 
  connector Fluid  
    Pressure p; 
    flow MassFlowRate m_dot; 
    MassFraction Xi[n-1]; 
    flow MassFlowRate mXi_dot[n-1]; 
  end Fluid; 
  
  partial block Properties  
    input Pressure p; 
    input MassFraction Xi[n-1]; 
    output SpecificEnergy u; 
    output SpecificEnthalpy h; 
  end Properties; 
end AbstractMedium; 

 

Based on this abstract medium model, component 
models can then be written that rely on information 
from the medium model but without knowledge of 
what specific medium model is being used: 
 
model Component  
replaceable package MediumModel = 
  AbstractMedium; 

  MediumModel.Fluid c; 
MediumModel.Properties props( 
  p=c.p,X=c.X); 

equation  
// equations in this component 
// can reference the pressure 
// at the connector, c.p, or 
// properties of the fluid, 
// e.g. props.h 

end Component; 

 
Finally, an implementation of the medium model can 
be created by extending from the abstract medium 
model: 
   
package RealMedium  
  extends AbstractMedium(nspecies=2); 
  redeclare model extends Properties  
  equation  
    // This model may include things 
    // like property calculations or 
    // an equation of state. 
 end Properties; 
end RealMedium; 

 
One usability issue with this pattern is that when 

it is used in conjunction with the transport of physi-
cal information or behavior it is somewhat counter 
intuitive since the redefinitions of the medium model 
are propagated from “top down” when users think, at 
least conceptually, that the information should be 
propagated through connections.  For example, the 
Component model in the previous sample code 
would need to be instantiated with a modification 
specifying the medium model, e.g. 
Component comp( 
redeclare package MediumModel = 
 RealMedium); 

whereas most users would expect that “somehow“ 
the type of medium was dictated by what the instace 
was connected to.  While this is not an issue with the 
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pattern in general, it is an important consideration for 
language designers and tool vendors. 

2.4 Adapter Pattern 

2.4.1 Problem 
When working with architectures, it is necessary 

for the subsystem models to be developed so that 
they satisfy the interface prescribed by the architec-
ture.  However, there are many cases where the sub-
system model might be developed independently 
from an architecture and as a result it does not con-
form to any specific interface.  This situation may 
come about because the subsystem models were de-
veloped before the architecture or perhaps they were 
developed in an architecturally neutral way to avoid 
dependence on a particular architecture or to support 
multiple architectures. 

2.4.2 Solution 
In these circumstances, it may be necessary to 

develop adaptor components.  Such components pro-
vide a mapping from the interface that the subsystem 
currently has to the interface that is to be supported.  
There are two variations of this pattern.  In the first 
case, the subsystem is developed independently from 
any particular interface.  In this case, the develop-
ment of an adapter for the subsystem is a “one time 
only” process since other subsystems are unlikely to 
share the exact same interface (and if they do, they 
should probably be refactored as described in Sec-
tion 3.1). 

The other case is where the subsystem has been 
developed according to a specific interface (one that 
presumably other subsystems satisfy).  In this case, a 
general adaptor could be constructed that maps one 
interface onto another.  Such an adaptor could then 
be used as an adaptor for multiple subsystems.  This 
kind of adaptor pattern can also be used to imple-
ment compatibility between comparable interfaces 
across different architectures. 

The following code fragment shows an example 
of how the adaptor pattern is implemented.  First, let 
us consider the one potential (and greatly simplified) 
interface for a vehicle model: 
 
partial model VehicleInterfaceA 
  RealOutput vehicle_speed; 
end VehicleInterfaceA; 

 
Several vehicle models might be developed using 
this interface, e.g. 

 
model Vehicle1 
extends VehicleInterfaceA( 
  vehicle_speed=…); 
end Vehicle1; 
 
model Vehicle2 
extends VehicleInterfaceA( 
  vehicle_speed=…); 
end Vehicle2; 
 

