
An External Model Interface for Modelica 

Torsten Blochwitz   Gerd Kurzbach   Thomas Neidhold 

ITI GmbH, Webergasse 1, 01067 Dresden, Germany 

 

Abstract 

The paper describes the integration of non-Modelica 

submodels to a complete Modelica model. We show, 

that the Modelica standard interfaces to external 

code (external function and external object) are not 

suited to integrate the behavior of non-trivial models. 

The necessary enhancements of the external object 

interface are worked out and the usage is demon-

strated.  

 

Keywords: External Function, External Object, 

C-Interface 

1 Introduction 

With ITI-SIM and SimulationX [1] the company ITI 

develops and distributes software for system simula-

tion since 1991. SimulationX provides full support 

for Modelica since release 3.0. The steadily growing 

acceptance of these programs is based on a modern 

user interface, which enables engineers an easy 

access to modeling, simulation and optimization 

techniques by using efficient calculation methods 

associated with a wide range of libraries and tools. A 

large contribution to this success is the availability of 

interfaces to other CAE tools like MAT-

LAB/Simulink, MSC.ADAMS or SIMPACK. In 

addition to various forms of co-simulation the C 

code based exchange of models between different 

tools is also supported. This enables the user to coo-

perate across team boundaries independent of the 

finally used simulation tools. The encapsulation of 

the model functionality, which will be achieved by 

the compilation of the code generated from the origi-

nal model, also allows an effective protection against 

unwanted insight into the parameters and behavior. 

With the description of this interface, as well as our 

proposal for its integration into the Modelica lan-

guage we want to make available the described ad-

vantages to the whole Modelica community. 

2 Motivation 

There are different motivations to integrate non-

Modelica submodels into Modelica models:  

1. Sometimes a component is modeled using a spe-

cialized simulator for a specific physical domain 

(e.g., SIMPACK for complex multi body sys-

tems or GT-POWER [2] for combustion en-

gines). For system simulation within a Modelica 

simulator the component should be integrated in-

to a Modelica model. Often the model functio-

nality of the special simulator can be exported as 

C-code. 

2. A supplier has developed a model of a compo-

nent in Modelica. He wants to supply this model 

to the OEM but wants to protect his know how, 

contained in the physical model. The safest way 

to do that is to provide the model in binary form 

as a compiled library with a well defined inter-

face. 

  

 

Figure 1: Modelica model with embedded external 

components 

An External Model Interface for Modelica

The Modelica Association 579 Modelica 2008, March 3rd − 4th, 2008



Modelica currently supports the following interfaces 

to external functionality [3]: 

 external function interface 

 external object interface 

According to the Modelica Language Specification 

results of external functions may only depend from 

their arguments, i.e., the functions have no internal 

memory. Complex models do have a memory.  

External objects as an improvement of external func-

tions provide a memory context which is reported 

between the function calls.  

Beside the more or less complex function for the 

right hand side of an ODE or DAE, external models 

may contain discrete states, state- or time-dependent 

events, or delay buffers. To integrate those into the 

simulation, information about the objects have to be 

exchanged between the external model and the simu-

lation environment. The Modelica external object 

interface does not provide the functionality to ex-

change this information. It must be extended to an 

"External Model Interface." The following chapter 

describes the requirements to the external model in-

terface resulting from the features of complex  

models. 

The inclusion of controller code (e.g. ECU code gen-

erated by the Real Time Workshop from The Math-

Works) is not subject of this article. Such compo-

nents must be called with a constant sample rate dur-

ing the simulation. This can be done utilizing the 

existing Modelica interfaces (external function or 

external object). No extensions are necessary. 

3 Requirements for External Model 

Interface 

3.1 Requirements Resulting from Model Fea-

tures 

At first we consider external models, which are 

represented by ordinary differential equations 

(ODE). The equations may contain discontinuities.  

Such systems are represented by following equa-

tions: 

)t,r,z,p,u,x(fx   (1) 

)t,r,z,p,u,x(gy   (2) 

)t,s,r,p,u,x(hz 1  (3) 

)t,z,p,u,x(hr 2  (4) 

 

 

with: 

 x ....... Continuous states 

 u ....... Inputs 

 y ....... Outputs 

 p ....... Parameters 

 z ....... Discrete states 

 r ........ Root functions 

 s ....... Sample variables 

 t ........ Time. 

