
Monte Carlo Simulation with Modelica
Joachim Haase Susann Wolf Christoph Clauß

Fraunhofer-Institute for Integrated Circuits, Design Automation Division
Zeunerstraße 38, 01069 Dresden, Germany

{Joachim.Haase, Susann.Wolf, Christoph.Clauss}@eas.iis.fraunhofer.de

Abstract

Monte Carlo simulation allows to obtain statistical
information derived from estimates of the random
variability of component parameters. The paper
demonstrates how to describe the random character-
istic of parameters in a tool-independent manner in
Modelica. Using the multi-run facilities of a simula-
tion engine statistical analysis can be carried out
without any code intervention concerning the tool.
The approach is based on the SAE 2748 standard.
Solutions of implementation problems with respect
to Modelica are discussed. This paper is based on
results, which were developed in the Fraunhofer col-
laborative project “Computer Aided Robust Design
(CAROD)”.

Keywords: Statistical analysis, SAE 2748, Monte
Carlo simulation

1 Introduction

It is more and more required within industrial appli-
cations to consider the influence of the variability of
design parameters on the behaviour of systems. For
instance yield and reliability often depend on the
statistical characteristics of such parameters [1].
Monte Carlo methods are widely used to analyze the
effects of parameter tolerances. In a Monte Carlo
simulation, a mathematical model of a system is re-
peatedly evaluated. Each run uses different values of
design parameters. The selection of the parameter
values is made randomly with respect to given distri-
bution functions. Monte Carlo simulation is very
time consuming. A lot of simulation runs are re-
quired to investigate the behavior of a system subject
to the statistical distribution of parameters. Neverthe-
less, Monte Carlo simulation is very favored in vari-
ous application areas where an analytical relation
between design and system parameters is difficult to
find. For example mixed-signal electrical systems

consisting of analog and digital components often
belong to this class of systems.
The objective of this paper is to make a proposal
how to handle the description of random parameters
in Modelica in a tool-independent way. Furthermore
a way is presented how to carry out a Monte Carlo
simulation within an existing simulation engine. It is
only required that the simulator supports multiple
runs of a simulation task.
 The approach is close to the standard J 2748 pre-
pared by the Electronic Design Automation Stan-
dards Committee of the Society of Automotive En-
gineers (SAE) that describes random parameter han-
dling in a VHDL-AMS simulation problem [2, 3].
Describing parameter variations in nearly the same
way in VHDL-AMS and Modelica offers the oppor-
tunity to reduce the effort to provide random parame-
ter data in the design process and to avoid misunder-
standings.

2 SAE-Standard J 2748

Some basic requirements that are supported by the
SAE J 2748 standard are summarized in the follow-
ing. The basic idea is to add information to charac-
terize the parameters. Thus, it should be possible to
use existing models also for statistical analysis. In
detail it is required
• Usage of the same model for nominal and

Monte Carlo analysis
• Possibility to assign different statistical distri-

butions to each constant or parameter
• Support of continuous and discrete distributions
• Permission of user-defined distributions
• Possibility to specify correlation between con-

stants
From a practical point of view the following points
should also be mentioned
• Independent random number generation for any

constant

Monte Carlo Simulation with Modelica

The Modelica Association 601 Modelica 2008, March 3rd − 4th, 2008

• Reproducibility of Monte Carlo simulation
within the same simulation tool

Statistical distributions are characterized from an
engineering point of view. That means the mathe-
matical parameters as for instance the moments are
derived from engineering parameters as nominal
value, tolerances, minimum and maximum values.
The standard provides implementations of basic
regular distribution functions. Futhermore, standard
functions are provided that allow to declare user-
defined distributions. Also truncated distributions
are supported that limit the random numbers to a
given interval.

Table 1: Regular distribution functions [3]

UNIFORM Uniform distributed values

NORMAL Gaussian distributed values

PWL_CDF Piecewise-linear description of a cumula-
tive distribution function

PWL_PDF Piecewise-linear description of a prob-
ability density function

BERNOULLI Bernoulli distribution
DISCRETE_CDF
DISCRETE_PDF

Tabular description of the probability of
discrete values

The VHDL-AMS implementation details are online
available [4].

3 Method

Methods to create random numbers are in general
based on a (0,1) uniform distributed values.

