
4-DIMENSIONAL TABLE INTERPOLATION WITH MODELICA
Tobias Hirsch Markus Eck
German Aerospace Center (DLR)

Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
tobias.hirsch@dlr.de, markus.eck@dlr.de

Abstract

The steady-state model for a solar field contains a
large number of equations including conditional
statements. For a yearly energy yield analysis the
operational state (on duty, off duty) of the solar field
may change from one time instant to the other. Due
to the strongly varying boundary conditions a simu-
lation run without convergence problems is not
likely. For this reason a lookup-table model is de-
signed to calculate the five output variables of the
solar field depending on the four input variables. The
interpolation model is based on the existing MODE-
LICA model for 2D-interpolation and can be used
for table interpolation tasks independent of the tech-
nical application. The structure of the model and a
method for the automatic generation of the required
interpolation data from the complex solar field
model is described.
Keywords: solar power plant; look-up table; interpo-
lation

1 Introduction

Solar thermal power plants are one of the most inter-
esting options for renewable electricity production.
For the calculation of the annual energy yield of
these plants steady-state models are used. The calcu-
lation method which is based on mass and energy
balances is called for every hour of the year with the
corresponding weather data input and delivers an
output of electric energy. This approach works well
as long as transient effects in the plant can be ne-
glected. When a thermal storage has to be considered
an additional transient model has to be implemented.
Since the solar field and the power block can still be
represented as a steady-state block, the final plant
model is composed of very complex steady-state
models for the solar field and the power block and a
rather simple transient model of the storage system.
For an annual calculation on an hourly basis, the
model is called 8760 times with input data that might

be strongly varying from hour to hour. First tests
with the complex steady-state models show that ro-
bustness of the simulation is not satisfying. Due to
the large changes in input parameters and model de-
pendencies it is very likely that an annual calculation
might terminate before reaching the end time.
The reason for the complexity of the solar field
model is the aspect that the model has to describe the
operation in full load, part load and stand-by mode.
While mass and energy balances are derived for
regular field operation this is not the case for the
stand-by mode. In order to determine the time instant
with irradiation conditions sufficient for a switch
from stand-by into part-load operation the set of bal-
ance equations has to be solved with a modified set
of input parameters even if the field is shut-down.
Implementing the equations within the MODELICA
language yields a number of conditional statements
that have to be operated by the solver. Robustness of
the resulting system is hard to check and may differ
from one field layout to the other.
A way to couple the complex steady-state field
model with the simple transient thermal storage
model is developed by replacing the equation-based
solar field model by a table-based interpolation.
When analyzing the system it is found that the solar
field output is determined by just four independent
inputs. Unfortunately, the existing interpolation
model in MODELICA is limited to two independent
variables. Within this paper, a MODELICA model is
presented that allows a three dimensional interpola-
tion using the MODELICA 2D-interpolation model.
By an additional interpolation level the capability
can easily be extended to an interpolation in four
dimensions.

2 Solar field model characteristics

The solar field is composed of a large number of
parabolic trough collector rows arranged in parallel.
The water fed into the field at high pressure is pre-
heated, evaporated and superheated by the solar irra-

4-Dimensional Table Interpolation with Modelica

The Modelica Association 543 Modelica 2008, March 3rd − 4th, 2008

diation. This kind of system is called a Direct Steam
Generation parabolic trough power plant [1]. Apart
from general parameters of the field, the output of
the solar field is determined by the following input
variables:

- Direct normal irradiation, DNI
- Ambient temperature, T_amb
- Feed water specific enthalpy, h_in
- Operating pressure of the field, p_out

All of these are a function of time with the first two
taken from the weather data file and the last two be-
ing determined by the whole plant model. In addition
to the generated mass flow, four more outputs have
to be provided by the model, so the list of output
variables reads:

- Steam mass flow, m_out
- Field inlet pressure, p_in
- Field outlet temperature, T_out
- Recirculation pump power, P_rec
- “Field in operation”-indicator, FIO

A MODELICA solar field model is available that
describes the relation between input- and output pa-
rameters based on the physical equations. The model
allows changes in the solar field configuration in an
easy way by simply changing some parameters that
e.g. determine the number or arrangement of collec-
tor rows. It is therefore suited for the design of a so-
lar field but is not suited for annual energy yield
analysis.

3 General approach

The physically based solar field
model is replaced by a table in-
terpolation model that calculates
one output variable (e.g. m_out)
based on a set of interpolation
data and the three input variables
(h_in, p_out, DNI). Extension to
the forth input variable is done by
linear interpolation in the ambi-
ent temperature (T_amb). For
each of the five output variables
the same interpolation model can
be used with an individual set of
interpolation data. The interpola-
tion data are automatically gener-
ated by calling the physical solar
field model from a MATLAB
script for all nodes of the interpo-
lation data. The outputs of the

solar field are stored in MATLAB .mat files and can
directly be read by the MOCELICA interpolation
model. Within the following sections the automatic
generation of the interpolation data and the structure
of the interpolation model will be described.