Equation (1) represents the right hand side (RHS) of 

the ODE. Equation (2) represents the calculation of 

the outputs. Both calculations should be separated in 

different functions to enable an optimum arrange-

ment of the external model in the calculation se-

quence of the enclosing model. 

The other equations deal with event handling and 

discontinuities.  

Events: 

Two kinds of events must be handled: time events 

and state-dependent events. Time events are pro-

duced by timers or the Modelica sample keyword. 

They are signaled from the solver to the model by 

setting corresponding sample variable s. 

State events are signaled from the model to the solv-

er by zero crossings of the root functions r. Discrete 

variables z can change its values only at events. 

According to our experience a reliable event han-

dling is crucial for a robust and fast calculation. 

Reinitialization of States: 

At event instants state values may be reinitialized by 

the external model. The solver should be informed 

about such an operation. 

Additional Model Information: 

External models of specific domains may provide 

further information which eases a robust and fast 

solution. Examples are minimum and maximum 

permissible values for states (e.g. absolute tempera-

tures and pressures have to be positive). 

Other models could provide the Jacobian matrix di-

rectly. 

It depends on the simulator, if this data is used. 

Special Features: 

Some special features demand actions on valid 

model data. For example, the buffers of delay blocks 

must be updated with valid data once after a success-

ful time step. For that reason, the external model 

must be called once after successful steps with valid 

data and must be informed about that. 

T. Blochwitz, G. Kurzbach, T. Neidhold

The Modelica Association 580 Modelica 2008, March 3rd − 4th, 2008



Other model features may require the allocation and 

freeing of memory or data is to be read from files 

once. For that reason special functions must be 

called once at the beginning and the end of the simu-

lation run. 

3.2 Requirements Resulting from the Integration 

into the Enclosing Model 

For integration of the external model into the enclos-

ing Modelica model the external model calls must be 

correctly positioned in the calculation sequence. 

If the outputs of the external model depend only 

from states, the arrangement is simple: the external 

model must be called before one of the outputs is 

needed.   

If the external model has direct feed through (outputs 

depend directly from inputs) the situation is more 

complex. The external model must be called before 

the outputs are needed and after the inputs are calcu-

lated. If the enclosing model defines dependencies of 

the inputs from the outputs of the external model, we 

have algebraic loops. The simulator must treat them 

in an appropriate manner. 

For this reason it is essential for the external model 

to provide the information, which output depends on 

which input(s). If the model creator is not able to 

offer this structural information, the worst case (each 

output depends from each input) has to be assumed. 

3.3 Technical Requirements 

The external model interface for Modelica should be 

similar to the Simulink S-function interface from 

The MathWorks [4]. This interface is quite well 

adopted and widely used. 

The realization of the data transfer should be simula-

tor-specific. The external model accesses the data via 

functions or macros. These functions or macros are 

provided by the target simulator. 

The external model interface should be usable by 

non-Modelica simulators too. These simulators 

should be able to use and/or to create models using 

the interface. 

We will assume that at least the interface part of ex-

ternal models is written in C. How the external mod-

el is linked to the simulator is tool specific and de-

pends on the capabilities of the operating system. 

 

 

4 The External Model Interface 

The external model interface can be seen from the 

following three perspectives: 

 Specification of the functions and data provided 

by the external model. 

 Specification of the calling sequence by the  

solver. 

 Specification of the interface to Modelica. 

These three views to the external model interface are 

shown in Figure 2. 

 

EMI

EMSolver

Modelica

Simulator

em.dll

EMI

EMSolver

Modelica

Simulator

em.dll

 

Figure 2: Three views to the external model interface 

 

On the other hand the interface provides a set of 

utility functions which can be called from external 

model code. 

According to the requirements we get the following 

data flow between the components (Figure 3). 

 

External Model

)t,r,z,p,u,x(fx 

)t,r,z,p,u,x(gy u y

GUI

Enclosing Model

)t,s,r,p,u,x(hz 1

)t,z,p,u,x(hr 2

p

x r,z,x t,s

Solver

External Model

)t,r,z,p,u,x(fx 

)t,r,z,p,u,x(gy u y

GUI

Enclosing Model

)t,s,r,p,u,x(hz 1

)t,z,p,u,x(hr 2

p

x r,z,x t,s

Solver
 

Figure 3: Data flow 

An External Model Interface for Modelica

The Modelica Association 581 Modelica 2008, March 3rd − 4th, 2008



The details, i.e. which data is to be provided by 

which function, are part of the complete specifica-

tion, which will be published by the authors. 

