Compiling and Using Pattern Matching in Modelica

Compiling and Using Pattern Matching in Modelica

Kristian Stavéker, Adrian Pop, Peter Fritzson
PELAB — Programming Environment Lab, Dept. Computer Science
Linkoping University, SE-581 83 Link&ping, Sweden
{krsta, adrpo, petfr} @ida.liu.se

Abstract

Pattern matching is a well-known, powerful language
feature found in functional programming languages. In
this paper we present the implementation of pattern
matching for Modelica. A pattern matching construct is
useful for classification and decomposition of (possibly
recursive) hierarchies of components such as the union
type structures in the MetaModelica language exten-
sion. We argue that pattern matching not only is useful
for language specification (as in the MetaModelica
case) but also to write concise and neat functional-style
programs. One useful application is in list processing
(lists are currently missing from Modelica but are part
of MetaModelica). Other possible applications are in
the generation of models from other models, e.g. the
generation of models with uncertainty equations.

Keywords: Pattern Matching, Modelica

1 Introduction

Pattern matching is a general operation that is used in
many different application areas. Pattern matching is
used to test whether things have a desired structure, to
find relevant structure, to retrieve the aligning parts,
and to substitute the matching part with something else.

In term pattern matching terms are matched against
incomplete terms with variables and in, for instance,
string pattern matching finite strings are matched
against regular expressions (a typical application would
be searching for substrings). Term pattern matching
(which we will only consider henceforth) can be stated
as: given a value v and patterns pl,...,pN is v an in-
stance of any of the p’s? Language features for pattern
matching (over terms) are available in all functional
programming languages, for instance Haskell [3], OC-
caml [9], and Standard ML [10].

However, pattern matching is currently missing
from Object-Oriented Equation-Based (EOO) Lan-
guages such as Modelica [2],[5], VHDL-AMS [7], and
gPROMS [8]. Pattern matching features are also rare in
imperative object-oriented languages even though some

research has been carried out ([12],[13],[14] and [15]).
In [15], for instance, the JMatch language which ex-
tends Java with pattern matching is described.

[16] promotes the use of pattern matching con-
structs in object-oriented languages as a mean of ex-
ploring class hierarchies. One could for instance apply
the visitor pattern to solve the same problem but as [17]
notes this require a lot of code scaffolding and nested
patterns are not supported.

The pattern matching construct for Modelica was
presented in a paper on Modelica Metaprogramming
extensions [4]. This paper discusses the implementation
of pattern matching in the OpenModelica Compiler
(OMC) [1]. We start by introducing the pattern match-
ing construct in section 2 (syntax and semantics) fol-
lowed by some programming examples in section 3. In
section 4 we discuss type systems and problems with
matching over class hierarchies. In section 5 we give an
overview of implementation issues, followed by con-
clusions in section 6.

2 Pattern Matching

In this section we present the design of the pattern
matching expression construct. Pattern matching ex-
pressions may occur where expressions can be used in
Modelica code.

2.1 Syntax

We begin by giving the grammar rules.

match keyword :
match
| matchcontinue

match expression :
match keyword expression
[opt string comment]
local element list
case list
case else
end match keyword ";"

case list :
case_stmt case list
| case stmt

The Modelica Association

637

Modelica 2008, March 3¢ — 4t 2008

K. Stavaker, A. Pop, P. Fritzson

equation clause case
equation equation annotation list
[(* empty *)

case stmt
case seq _pat
[opt string comment]
local element list
equation clause case
then expression ";"

case_else
else [opt string comment]
local element list
equation clause case
then expression ";"
| (* empty *)

local element list
local element list
I (* empty *)

The grammar rules that have been left out are rather
self-describing (except the rule for patterns, seq_pat,
which will not be covered here). An equa-
tion annotation list, for instance, is a list of
equations. Only local, time-independent equations may
occur inside a pattern matching expression and this
must be checked by the semantic phase of the compiler.
The difference between a pattern matching expression
with the keyword match and a pattern matching ex-
pression with the keyword matchcontinue is in the
fail semantics (see Section 2.3). The syntax can also be
given (approximately) as follows.