Fig. 1. (0,1) uniform random number generator

Widely used methods to generate random number
with a given distribution are the inverse transforma-
tion approach based on the cumulative distribution

function and its modifications for truncated distribu-
tions. The Box-Muller algorithm can be applied for
normal distributed numbers [5].Thus, the main prob-
lem during parameter initialization for Monte Carlo
Simulation is to generate independent (0,1) distrib-
uted values. [2] describes the requirements to a built-
in random number generator provided by a tool.
The basic idea of a tool-independent random number
generator is shown in Fig. 1. The seed values that
are needed to generate a sequence of random num-
bers are immediately saved in a file.
With the help of global parameters it is possible to
switch between nominal and statistical analysis ei-
ther w.r.t. parts of a description or the entire simula-
tion task.

4 Realization with Modelica

Using Modelica the idea of a tool independent ran-
dom number generation is realized in the following
way. As an example the uniform distribution is used
which produces uniformly distributed values within
the interval (nominal – tolerance*nominal, nominal
+ tolerance* nominal). For better reading some de-
tails compared to the final solution are simplified.

4.1 Randomly changed parameters

To supply a parameter (or a constant) with randomly
generated values it is necessary to specify random
distribution in the Modelica source code. Instead of

 parameter Real p = nominal;

which specifies a fixed parameter, the specification
of the uniform distribution function call is:

 parameter Real p = uniform(nominal,
 tolerance);

4.2 Random number generation

The Modelica function uniform is an interface to a C
function. It is defined like this:

function uniform
 input Real Mean;
 input Real Tol;
 output Real random_value;
external "C" uniform(Mean, Tol,
 random_value);
end uniform;

Save seed
values

RND
generator

(0,1) uniform
distributed values

J. Haase, S. Wolf, C. Clauß

The Modelica Association 602 Modelica 2008, March 3rd − 4th, 2008

Within the C function the randomly distributed val-
ues have to be calculated. An example is the follow-
ing function:

void uniform (double M, double Tol,
 double *aus)
{ double xMin = M * (1.0 - Tol);
 double xMax = M * (1.0 + Tol);

 if (xMin > xMax)
 { xMax = xMin;
 xMin = M * (1.0 + Tol);
 }
 *aus = xMin + (xMax - xMin)*RND();
}

The random function is a (0,1) uniformly distributed
random value generator for instance according to
Schrages method [8]:

double RND()
{ FILE *read_fp, *write_fp;
 long seed = 2, M = 2147483647;
 long A = 16807, Q = 127773;
 long R = 2836, k;
 double F = 1.0/ M;

 read_fp = fopen ("seed.dat","r");
 fscanf (read_fp, "%ld",&seed);
 fclose(read_fp);

 assert(seed != 0);
 k = seed / Q;
 seed = (seed - k * Q) * A - k * R;
 if (seed < 0) seed += M;

 write_fp = fopen ("seed.dat","w");
 fprintf (write_fp, "%ld", seed);
 fclose(write_fp);

 return seed * F;
}

By access to the file “seed.dat” , which has a fixed
name, the seed value is saved between two calls of
the random function.
In the final solution a global change of the seed file
name is possible. In case of a nominal analysis the
final function uniform would deliver the Mean value.
A more convenient way would be to provide the ran-
dom number generator RND by a Modelica function.
This would allow to formulate the random distribu-
tion functions using Modelica language constructs
only. This approach could not be realized in the used
tool environment. From the language point of view it
must be possible that a Modelica function called with
the same arguments may deliver different results. For
this reason, for instance VHDL(-AMS) distinguishes
between pure and impure functions.

Furthermore, the RND function above could be re-
placed by the random number generator incorporated
in a Modelica simulator by a tool provider. In this
way the file access to seed.dat can be avoided.

4.3 Application

After having specified the parameter to be changed
in the Modelica source code, the Modelica function
with the foreign function interface to the C domain,
and the C function “random”, the following steps are
necessary:
A file “seed.dat” has to be generated, which contains
an integer starting number for the sequence of ran-
dom values. If a sequence shall be repeated, the same
seed number must be chosen.
Then the model under investigation (which contains
the parameter specification mentioned above) has to
be simulated by a Modelica simulator repeatedly.
The number of repetitions depends on the wanted
number of trials for the Monte Carlo simulation. Af-
ter each single simulation the interesting results must
be saved. The results can be visualized or used in
posteriori calculations.