4.1 External Model View 

The data transfer is realized via the external model 

context, the structure emc. The external model must 

implement the following functions:  

void emiInitializeSizes(emc *C) 

 Defines the dimensions of the model. 

 Transfers additional information (input – output 

dependencies) 

 Is called multiple times before the calculation. 

void emiStart(emc *C) 

 Is called once at the beginning of the simulation 

run. 

 Can be used, e.g., to allocate memory. 

void emiInitializeSampleTimes(emc *C) 

 Transfers constant sample times. 

 Is called once at the beginning of the simulation 

run. 

void emiInitializeConditions(emc *C) 

 Sets the initial conditions for continuous and dis-

crete states. 

 Is called once at the beginning of the simulation 

run. 

void emiTerminate(emc *C) 

 Is called once after the simulation run. 

 Allocated memory can be freed here. 

 

The following functions are called multiple times 

during one calculation step: 

void emiDerivatives(emc *C) 

 Computes the RHS of the ODE (1), and (3) dur-

ing event iteration. 

void emiOutputs(emc *C) 

 Computes the outputs (2). 

void emiZeroCrossings(emc *C) 

 Computes the root functions (4). 

 

The next function is called once after a successful 

calculation step: 

void emiUpdate(emc *C); 

 Called after a successful calculation step with va-

lid data. 

It is not allowed to access the data in the external 

model context emc directly. Instead, a set of func-

tion or macros is to be used, e.g.: 

emcSetNumContStates(emc *C, int_T n) 

 Sets the number of continous states. 

emcGetContStates(emc *C) 

 Returns a pointer to the state array. 

emcSetSolverNeedsReset(emc *C) 

 Informs the solver about a reinitialization of 

states. 

 

The implementation of the emc and the access func-

tions are target tool specific and must be provided by 

the simulator manufacturer. 

4.2 Solver View 

Figure 4 shows a simplified flow chart of the solu-

tion process for a Modelica model. It demonstrates 

which functions are called at each stage.  

 

 

 

Figure 4: Solution process flow chart 

 

If the integrator works iteratively, the functions 

emiOutputs and emiDerivatives may b 

called several times at the same time be instant with 

temporary data. These functions are to be imple-

mented as reentrant and must not store any data.  

T. Blochwitz, G. Kurzbach, T. Neidhold

The Modelica Association 582 Modelica 2008, March 3rd − 4th, 2008



For these purposes emiUpdate is called with valid 

data once after a successful time step.  

The method for robust handling of discrete variables 

during event iteration is an open issue at the moment. 

There are several possibilities, which should be dis-

cussed with other simulator vendors. 

4.3 Modelica View 

This section describes the enhancements of the ex-

ternal object call interface to the external model in-

terface. The information to be exchanged between 

the external model and the Modelica simulator are of 

two types: 

 Data for the model (parameters, inputs, outputs). 

These are exchanged via usual function argu-

ments and appear inside the Modelica model. 

 Data for the solver (states, derivatives, residuals, 

discrete states, root functions…). These are han-

dled implicitly by the simulator using the external 

model context. 

We suggest the new Modelica built in type "external 

model" as an extension of the external object inter-

face. The implicit declaration of the type could be: 

class ExternalModelInterface 

 extends ExternalObject; 

  function constructor 

   input String emName; 

   output ExternalModelInterface emi; 

   external "C" emi=initEM(emName); 

  end constructor; 

  function destructor 

   input ExternalModelInterface emi; 

  external "C" terminateEM(emi); 

 end destructor; 

end ExternalModelInterface; 

 

The calculation function is declared implicitly as 

follows: 

function calcEM 

 input ExternalModelInterface emi; 

 input Real u[nu]; //inputs 

 input Parameter Real p[np]; //parameters 

 output Real y[ny]; //outputs 

 external "C" y=calcEM(emi, u, p); 

end calcEM; 

 

Differing from the external object interface, the func-

tions initEM, terminateEM and the calculation 

function calcEM do not correspond one to one to 

the functions of the external model. During the sym-

bolic analyses of the model these functions have to 

be mapped to the appropriate function calls of the 

external model. 

