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Abstract 

Monte Carlo simulation allows to obtain statistical 
information derived from estimates of the random 
variability of component parameters. The paper 
demonstrates how to describe the random character-
istic of parameters in a tool-independent manner in 
Modelica. Using the multi-run facilities of a simula-
tion engine statistical analysis can be carried out 
without any code intervention concerning the tool. 
The approach is based on the SAE 2748 standard. 
Solutions of implementation problems with respect 
to Modelica are discussed. This paper is based on 
results, which were developed in the Fraunhofer col-
laborative project “Computer Aided Robust Design 
(CAROD)”. 
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1 Introduction 

It is more and more required within industrial appli-
cations to consider the influence of the variability of 
design parameters on the behaviour of systems. For 
instance yield and reliability often depend on the 
statistical characteristics of such parameters [1].    
Monte Carlo methods are widely used to analyze the 
effects of parameter tolerances. In a Monte Carlo 
simulation, a mathematical model of a system is re-
peatedly evaluated. Each run uses different values of 
design parameters. The selection of the parameter 
values is made randomly with respect to given distri-
bution functions. Monte Carlo simulation is very 
time consuming. A lot of simulation runs are re-
quired to investigate the behavior of a system subject 
to the statistical distribution of parameters. Neverthe-
less, Monte Carlo simulation is very favored in vari-
ous application areas where an analytical relation 
between design and system parameters is difficult to 
find. For example mixed-signal electrical systems 

consisting of analog and digital components often 
belong to this class of systems.  
The objective of this paper is to make a proposal 
how to handle the description of random parameters 
in Modelica in a tool-independent way. Furthermore 
a way is presented how to carry out a Monte Carlo 
simulation within an existing simulation engine. It is 
only required that the simulator supports multiple 
runs of a simulation task. 
  The approach is close to the standard J 2748 pre-
pared by the Electronic Design Automation Stan-
dards Committee of the Society of Automotive En-
gineers (SAE) that describes random parameter han-
dling in a VHDL-AMS simulation problem [2, 3].  
Describing parameter variations in nearly the same 
way in VHDL-AMS and Modelica offers the oppor-
tunity to reduce the effort to provide random parame-
ter data in the design process and to avoid misunder-
standings.  

2 SAE-Standard J 2748 

Some basic requirements that are supported by the 
SAE J 2748 standard are summarized in the follow-
ing. The basic idea is to add information to charac-
terize the parameters. Thus, it should be possible to 
use existing models also for statistical analysis. In 
detail it is required 
• Usage of the same model for nominal and 

Monte Carlo analysis  
• Possibility to assign different statistical distri-

butions to each constant or parameter 
• Support of continuous and discrete distributions 
• Permission of user-defined distributions 
• Possibility to specify correlation between con-

stants 
From a practical point of view the following points 
should also be mentioned 
• Independent random number generation for any 

constant 
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• Reproducibility of Monte Carlo simulation 
within the same simulation tool 

Statistical distributions are characterized from an 
engineering point of view. That means the mathe-
matical parameters as for instance the moments are 
derived from engineering parameters as nominal 
value, tolerances, minimum and maximum values. 
The standard provides implementations of basic 
regular distribution functions. Futhermore, standard 
functions are provided that allow to declare user-
defined distributions. Also truncated distributions 
are supported that limit the random numbers to a 
given interval. 
 
Table 1: Regular distribution functions [3] 

UNIFORM Uniform distributed values  

NORMAL Gaussian distributed values 

PWL_CDF Piecewise-linear description of a cumula-
tive distribution function  

PWL_PDF  Piecewise-linear description of a prob-
ability density function 

BERNOULLI Bernoulli distribution 
DISCRETE_CDF 
DISCRETE_PDF 

Tabular description of the probability of 
discrete values 

 
The VHDL-AMS implementation details are online 
available [4]. 

3 Method 

Methods to create random numbers are in general 
based on a (0,1) uniform distributed values. 
 