Now consider an alternative vehicle model interface 
and system architecture definition: 
 
partial model VehicleInterfaceB 
RealOutput v_vehicle; 
end VehicleInterfaceB; 
 
partial model ArchitectureB 
replaceable VehicleInterfaceB vehicle; 
… 
end ArchitectureB; 

 
An adaptor between the different interfaces could be 
developed as follows: 
 
model VehicleAdaptor_A2B 
extends VehicleInterfaceB; 
replaceable VehicleInterfaceA vehicle; 
equation 
connect(vehicle.vehicle_speed, 
        v_vehicle); 

end VehicleAdaptor_A2B; 

 
Using this adaptor it is possible to build a system that 
utilizes ArchitectureB but uses an implementa-
tion of VehicleInterfaceA as follows: 
 
model System 
extends ArchitectureB( 
  redeclare VehicleAdaptor_A2B( 
    redeclare Vehicle1 vehicle)); 
end System; 

2.5 Parametric Behavior Pattern 

2.5.1 Problem 
In acausal modeling most components tend to 

describe the flow of some conserved quantity explic-
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itly in terms of the across variables (e.g. i=v*R).  
Other components describe the flow of conserved 
quantities implicitly in terms of constraints (e.g. an 
ideal voltage).  However, it is often quite useful to be 
able to describe components that describe the flow of 
conserved quantities in terms of both implicit and 
explicit relations depending on the state of the com-
ponent.  The simplest example of such a component 
is an electrical diode which either allows no current 
(explicit case) or no voltage drop (implicit case).  
Another slightly more complicated case would be a 
clutch which computes transmitted torque explicitly 
in terms of dynamic friction when disengaged or 
slipping but computes torque implicitly in terms of a 
kinematic relation when locked. 

2.5.2 Solution 
One “easy” way to describe such behavior is to 

compromise on the ideal nature of the behavior.  For 
example, where an ideal diode might describe the 
implicit and explicit behavior using the equations 
v=0 and i=0, respectively, a compromise model sac-
rifices the idealization might use the equations 
v=G*i and i=v*R, where G is chosen to be very 
small (to approximate the v=0 case) and R is chosen 
to be very large (to approximate the i=0 case).  The 
result of this compromise is that the behavior is now 
completely explicit in nature.  However, another 
consequence of this “easy” solution is that the sys-
tem of equations is very likely to be poorly condi-
tioned which means the system will be stiff and slow 
to simulate. 

A “better” solution (from the modeler’s perspec-
tive at least) is to capture the ideal behavior some-
how.  Not only is this possible but it can be a very 
elegant and useful way to approach such problems.  
The basic premise (which is presented in greater de-
tail in [12]) is to introduce a third variable and de-
scribe the behavior of the original variables in terms 
of the third parametric variable.  This approach is 
frequently used in geometric applications where it is 
not possible to use a particular coordinate axis as an 
independent variable to describe a line or surface.  
The same issue is present, for example, in a diode 
where it is not possible to write current explicitly in 
terms of voltage nor is it possible to write voltage 
explicitly in terms of current.  However, it is possible 
to write both in terms of a third parametric variable, 
e.g. 
 
  off = s<0; 
  v = if off then s*unitV else 0; 
  i = if off then 0 else s*unitC; 

where unitV and unitC are defined as follows: 
 
import Modelica.SIunits.Voltage; 
import Modelica.SIunits.Current; 
constant Voltage unitV=1; 
constant Current unitC=1; 
 

Analysis of this parametric approach shows that 
describing this kind of behavior is not simply an is-
sue with the expressiveness of the underlying model-
ing language but with the solution method.  While 
some basic solution techniques exist to deal with 
component models that are either implicit or explicit, 
the ability of a component to function in both ways 
creates additional complications for the underlying 
solver. 