4.4 Remarks

The method allows easily to define both correlated
and dependent random values of parameters. A sim-
ple example might explain the procedure:

 parameter Real p1 = uniform(1, 0.1);

 parameter Real p2 = uniform(p1, 0.01);

If the same sequence of randomly generated values is
desired (e.g. to investigate a special effect) the same
seed number and the same seed file name have to be
used at the beginning.

5 Example

Fig. 2. Monte-Carlo-Plot for variables

Monte Carlo Simulation with Modelica

The Modelica Association 603 Modelica 2008, March 3rd − 4th, 2008

In the DifferenceAmplifier of Modelica.Electrical.
Analog.Examples [9]. the resistance R of the resistor
R2 is randomly generated by the following formula-
tion:
 ...

 Basic.Resistor R1(R=0.0001);

 Basic.Resistor R2(R=uniform(100,0.05));

 Basic.Resistor R3(R=0.0001;

 ...

Repeated simulations using Dymola show that
R2.n.v (the thick line pencil) is sensitive with respect
to R2.R. The voltage R4.n.v (thin line) is not sensi-
tive to that parameter. Basing on the Monte Carlo
results further calculations (density distribution …)
are possible.
Furthermore, the randomly chosen parameter values
can also be visualized or used for further calcula-
tions. The following figure shows the above speci-
fied parameter R2.R which is uniformly distributed
in the interval (95, 105) (=100 – 100 * 5%, 100 +
100 * 5%).

Fig. 3. Randomly chosen parameter R2.R

6 Discussion

The proposed approach realizes a simple Monte
Carlo simulation based on behavioral descriptions in
Modelica. Beyond the focus of this paper is the us-
age of the results of the Monte Carlo simulation for
other purposes. For example the data could be used
to create Response Surface Models. This would re-
quire to save the randomly generated parameters of
any simulation run. Also improved techniques to
create the random numbers and reduce the simula-
tion effort could be applied. For instance possibilities
of so-called importance sampling [6] could be ap-
plied using user defined functions.
The Monte-Carlo-Simulation is also possible using
the Dymola Monte-Carlo feature. The advantage of
the suggested way is:

• It is a more general, tool independent ap-
proach.

• The user is free to define its own distribution
based on the RND function.

• Correlations can be defined easily.
• For documentation purposes the distribution

specification is part of the model files.
The approach in [7] is also simulator independent,
but is uses a (firm-)specific nested toolkit. Our way
is defined only using the Modelica language.
Whether a language construct like ours is used in [7]
is not documented.

7 Conclusions

An approach to handle statistical analysis problems
within Modelica is presented. It is based on the SAE
J 2748 standard. The current version allows Monte
Carol simulations if the used simulation engine sup-
ports multiple runs in a simple way. If the approach
is accepted it could also be the basis of efficient im-
plementation in Modelica simulators. In this case the
generation of the sequences of (0,1) distributed uni-
form random numbers must be supported without
file access.
The applicability of the approach is demonstrated
with the help of a simple example from the existing
Modelica standard library. Only existing tool and
language features are used. This and the orientation
to the SAE standard are the main advantages of the
approach compared to [7].

References

[1] O’Connor, P.D.: Practical Reliability Engineering. John
Wiley & Sons, 2003 (5th ed.)

[2] J2748, VHDL-AMS Statistical Analysis Packages, The SAE
Electronic Design Automation Standards Committee, Troy,
MI, October 2006

[3] Christen, E.; Bedrosian, D.; Haase, J.: Statistical Modeling
with VHDL-AMS. Proc. Forum on Specification and Design
Laguages FDL ’07, Barcelona, September 18-20, 2007.

[4] http://links.sae.org/j2748
http://fat-ak30.eas.iis.fraunhofer.de

[5] Saucier, R. Computer Generation of Statistical Distribu-
tions. US Army Research Lab ARL-TR-2168, available at
http://ftp.arl.mil/random/random.pdf

[6] Robert, C. P.; Casella, G.: Monte Carlo Statistical Methods.
Springer, 2004 (2nd ed.)

[7] Batteh, J.; Tiller, M.; Goodman, A.: Monte Carlo Simula-
tions for Evaluating Engine NVH Robustness. 4th Interna-
tional Modelica Conference, Hamburg, March 7-8, 2005,
385-392

[8] www.physics.rutgers.edu/grad/509/random.pdf
[9] www.modelica.org/libraries/Modelica

J. Haase, S. Wolf, C. Clauß

The Modelica Association 604 Modelica 2008, March 3rd − 4th, 2008