 
Fig. 1.  (0,1) uniform random number generator 
 
Widely used methods to generate random number 
with a given distribution are the inverse transforma-
tion approach based on the cumulative distribution 

function and its modifications for truncated distribu-
tions. The Box-Muller algorithm can be applied for 
normal distributed numbers [5].Thus, the main prob-
lem during parameter initialization for Monte Carlo 
Simulation is to generate independent (0,1) distrib-
uted values. [2] describes the requirements to a built-
in random number generator provided by a tool. 
The basic idea of a tool-independent random number 
generator is shown in Fig. 1.  The seed values that 
are needed to generate a sequence of random num-
bers are immediately saved in a file. 
With the help of global parameters it is possible to 
switch between nominal and statistical analysis ei-
ther w.r.t. parts of a description or the entire simula-
tion task. 

4 Realization with Modelica 

Using Modelica the idea of a tool independent ran-
dom number generation is realized in the following 
way. As an example the uniform distribution is used 
which produces uniformly distributed values within 
the interval (nominal – tolerance*nominal, nominal  
+ tolerance* nominal). For better reading some de-
tails compared to the final solution are simplified. 

4.1 Randomly changed parameters 

To supply a parameter (or a constant) with randomly 
generated values it is necessary to specify random 
distribution in the Modelica source code. Instead of  
 
  parameter Real p = nominal; 

 
which specifies a fixed parameter, the specification 
of the uniform distribution function call is: 
  
  parameter Real p = uniform(nominal,  
                             tolerance); 

4.2 Random number generation 

The Modelica function uniform is an interface to a C 
function. It is defined like this: 
 
function uniform  
  input Real Mean; 
  input Real Tol; 
  output Real random_value; 
external "C" uniform(Mean, Tol,  
                     random_value); 
end uniform; 

 

Save seed 
values 

RND  
generator 

(0,1) uniform 
distributed values 
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Within the C function the randomly distributed val-
ues have to be calculated. An example is the follow-
ing function: 

 
void uniform (double M, double Tol,  
              double *aus) 
{ double xMin = M * (1.0 - Tol); 
  double xMax = M * (1.0 + Tol); 

    if (xMin > xMax)  
  { xMax = xMin; 
    xMin = M * (1.0 + Tol); 
  } 
  *aus = xMin + (xMax - xMin)*RND();    
} 

 

The random function is a (0,1) uniformly distributed 
random value generator for instance according to 
Schrages method [8]: 
 

double RND() 
{ FILE   *read_fp, *write_fp; 
  long   seed = 2,  M = 2147483647;   
  long   A = 16807, Q = 127773; 
  long   R = 2836,  k; 
  double F = 1.0/ M; 
 
  read_fp = fopen ("seed.dat","r"); 
  fscanf (read_fp, "%ld",&seed); 
  fclose(read_fp); 
 
  assert( seed != 0 );                  
  k = seed / Q;                         
  seed = (seed - k * Q) * A - k * R;  
  if ( seed < 0 ) seed += M;            
    
  write_fp = fopen ("seed.dat","w"); 
  fprintf (write_fp, "%ld", seed); 
  fclose(write_fp);  
      
  return seed * F;                      
} 

  

By access to the file “seed.dat” , which has a fixed 
name, the seed value is saved between two calls of 
the random function.  
In the final solution a global change of the seed file 
name is possible. In case of a nominal analysis the 
final function uniform would deliver the Mean value. 
A more convenient way would be to provide the ran-
dom number generator RND by a Modelica function. 
This would allow to formulate the random distribu-
tion functions using Modelica language constructs 
only. This approach could not be realized in the used 
tool environment. From the language point of view it 
must be possible that a Modelica function called with 
the same arguments may deliver different results. For 
this reason, for instance VHDL(-AMS) distinguishes 
between pure and impure functions. 

Furthermore, the RND function above could be re-
placed by the random number generator incorporated 
in a Modelica simulator  by a tool provider. In this 
way the file access to seed.dat can be avoided. 