matchcontinue

local
<var-decls>

(<var-1list>)

case (<pat-expr>)
local
<var-decls>
equation
<equations>
then <expr>;

end matchcontinue;

The <pat-expr> expression is a sequence of patterns.
A pattern may be:

e A wildcard pattern, denoted _.

e A variable, such as x.

o A constant literal of built-in type such as 7 or true.

e A variable binding pattern of the form x as pat.

e A constructor pattern of the form C(pat/,...,patN),
where C is a record identifier and patl,...,patN are
patterns. The arguments of C may be named (for in-
stance fieldl=patl) or positional but a mixture is
not allowed. We may also have constructor patterns
with zero arguments (constants).

2.2 Semantics

The semantics of a pattern matching expression is as
follows: If the input variables match the pattern-
expression in a case-clause then the equations in this
case-clause will be executed and the matchcontinue
expression will return the value of the corresponding
then-expression. The variables declared in the upper-
most variable declaration section can be used (as local
instantiations) in all case-clauses. The local variables
declared in a case-clause may be used in the corres-
ponding pattern and in the rest of the case-clause. The
matching of patterns works as follows given a variable
V.

e A wildcard pattern, , will succeed matching any-

thing.

e A variable, x, will be bound to the value of v.

e A constant literal of built-in type will be matched
against v.

e A variable binding pattern of the form x as pat: If
the match of pat succeeds then x will be bound to
the value of v.

e A constructor pattern of the form C(pat/,...,patN): v
will be matched against C and the subpatterns will
be matched (recursively) against parts of v.

2.3 Pattern Matching Fail Semantics

If a case-clause fails in an expression with the keyword
matchcontinue then an attempt to match the subse-
quent case-clause will take place. If we have an expres-
sion with the keyword match, however, then the whole
expression will fail if there is a failure in one of the
case-clauses. We will henceforth only deal with mat-
chcontinue expressions.

3 Examples of Pattern Matching

As mentioned earlier a pattern matching construct is

useful for language specification (meta-programming)

but also as a tool to write functional-style programs.

We start by giving an example of the latter usage.
function fac

input Integer inExp;
output Integer outExp;

algorithm
outExp := matchcontinue (inExp)
case (0) then 1;
case (n) then if n>0 then n*fac(n-1)

else fail();
end matchcontinue;
end fac;

The above function will calculate the factorial value of
an integer. If the number is less than zero the function
will fail.

The Modelica Association

638

Modelica 2008, March 3¢ — 4t 2008

Compiling and Using Pattern Matching in Modelica

A fundamental data structure kind in MetaModelica
is the union type which is a collection of records con-
taining data, see example below.

uniontype UT
record R1
String s;
end R1;

record R2
Real r;
end R2;
end UT;

The pattern matching construct makes it possible to
match on the different records. An example is given
below.

function elabExp

input Env.Env inEnv;

input Absyn.Exp inExp;

output Exp.Exp outExp;

output Types.Properties outProperties;
algorithm

(outExp,outProperties) :=

matchcontinue (inEnv,inExp)

local

case(,Absyn.INTEGER (value=x))
local Integer x;
then (Exp.ICONST (x),Types.

PROP (Types.T INTEGER({})));

case (env,Absyn.CREF (cRef =

cr))
equation
(exp,prop) = elabCref (env,cr);
then (exp,prop);

case (env,Absyn.IFEXP (ifExp =
el, trueBranch=e2,eBranch=e3))
local Exp.Exp e;
equation
(el 1,propl)=elabExp(env,el);
(e2 1,prop2)=elabExp (env,e2);
(e3 _1,prop3)=elabExp (env,e3);
(e,prop)=elabIfexp(env,el 1,propl,
e2 1,prop2,e3 1,prop3);
then (e,prop);
end matchcontinue;
end elabExp;

The function elabExp is used for elaborating expres-
sions (type checking, constant evaluation, etc.). The
union type Absyn.Exp contains a record representing
an integer, a record representing a component refer-
ence, and so on. There is an environment union type,
Env.Env, for component lookups.