One such complication is that switching between 
two different sets of equations during a simulation 
always brings with it the risk that the differential in-
dex of the system might change.  As such, the posed 
problem could be a variable index system.  In fact, a 
clutch model normally leads to a variable index sys-
tem when modeled using the parametric behavior 
pattern.  However, by understanding this in advance 
it is possible to differentiate the equations such that 
the index is no longer variable.  For this reason, it 
would be very useful if investigation into this issue 
showed that a general algorithm could be developed 
along similar lines.  Such an algorithm would most 
likely benefit from language features that directly 
supported this pattern. 

2.6 Perfect Control Pattern 

2.6.1 Problem 
Physical models typically include sensors and 

actuators and these are in turn normally connected to 
some kind of control system.  One of the burdens 
that model developers face is to provide some kind 
of actuator control strategy in addition to the base 
physical models.  In many cases, the model devel-
oper is not particularly interested in the dynamics of 
the controller but they need some function in the 
model to determine how the actuator will behave and 
so therefore implementation of controls is unavoid-
able.  Such implementations often take time both to 
construct and calibrate and many times they do not 
add any significant value to the model. 

2.6.2 Solution 
It is important to point out that this pattern is 

very specific to cases where the model developer 
simply wants a very good controller but they don’t 
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need to be very concerned about how such a control 
strategy would actually be deployed or implemented 
in hardware.  In these specific circumstances, it is 
often possible to rely on a “perfect” control strategy 
to control the device.  For example, consider a sim-
ple SISO plant model defined as follows: 
 
model PlantModel  
  input Real u; 
  output Real y; 
protected  
  Real dy = der(y); 
equation  
  2*der(dy) + dy + 4*y = u; 
end PlantModel; 
 
model ClosedLoop  
  PlantModel plant; 
protected  
  Real ybar = max(0,time-2); 
equation  
  plant.u = 10*(ybar-plant.y); 
end ClosedLoop; 
  
model PerfectControl  
  PlantModel plant; 
protected  
  Real ybar = max(0,time-2); 
equation  
ybar = plant.y; 
end PerfectControl; 

 
The simulation results from both types of control 

can be seen in Figure 1.  The basic idea of this pat-
tern is rather than including an explicit equation for 
the command to the system an equation prescribing 
the output is used.  This equation for the output acts 
as an implicit equation for the input.  It should be 
pointed out that this type of approach is limited to 
cases where the plant model is sufficiently invertible. 

Despite this limitation, this is a useful pattern that 
can be used in conjunction with some surprisingly 
complex systems.  For example, this approach is the 
same approach that is employed to create “back-
ward” drive cycle models (models where the vehicle 
speed is prescribed and the system resolves the 
torque required to meet the speed profile).  In addi-
tion, this same pattern can be used in conjunction 
with actuators like clutches and valves. 
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Figure 1:  Example of "Perfect" Control Pattern 

3 Anti-Patterns 

Patterns are primarily useful for intermediate to 
advanced users who, having written some substantial 
amounts of code, are able to recognize the emer-
gence of patterns and are interested in understanding 
how patterns can help them be more productive (as 
well as improve consistency and readability among 
project members). 

However, Modelica is still a relatively new tech-
nology with many new users.  As a result, anti-
patterns are probably at least as important as pat-
terns.  The reason is that anti-patterns can help nov-
ices to recognize weaknesses in code they have writ-
ten.  As such, anti-patterns are almost immediately 
applicable.  This section introduces several anti-
patterns and discusses refactoring approaches associ-
ated with each pattern. 

This is not to say that anti-patterns only apply to 
novice users.  Because Modelica improves developer 
productivity, it is very easy to write a large volume 
of code only to realize in hindsight that some anti-
patterns have developed.  As a result, the material in 
this section is applicable to a wide range of users.  
As such, the material in the anti-patterns section 
should be of particular interest to tool vendors since 
refactoring typically requires tool support. 