The dimensions (nu, np, ny) and the dependencies 

of the outputs from the inputs must be known during 

the symbolic analyses. This information should be 

provided by the external model. To get this informa-

tion, the external model must be called already dur-

ing the analyses. This is another difference to the 

external object interface. 

The usage of the external model interface in a Mod-

elica model is: 

 

 

model Block "Block with External Model" 

 input SignalBlocks.InputPin u1; 

 input SignalBlocks.InputPin u2; 

 input SignalBlocks.InputPin u3; 

 output SignalBlocks.OutputPin y1; 

 output SignalBlocks.OutputPin y2; 

 ExternalModelInterface emi=  

   ExternalModelInterface("c:\test.dll"); 

 equation 

 {y1,y2}=calcEMI(emi,{u1,u2,u3},{1,2,3}); 

end Block; 

 

As denoted before, the Modelica model handles only 

the inputs, outputs, and parameters of the external 

model. The other information is exchanged implicit-

ly between the solver and the external model. If the 

user wants to access such internal data for debugging 

purposes, special functions could be provided. 

Access to the states could be given by: 

function getEMStates 

 input ExternalModelInterface emi; 

 output Real x[nx]; //states 

 external "C" x=getEMStates(emi); 

end getEMStates; 

5 Application Scenarios 

5.1 Hand-Written External Models 

External models can be developed by any program-

mer. The complete API with all necessary data struc-

tures and functions is described in a programmer’s 

manual. Normally it should be the exception to im-

plement an external model completely by hand. In-

stead, the adaption and integration of existing source 

An External Model Interface for Modelica

The Modelica Association 583 Modelica 2008, March 3rd − 4th, 2008



code according to the external model interface re-

quirements will be the typical task. This way is prac-

ticable for single solutions and non-commercial ap-

plications. The necessary work can be simplified by 

using precast templates. 

 

Figure 5: Work flow for hand-written external  

models 

5.2 Tool-Generated External Models 

For commercial CAE tools the automatic generation 

of external models is feasible. The Code Export 

Wizard integrated in SimulationX is already able to 

generate source code for various target platforms.  

 

Figure 6: Work flow for tool-generated external 

models 

Among S-functions for MATLAB/Simulink and 

UFORCE-routines for SIMPACK [5] also real time 

targets like ProSys-RT from Cosateq [6] are sup-

ported. For the automatic generation of EMI-

conform model code a new target project type was 

added to the SimulationX Code Export Wizard. The 

wizard assists the user in the selection of inputs, out-

puts, and parameters. If a supported compiler is in-

stalled, SimulationX is able to build the External 

Model DLL immediately. The resulting model li-

brary does not need any additional runtime modules 

and can be distributed without limitations. 

6 Conclusions and Outlook 

We have shown how the interface to an external 

model in SimulationX is structured.  

In one of the next Modelica Design meetings, we 

will make a proposal for the new predefined partial 

class ExternalModel which represents the model 

context inside the Modelica language. 

The external model interface will be open for other 

software vendors. The interface itself does not con-

tain Modelica specific parts. In this way external 

model components could be created and used by 

non-Modelica simulators too.  

The authors explicitly invite interested colleagues for 

discussions about the interface proposal. A detailed 

specification is available on requested. 

7 References 

[1] http://www.simulationx.com 

[2] http://www.gtisoft.com  

[3] Modelica Association: Modelica A Unified 

Object-Oriented Language for Physical Sys-

tems Modeling. Language Specification, 

Version3.0, September 5
th
 2007. 

[4] The MathWorks: Writing S-Functions 

(Manual), 2002. 

[5] http://www.simpack.com 

[6] http://www.cosateq.de 

Compiler / Linker 

emi.c 

emi.h 
model.c 

model.h 

… 

Model specific code Target tool specific code 

em.dll 

emi.c 

emi.h 

model.c 

model.h 

… 

Model specific code Target tool specific code 

em.dll 

model.mo 

SimulationX 

Code Export Wizard 

Compiler / Linker 

T. Blochwitz, G. Kurzbach, T. Neidhold

The Modelica Association 584 Modelica 2008, March 3rd − 4th, 2008