Another situation where pattern matching is useful
is in list processing. Again, lists are lacking from Mod-
elica but are an important construct in MetaModelica
(see the conclusions section for a small discussion).
The following function selects an element that fulfills a
certain condition from a list.

function listSelect

input list<Type a> inTypeALst;
input Func anyTypeToBool inFunc;
output list<Type a> outTypeALst;
replaceable type Type a subtypeof Any;
partial function Func anyTypeToBool
input Type a inTypeA;
output Boolean outBoolean;
end Func_anyTypeToBool;
algorithm
outTypeALst:=
matchcontinue
(inTpeALst, inFunc)
local
list<Type a> xs 1,xs; Type a X;
Func_anyTypeToBool cond;

case ({},_) then {};
case ((x xs) ,cond)
equation
true = cond(x);
xs 1 = listSelect (xs, cond);
then_(x xs 1);
case ((x xs) ,cond)
equation
false = cond (X);
xs 1 = listSelect(xs, cond);
then xs 1;

end matchcontinue;
end listSelect;

The symbol :: is syntactic sugar for the cons operator.
The function goes through the list one element at the
time and if the condition is true the element is put on a
new list and otherwise it is discarded. Another example
of pattern matching with lists is given below. The func-
tion listThread takes two lists (of the same type) and
interleaves them together.

function listThread
input list<Type a> inTypeALstl;
input list<Type a> inTypeALst2;
output list<Type a> outTypeALst;
replaceable type Type a subtypeof Any;
algorithm
outTypeALst:=
matchcontinue
local
list<Type a> r 1,c,d, ra,rb;
Type a fa, fb;

(inTypeALstl, inTypeALst2)

case ({},{}) then {};
case ((fa ra), (fb rb))
equation
r 1 = listThread(ra, rb);
c = (fb r 1);
d = (fa c);
then d;

end matchcontinue;
end listThread;

Yet another application for pattern matching might be
to pattern match over class hierarchies. Modelica is an
object-oriented language and as mentioned in the intro-
duction and in [16] pattern matching is a powerful way
to explore a hierarchy of classes. Thus we would like to
be able to write something like this:

record Expression

The Modelica Association

639

Modelica 2008, March 3¢ — 4t 2008

K. Stavaker, A. Pop, P. Fritzson

end Expression;

// Defining new expressions
record NUM
extends Expression;
Integer value;
end NUM;

record VAR
extends Expression;
Integer value;

end VAR;

record MUL
extends Expression;
Expression left;
Expression right;
end MUL;

matchcontinue (1nExp)

case (NUM(x))
case (VAR(x))
case (MUL(x1,x2))

end matchcontinue;

Here we could use the fact that MUL extends Expres-
sion when we do the pattern matching and in the static
type checking. However, there are difficulties with this
approach. Modelica features a structural type system
thus type-equivalence is done over the structure of a
record and not the name. In the implementation of pat-
tern matching over union types, both in the implemen-
tation described in this paper (see Section 5.4) and in
the RML-implementation of MetaModelica, we have
disregarded these type rules.

Also, decomposition of records can be done via the
dot-notation. No further implementation work has been
done on pattern matching over record hierarchies.

3.1 Generating Uncertainty Equations

One application of pattern matching is the generation of
models with uncertainty equations [18] from ordinary
models. This has applications in sensitivity analysis.

4 Discussion on type systems

Modelica features a structural type system [5]. Another
class of type systems is nominative type systems. In a
structural type system two types are equal if they have
the same structure and in a nominative type system this
is determined by explicit declarations or the name of
the types. Consider the following two records:

record REC1

Integer intl, int2;
end RECI1;
record REC2

Integer intl, int2;

end REC2;

In a structural type system these two types would be
considered equal since they have the same components.
In a nominative type system, however, they would not
be equal since they do not have the same names. Also
in a nominal type system a type is a subtype of another
type only if it is explicitly declared to be so (nominal
subtyping). Consider the following three records.
record A

Integer B, C;
end A;

record El1
Integer B,
end E1;

record E2
extends A;
Integer D;
end E2;

In a structural type system record E1 would be a sub-
type of record A while in a nominative type system this
would not be the case. Record E2, however, would be
considered to be a subtype of record A in a nominative
type system since an inheritance relation is explicitly
declared. Java is an example of a language that uses
nominative typing while C, C++ and C# use both no-
minative and structural (sub)-typing. [19]

5 Pattern Matching Implementation

Since a pattern matching expression may contain com-
plex nested patterns and partial overlaps between cases
it should be compiled into a simpler, less complex
form. Thus, a pattern matching expression is compiled
into intermediate form (typically if-elseif-else nodes).