3.1 DRY Anti-Pattern 

3.1.1 Problem 
By far, the most common anti-pattern is the use 

of “copying and pasting” model code between mod-
els.  While this happens for a wide variety of reasons 
most of them are ultimately because users are not 
aware of the various mechanisms within Modelica 
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for code reuse.  In software development there is 
something known as the “DRY principle” where 
DRY is an acronym for “Don’t Repeat Yourself”.  
The DRY anti-pattern is one where the DRY princi-
ple has not been followed. 

The reason that the DRY principle is so impor-
tant (and which has led to the motto that “redun-
dancy is the root of all evil”) is that redundancy cre-
ates many problems.  Not only does it lead to ineffi-
ciency when building models it also means signifi-
cantly more work when maintaining those same 
models. 

3.1.2 Solution 
While this is a very common anti-pattern, the 

good news is that Modelica contains a rich supply of 
language features to help combat it.  The first lan-
guage feature all users should become familiar with 
is inheritance (specifically, the extends keyword).  
Once developers understand inheritance they should 
investigate the architecture pattern (described previ-
ously in this paper) which hinges on the replace-
able and redeclare keywords. 

One issue that prevents addressing this anti-
pattern is tool support for refactoring.  This mani-
fests itself in several ways.  First, it should be possi-
ble for users to change the names of components 
and/or classes and be assured that all references that 
use those names are also adjusted (ideally even if 
they are not even currently loaded).  Furthermore, 
refactoring of existing code often involves the exer-
cises of identifying commonality between existing 
models, composing base classes that contain this 
common code and then extending the original mod-
els from the base classes.  Without tool support, such 
refactoring can be very time consuming. 

3.2 Kitchen Sink Anti-Pattern 

3.2.1 Problem 
Another common anti-pattern is the “kitchen 

sink” anti-pattern.  There are two variations of this 
pattern.  For component models, the anti-pattern 
manifests itself as component models with too many 
equations by lumping several distinct types of behav-
ior together into a single component.  For subsystem 
models, the anti-pattern manifests itself in diagrams 
with an unnecessarily large number of components. 

3.2.2 Solution 
In both of these cases, a “divide and conquer” 

approach is required.  For the component variation, 
this means building component models that heed 

Occam’s Razor, “entia non sunt multiplicanda 
praeter necessitatem”.  In practical terms, this means 
building component models that attempt as much as 
possible to describe individual effects (e.g. inertia, 
compliance, dissipation, etc). 

In the case of subsystem models, refactoring is 
typically a matter of nesting some tightly coupled 
subset of components into a subsystem of their own.  
Again, tool support is an issue here.  Simulink has a 
very convenient feature to take a group of selected 
components and lump them into a subsystem model.  
Modelica tool vendors would do well to recognize 
the value of such functionality (and users would do 
well to remind them). 

3.3 Literal Data Overload Anti-Pattern 

3.3.1 Problem 
Modelica supports a wide range of ways to deal 

with data handling.  In theory, users can bring data in 
from an external database, they could read it from 
external files, etc.  However, the simplest way to 
import data into Modelica models is to enter it liter-
ally (e.g. parameter Real table[:,2] = 
[0, 1; 1, 2; 2, 3; …]).  While there is 
nothing wrong with this per se, it leads very quickly 
to the literal data overload anti-pattern.  The pattern 
is characterized by the tendency of models to rely on 
literal data.  While this is acceptable for simple com-
ponent models, this creates two problems with more 
complex models.  The first complication is that en-
tering tables of data is often quite inconvenient.  The 
second complication is that often times any given 
parameter cannot be changed independently.  For 
example data associated with a given electric motor 
might bring together the rotor inertia, internal resis-
tance, bearing friction, etc into a set of parameters.  
If a different motor is to be used, it is not simply a 
matter of changing a single parameter value but the 
entire set must be exchanged for another consistent 
set representing a different motor. 