4.3 Application 

After having specified the parameter to be changed 
in the Modelica source code, the Modelica function 
with the foreign function interface to the C domain, 
and the C function “random”, the following steps are 
necessary: 
A file “seed.dat” has to be generated, which contains 
an integer starting number for the sequence of ran-
dom values. If a sequence shall be repeated, the same 
seed number must be chosen. 
Then  the model under investigation (which contains 
the parameter specification mentioned above) has to 
be simulated by a Modelica simulator repeatedly. 
The number of repetitions depends on the wanted 
number of trials for the Monte Carlo simulation. Af-
ter each single simulation the interesting results must 
be saved. The results can be visualized or used in 
posteriori calculations. 

4.4 Remarks 

The method allows easily to define both correlated  
and dependent random values of parameters. A sim-
ple example might explain the procedure: 
 
  parameter Real p1 = uniform(1, 0.1); 

  parameter Real p2 = uniform(p1, 0.01); 
 

If the same sequence of randomly generated values is 
desired (e.g. to investigate a special effect) the same 
seed number and the same seed file name have to be 
used at the beginning. 

5 Example 

 
Fig. 2.  Monte-Carlo-Plot for variables 
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In the DifferenceAmplifier of Modelica.Electrical. 
Analog.Examples [9]. the resistance R of the resistor 
R2 is randomly generated by the following formula-
tion:  
  ... 

  Basic.Resistor R1(R=0.0001); 

  Basic.Resistor R2(R=uniform(100,0.05)); 

  Basic.Resistor R3(R=0.0001; 

  ... 

Repeated simulations using Dymola show that 
R2.n.v (the thick line pencil) is sensitive with respect 
to R2.R. The voltage R4.n.v (thin line) is not sensi-
tive to that parameter. Basing on the Monte Carlo 
results further calculations (density distribution …) 
are possible.  
Furthermore, the randomly chosen parameter values 
can also be visualized or used for further calcula-
tions. The following figure shows the above speci-
fied parameter R2.R which is uniformly distributed 
in the interval (95, 105) (=100 – 100 * 5%, 100 + 
100 * 5%). 

 
Fig. 3.  Randomly chosen parameter R2.R 

6 Discussion 

The proposed approach realizes a simple Monte 
Carlo simulation based on behavioral descriptions in 
Modelica. Beyond the focus of this paper is the us-
age of the results of the Monte Carlo simulation for 
other purposes. For example the data could be used 
to create Response Surface Models. This would re-
quire to save the randomly generated parameters of 
any simulation run. Also improved techniques to 
create the random numbers and reduce the simula-
tion effort could be applied. For instance possibilities 
of so-called importance sampling [6] could be ap-
plied using user defined functions. 
The Monte-Carlo-Simulation is also possible using 
the Dymola Monte-Carlo feature. The advantage  of 
the suggested way is: 

• It is a more general, tool independent ap-
proach. 

• The user is free to define its own distribution 
based on the RND function. 

• Correlations can be defined easily. 
• For documentation purposes the distribution 

specification is part of the model files. 
The approach in [7] is also simulator independent, 
but is uses a (firm-)specific nested toolkit. Our way 
is defined only using the Modelica language. 
Whether a language construct like ours is used in [7] 
is not documented. 

7 Conclusions 

An approach to handle statistical analysis problems 
within Modelica is presented. It is based on the SAE 
J 2748 standard. The current version allows Monte 
Carol simulations if the used simulation engine sup-
ports multiple runs in a simple way. If the approach 
is accepted it could also be the basis of efficient im-
plementation in Modelica simulators. In this case the 
generation of the sequences of (0,1) distributed uni-
form random numbers must be supported without 
file access. 
The applicability of the approach is demonstrated 
with the help of a simple example from the existing 
Modelica standard library. Only existing tool and 
language features are used. This and the orientation 
to the SAE standard are the main advantages of the 
approach compared to [7]. 
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