5.1 Overview

The pattern matching construct has been implemented
in OMC using an algorithm described in [6]. Here a
pattern is viewed as an alternation and repetition-free
regular expression over atomic values, constructor
names and wildcards. The algorithm first transforms a
matchcontinue expression into a Deterministic Finite
Automata (DFA) with subpatterns on the arcs. This
DFA is then transformed into if-elseif-else nodes. The
main goal of the algorithm is to unify overlapping pat-
terns into common branches in the DFA in order to
reduce code replication. This algorithm will also try to
construct branches to already existing states in order to
reduce code replication further. The end result is no
nested patterns and no overlap between different if-
cases.

The algorithm is composed of four steps: Prepro-
cessing, Generating the DFA, Merging of equivalent

The Modelica Association

640

Modelica 2008, March 3¢ — 4t 2008

Compiling and Using Pattern Matching in Modelica

states and Generating Intermediate Code. The prepro-
cessing step takes all the match rules and produces a
matrix of (preprocessed) patterns and a vector of final
states (one for each row of patterns). In the next step
the DFA is generated from the matrix and the vector of
final states. In the following step equivalent states are
merged and finally, in the last step, the intermediate
code is generated.

We give a small example to illustrate the intuitive
idea behind the algorithm (we use RML [6] style syn-
tax).

case xs
of C(1) => Al
| C(2) => A2
[C2() => A3

The corresponding matrix and right-hand side vector:

xs=C(ys=1)		Al
xs=C(ys=2)	,	A2
xs=C2()		A3

We select the first column (the only column). The con-
structor C matches the first two cases and the construc-
tor C2 matches the last case. Since C2() does not con-
tain any subpattern we are done on this “branch” and
we reach the final state. We must continue to match on
C’s subpatterns, however, and we introduce a new vari-
able ys. The variable ys is a pattern-variable, such a
variable will be introduced for every sub-pattern.

case xs
of C(ys) => .
| C2() => A3

The rest of the matrix and vector:

We match the rest of the matrix and vector and we get
the result:

case xs
of C(ys) =>
(case ys
of 1 => Al
| 2 => A2)

| C2() => A3

Note that in the real algorithm a DFA would first be
created (with a state for each case and right-hand side
and arcs for C, C2, ‘1’ and ‘2”). This DFA would then
be transformed into simple-cases.

5.2 OMC implementation

The specific OpenModelica translation path for Mod-
elica code with matchcontinue constructs is presented
in Figure 1. The matchcontinue expression has been
added to the abstract syntax, Absyn. The pattern

matching algorithm is invoked on the matchcontinue
expression in the Inst module. The main function of
the pattern matching algorithm is Pat-
ternM.matchMain which is given in a light version
below.

Modelica Code
with Pattern Matching

v

Parse
Absyn
SCode
SCode
PatternM | > Inst

T l' DAE

DFA CodeGen

A 4

C++ Functions

Figure 1. Pattern Matching Translation Strategy.

function matchMain
input Absyn.Exp matchCont;
input Env.Cache cache;
input Env.Env env;
output Env.Cache outCache;
output Absyn.Exp outExpr;

algorithm
(outCache, outExpr) :=
matchcontinue (matchCont, cache,env)

case (localMatchCont, localCache, localEnv)
local

equation
(localCache, ..., rhlList,patMat,...) =
ASTtoMatrixForm (localMatchCont,
localCache, localEnv) ;

(startState, ...)=matchFunc
(patMat, rhList, STATE(...));

dfaRec=DFA.DFArec (...
L)