3.3.2 Solution 
Both issues of entering literal data and parameter 

set consistency can be handled by creating records to 
represent such parameter sets and including the lit-
eral data only in the context of the record definitions.  
In addition, it is advisable to make use of the 
choices annotation so tools understand how the 
data will be used.  The result of such refactoring is 
that users will only see opaque references to complex 
and/or voluminous data sets rather than vast expres-
sions containing literal data.  It is also a advisable to 
provide useful descriptions of the data sets so tools 
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can provide users with clear descriptions of available 
choices. 

3.4 Parameter Data Overload Anti-Pattern 

3.4.1 Problem 
The previous anti-pattern addresses some of the 

issues associated with models that require large 
amounts of data.  While the aggregation prescribed 
for refactoring reduces the number of individual pa-
rameters a complex system with many components 
can still contain large numbers of parameter sets (and 
even the aggregations themselves may have an un-
wieldy number of parameters).  The result is parame-
ter dialogs that contain large numbers of parameter 
values and/or choices.  In these cases, further con-
solidation doesn’t make sense (since we do not want 
to aggregate data together that is actually independ-
ent or unrelated) as a way to address the overload. 

3.4.2 Solution 
In cases where aggregation is not an appropriate 

remedy the standard annotations for grouping pa-
rameters by tab and group can be utilized.  Rather 
than aggregate the data, the result of using the tab 
and group directives is to organize the data into a 
“tree” (i.e. the data is presented in a hierarchy where 
the first layer is determined by the tab and the next 
layers is determined by group).  In particular, com-
mon parameters should be organized such that they 
appear in the default tab and less common parame-
ters are assigned to later tabs.  Tab labels are also an 
important consideration since users should be able to 
determine quickly, based on the name, whether they 
need to look in a particular tab. 

4 Language Implications 

Many of the “normal” patterns found in [2] do 
not appear in this paper.  This is primarily because 
Modelica does not include concepts like pointers and 
methods which are fundamental to many of the pat-
terns.  Furthermore, it has been observed that many 
of the traditional patterns in software development 
essentially boil down to adding an additional level of 
indirection to an abstraction.  Since there are very 
few ways to express this indirection in Modelica, the 
number of patterns is fairly limited. 

One of the lingering questions from this discus-
sion is to what extent these patterns (or lack of pat-
terns) represent deficiencies in the language.  For the 
patterns and anti-patterns that are related to redun-
dant code (i.e. Sections 2.1, 3.1 and 3.2) the lan-

guage is well equipped to address these issues al-
though there are certainly ways that tools can assist 
model developers in more effectively utilizing those 
language features. 

Although the Singleton pattern is being used in 
several libraries it is this author’s opinion that the 
semantics of the language do not mesh as well with 
the pattern and modeler needs.  The use of inner and 
outer in this way has implications for robust model 
checking and the dependency on inner elements is 
not easily recognized or represented.  In addition, the 
“many to many” issue mentioned in Section 2.2.2 
requires improved expressiveness in the language. 

In the case of the medium model pattern, the in-
ability to express type constraints through physical 
connections is a serious limitation in the language 
and one that is recognized in the design group.  
Hopefully this deficiency will be addressed soon. 

Section 2.5.2 discusses how behavior can be de-
scribed parametrically.  However, there are many 
different ways to “phrase” this kind of behavior and 
they cannot necessarily be easily recognized by 
tools.  Having language elements for describing pa-
rametric relationships could not only bring consis-
tency how such behavior is described but it could 
also allow tools to automatically deal with variable 
index issues that currently burden developers (equa-
tion differentiation, continuity concerns, finite state 
machines, etc). 

5 Conclusion 

The goal of this paper is to identify common pat-
terns and anti-patterns to help users identify easy 
solutions for common problems as well as to prompt 
discussions within the Modelica design group on 
ways the language can be enhanced to either institu-
tionalize some of the best practices in these patterns 
or add language features to eliminate the need for 
these patterns. 
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