,startState,

(localCache, expr) =
DFA.fromDFAtoIfNodes (dfaRec, ...,
localCache, localEnv, ...);

then (localCache,expr);
end matchcontinue;
end matchMain;

The Modelica Association

641

Modelica 2008, March 3¢ — 4t 2008

K. Stavaker, A. Pop, P. Fritzson

The first function to be called in matchMain is AST-
ToMatrixForm which creates a matrix out of the pat-
terns as well as a list of right-hand sides (the code in a
case clause except the actual pattern). This corresponds
to step 1 of the above described algorithm. The list of
right-hand side will actually only contain identifiers,
and not all code in a right-hand side, so that the match
algorithm won’t have to pass along a lot of extra code.
The code in the right-hand sides is saved in another list
and is later added.

After this the function matchFunc is called with the
matrix of patterns, the right-hand side list and a start
state. This function will single out a column, create a
branch and a new state for all matching patterns in the
column and then call itself recursively on each new
state and a modified version of the matrix, as described
in [6]. The function (roughly) distinguishes between
three cases:

o All of the patterns in the uppermost matrix row are
wildcards.

o All of the patterns in the uppermost matrix row are
wildcards or constants.

o At least one of the patterns in the uppermost matrix
row is a constructor call.

However, due to the fail semantics of a matchcontinue
expression we cannot simply discard all cases below a
row with only wildcards as is done in [6]. This is due to
the fact that a case-clause with only wildcards may fail
and then an attempt to match the subsequent case-
clause should be carried out.

Finally, the created DFA is transformed into if-else-
elseif nodes (intermediate code) in the function fromb-
FAtoIfNodes. This corresponds to step 3 and 4 of the
algorithm described above. The pattern matching algo-
rithm returns a value block expression containing the
if-else-elseif nodes (see section 5.2). C++ code is then
generated for the value block expression in the Code-
gen module.

5.3 Example

g\lf first give an example of the compilation of a mat-
chcontinue expression over simply types. In the next
section we discuss the compilation of pattern matching
over more complex types (union types, lists, etc.).
function func

input Integer 1i1;

input Integer 12;

output Integer x1;

algorithm
x1 =
matchcontinue (il,i2)
local
Integer x;
case (x as 1,2)

local
equation
false = (x == 1);
then 1;
case (_,) then 5;
end matchcontinue;
end func;

The code above is first compiled into intermediate form
as seen in figure 1. The following C++-code is then
generated from the intermediate code (note that the
code is somewhat simplified):

{
modelica integer x;
modelica_integer LASTRIGHTHANDSIDE ;
integer array BOOLVAR ; /* [2] */
alloc integer array(&BOOLVAR , 2, 1,
while (1) { o
try {
statel:
if ((11 == 1) && (BOOLVAR [1]
|| BOOLVAR [2])) {
state2:
if ((i2 == 2) && BOOLVAR_ [1]) {
goto finalstatel;
}
else {
state3:
if (BOOLVAR__[Z]) {
goto finalstate2;
}

1)

}
}
else {

goto state3;

}
break;
finalstatel:
LASTRIGHTHANDSIDE__ = 1;
x = 1il;
if (x == 1) {

throw 1;
}
xl = 1;
break;
finalstate2:
LASTRIGHTHANDSIDE__
xl = 5;
break;
}
catch(int i) {
BOOLVARAi[LASTRIGHTHANDSIDEAi]=O;
}

Il
N
~

}

Each state label corresponds to a state in the DFA
(which was the intermediate result of the pattern match-
ing algorithm) and each if-case corresponds to a
branch. See figure 2 for the generated DFA.

The Modelica Association

642

Modelica 2008, March 3¢ — 4t 2008

Compiling and Using Pattern Matching in Modelica

i1== -
state2 state3
i2==2 _
\4 A\ 4
finalstate1 finalstate2

Figure 2. Code Example Generated DFA.

Note that if a case-clause fails then the next case-clause
will be matched, since we have a matchcontinue ex-
pression. There is an array (BOOLVAR) with an entry
for each final state in the DFA. If a fail occurs an ex-
ception will be thrown and the catch-clause at the bot-
tom will be executed. The catch-clause will set the ar-
ray entry of the case-clause that failed to zero so that
when the pattern matching algorithm restarts (notice
the while(1) loop) this case-clause will not be entered
again.

5.4 Pattern matching over union types, lists,
tuples and option types

The remaining MetaModelica constructs (that are lack-
ing from Modelica) are currently being added to OMC:
lists, union types, option types and tuples. Compilation
of MetaModelica code should only be performed if a
special compile flag is set. Lists and union types were
introduced in section 3. An option type can be seen as a
union type with two records, SOME and NONE, where
SOME may contain data and NONE is an empty
record. A tuple type can be viewed as an unnamed
record. See [4] for more details about MetaModelica.
We briefly discuss pattern matching over variables

holding these types. Consider first an example with
union types given below.

uniontype UT

record REC1

Integer fieldl;

Integer field2;
end REC1;

record REC2
end UT;

. end REC2;

matchcontinue (x)
case (REC1(1,2))
case (REC1 (1,))

end matchcontinue;

The example above will result in the following inter-
mediate code.

if (getHeaderNum(x) == 0) then
Integer $x1 = getval(x,1);
Integer $x2 = getval (x,2);
if ($x1 == 1) then
if ($x2 == 2) then

elseif (true) then
end if;
end if;
elseif (...)

end if;
Note that static type checking is performed by the
compiler to make sure that REC1 is a member of the
type of variable x and that it contains two integer fields
etc.. Union types are represented as boxed-values, with
a header and subsequent fields, in C++. Each record in
a union type is represented by a number (an enumera-
tion). Since REC1 is the first record in the union type it
is represented by 0. The function getHeaderNum is a
builtin function that retrieves the header of variable x.
The function getVal is also a builtin function that re-
trieves a data field (given by an offset) from the varia-
ble x.
Lists are compiled in a similar fashion.

matchcontinue
case (1

(x)

. var)
end matchcontinue;
=>

if (true) then

Integer $x1 = car(x,1);

list<Integer> $x2 = cdr (x);
if ($x1 == 1) then
elseif (...)
end if;

end if;

The symbol :: is the cons constructor. The functions car
and cdr are builtin functions for fetching the car and cdr
parts of a list. Lists are also implemented as boxed val-
ues in the generated C++ code so this can be done in a
straightforward way. An example of pattern matching
over tuples is given below.

matchcontinue (x)
case ((5,false))
case ((5,true))

The Modelica Association

643

Modelica 2008, March 3¢ — 4t 2008

K. Stavaker, A. Pop, P. Fritzson

end matchcontinue;

=>

if (true) then

Integer $x1 = getVal(x,1);

Boolean $x2 = getVal(x,2);
if ($x1 == 5) then
elseif (...)
end if;

end if;

Tuples are, just as union types and lists, implemented
as boxed values in C++. The builtin function getVal
takes an index and offsets into a boxed value in order to
obtain the correct field.

Finally, option types are dealt with in a similar
manner as union types.

Note that the reason why we need a run-time type
check of union types is that a union type variable may
hold any of several record types, which one can only be
determined at run-time. When it comes to lists and
tuples only one type can exist in a matchcontinue col-
umn, if this is violated it will be detected by the static
type checker leading to a compile-time error.

5.5 Value block Expression

The value block expression allows equations and algo-
rithm statements to be nested within another equation
or algorithm statement. A value block expression con-
tains a declaration part, a statements or equations part
and a return expression. The return value of the value
block is the value of the evaluated return expression. A
value block has been added to OMC mainly because of
its use as an intermediate data structure for the pattern
matching expression.

6 Conclusions

We have briefly presented the design and implementa-
tion of pattern matching for Modelica. We believe that
adding this language feature to Modelica will result in a
more powerful and complete language. Pattern match-
ing is useful for traversing hierarchies of components,
for writing functional-style programs, traversing lists,
etc.. Pattern matching would be most useful if Meta-
Modelica constructs such as lists and union type were
merged with Modelica. If these constructs were to be
included in Modelica, however, several type-related
issues must be dealt with. Another possibility is to be
able to pattern match over record-hierarchies (as shown
in one of the examples). However, decomposition of

records can already be done in a straightforward way
through the dot-notation.

7 Acknowledgements

This work has been supported by the Swedish Founda-
tion for Strategic Research (SSF), in the RISE and VI-
SIMOD projects, and by Vinnova in the Safe and Se-
cure Modeling and Simulation project.

References

[1] Peter Fritzson, Peter Aronsson, Hakan Lundvall,
Kaj Nystrom, Adrian Pop, Levon Saldamli, and
David Broman. The OpenModelica Modeling,
Simulation, and Software Development Envi-
ronment. Simulation News Europe, 44/45, Dec
2005.
http://www.ida.liu.se/projects/OpenModelica

[2] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pp., Wiley-IEEE Press, 2004. See also:

http://www.mathcore.com/drmodelica/

Paul Hudak. The Haskell School of Expression.
Cambridge University Press, 2000.

(3]

[4] Peter Fritzson, Adrian Pop, and Peter Aronsson.
Towards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica. In
Proceedings of the 4th International Modelica
Conference, Hamburg, Germany, March 7-8,

2005.

The Modelica Association. The Modelica Lan-
guage Specification Version 3.0, September
2007. http://www.modelica.org.

(5]

[6] Mikael Pettersson. Compiling Natural Semantics.
PhD thesis, Linképing Studies in Science and

Technology, 1995.

Christen E. and K. Bakalar. VHDL-AMS-a
hardware description language for analog and-
mixed-signal applications, In 36th Design Auto-
mation Conference, June 1999

Oh Min and C.C. Pantelides (1996) "A Modeling
and Simulation Language for Combined Lumped
and Distributed Parameter System." Computers
& Chemical Engineering, vol 20: 6-7. pp. 611-
633 1996.

[7]

(8]

[9] Xavier Leroy et al., The Objective Caml system.
Documentation and wuser’s manual, 2007,

http://caml.inria.fr/pub/docs/manual-ocaml

[10] Robin Milner, Mads Tofte, Robert Harper and
David MacQueen, The Definition of Standard

The Modelica Association

644

Modelica 2008, March 3¢ — 4t 2008

Compiling and Using Pattern Matching in Modelica

ML, Revised Edition, MIT University Press, May
1997, ISBN: 0-262-63181-4

[11] Peter Fritzson. Modelica Meta-Programming and
Symbolic Transformations, MetaModelica Pro-
gramming guide, Version June 2007

[12] P.E. Moreau, C. Ringeissen, M. Vittek: A Pattern
Matching Compiler for Multiple TargetLanguag-
es. In: In Proc. of Compiler Construction (CC),
volume 2622 of LNCS. (2003) 61-76

[13] M. Oderksy, P. Wadler: Pizza into Java: Translat-
ing theory into practice. In: Proc. of Principles of
Programming Languages (POPL). (1997)

[14] M. Zenger, M. Odersky: Extensible Algebraic
Datatypes with Defaults. In: Proc. of Int. Confe-
rence on Functional Programming (ICFP). (2001)

[151J. Liu, A.C. Myers: JMatch: Iterable Abstract
Pattern Matching for Java. In: Proc. of the 5th
Int. Symposium on Practical Aspects of Declara-
tive Languages (PADL). (2003) 110-127

[16] Burak Emir, Martin Odersky, and John Williams,
Matching Objects With Patterns, LAMP-
REPORT-2006-006,EPFL, Lausanne, Switzer-
land, Language Computer Corporation, Richard-
son Texas

[17] Martin Odersky, Raising Your Abstraction: In
Defense of Pattern Matching, June 29, 2006.
http://www.artima.com/weblogs/viewpost.jsp?thr
ead=166742 [Last referenced on January 19,
2008]

[18] European standard ENV 13005.

[19] Benjamin C. Pierce, Types and Programming
Languages. The MIT Press Massachusetts Insti-
tute of Technology Cambridge, Massachusetts
02142 http://mitpress.mit.edu ISBN 0-262-
16209-1

The Modelica Association 645 Modelica 2008, March 3¢ — 4t 2008