4 Generation of interpolation data

Since a large number of solar field configurations,
each described by one set of interpolation data, is to
be analysed for the yearly output, an efficient
method is needed to generate the interpolation data.
For the interpolation routines in MODELICA one
look-up table in three dimensions (variation of input
variables p_out, h_in, DNI) has to be provided for
each of the five output variables (m_out, p_in, T_out,
P_rec, FIO).
This is realized by a MATLB script file that calls the
MODELICA executable for all combinations of in-
put variables. By use of the DYMOLA-MATLAB
interface the output variables are then stored by the
MATLAB script in a “.mat”-file. For each output
variable a separate file is generated that stores the
three vectors of parameter variations
 p_steps =[p_start : dp_: p_end]
 h_steps =[h_start : dh_: h_end] ;
 I_steps =[I_start : dI_: I_end] ;

and the three-dimensional result matrix containing
the results at the nodes defined by the vectors above.
The procedure is illustrated in figure 1.
Due to the complexity of the solar field model it is
initialized with a fixed set of parameters. The desired
operating point for each input parameter combination

Complex MODELICA model

compile: dymosim.exe, dsin.txt
MATLAB script file

define variation in 3 parameters

store parameter ramps as .mat file

call dymosim from MATLAB interface

store relevant output data in result files

Interpolation based MODELICA model

.mat files containing interpolation nodes

loop over all
variations

Figure 1: Procedure for generation of interpolation data

T. Hirsch, M. Eck

The Modelica Association 544 Modelica 2008, March 3rd − 4th, 2008

is then reached by a ramp in the three input vari-
ables. The final state of the ramp (values of the input
variables for the actual combination) is stored by the
MATLAB script in a .mat file before the executable
is called. The data are then read by the executable to
define ramps in the input variables that lead from the
fixed initialization state to the desired final state.
This approach has the advantage that no problems
with the initialization occur during the parameter
variations due to the stable initialization state. One
separate call of the executable for each parameter
variation is chosen, although the ramps might have
been defined to generate a number of results points
in one simulation run. The advantages for the im-
plementation chosen are:

- only one data point is lost if the simulation
does not converge

- high flexibility in the definition of the pa-
rameter variations (e.g. no need for equidis-
tant grids) .

The output variable FIO is very important for the
following interpretation of the interpolated data since
it determines if a data point calculated by interpola-
tion is valid. The value is set to false if the solar field
can not be operated for the combination of input
variables or if the simulation has not converged. In
both cases, the data points obtained from the interpo-
lation do not represent a physical state of the solar
field.
In order to allow direct access to the interpolation
data from the MODELICA 2D-interpolation model
CombiTable2D the data a stored in the following
way. For each value of input variable x3, e.g. 70 bar,
80 bar, 90 bar, 100 bar, 110 bar, a set of 2D-
interpolation data are stored in one separate matrix.
In our example, these matrices are named data1 to
data5. The matrix contains in the first row the vector
of nodes in variable x2 and in the first column the
vector of nodes in variable x1. The matrix is then
filled with the output data at the corresponding
nodes:
0 x2(1) x2(2) ... x2(ih)

x1(1) dat(1,1) dat(1,2)... dat(1,4)

x1(2) dat(2,1) dat(2,2)... dat(2,4)

...

x1(iI) dat(iI,ih)

All data matrices together are stored in one sin-
gle .mat-file. This file holds all data necessary for the
3D-interpolation in variables x1, x2 and x3. For each

output variable that has to be described by 3D-
interpolation a separate file is generated. This allows,
in principle, an arbitrary number of output variables.
In our example, five output variables are used with
the data stored in the files FIO.mat, m_flow.mat,
p_in.mat, P_rec.mat, T_out.mat.

5 3D interpolation model

The three-dimensional table interpolation used in the
yearly analyzer is based on the two-dimensional ta-
ble interpolation model available in the MODELICA
standard library. This model is very efficient since
the search for the interpolation interval starts at the
result found in the last time instant. The two dimen-
sional interpolation model is used to interpolate in
the variables x1 (DNI) and x2 (h_in) for a fixed value
of variable x3 (p_out). For each value of the variable
x3 defined in the vector p_steps one value ui (i=1:n)
for the output variable is calculated. The final output
value is then generated by a 1-D interpolation in the
n results ui. The procedure is illustrated in figure 2.
The model that holds the following equations is
named Kennlinie3D (german word for Characteris-
tic3D). In the following, the code of this model is
described. The model contains three inputs
Modelica.Blocks.Interfaces.RealInput x1;
Modelica.Blocks.Interfaces.RealInput x2;
Modelica.Blocks.Interfaces.RealInput x3;

for variables x1, x2 and x3. In the solar field example
these inputs correspond to h_in, DNI, p_out. The
result is delivered via output
Modelica.Blocks.Interfaces.RealOutput y;

A data structure is defined to provide information on
the upper and lower limits of x1 and x2 as well as the
matrix name in the interpolation file that holds the
interpolation data.
encapsulated record interpolation_source
 Real x3;
 Real min_x1;
 Real max_x1;
 Real min_x2;
 Real max_x2;
 String table_name;
end interpolation_source;

In the model n instances of this data structure are
created as parameters by:
parameter interpolation_source[:]
 IP_source;

In Dymola, the data can be entered via the graphical
user interface which is shown in figure 3. In this ex-
ample, 2-D-interpolation in x1 and x2 data have been
generated for five pressure levels from 70 bar up to

4-Dimensional Table Interpolation with Modelica

The Modelica Association 545 Modelica 2008, March 3rd − 4th, 2008

110 bar. The interpolation data are found in matrices
data1 to data5 in the interpolation data file defined
by parameter String SourceFile= "p_in".

 The variable x1 (h_in) may vary between 500 kJ/kg
and 1100 kJ/kg and the variable x2 (DNI) between 0
and 1000 W/m2. The 2-dimensional interpolation is
done in n MODELICA interpolation blocks which
are instantiated by
 Modelica.Blocks.Tables.CombiTable2D
 IP_table[n](
 each tableOnFile=true,
 each fileName=SourceFile,
 tableName={IP_source[i].table_name
 for i in 1:n}
);

The inputs x1 and x2 and connected to the corre-
sponding inputs u1 and u2 of the n interpolation
blocks, taking into account the variable range limita-
tions defined in IP_source.
for i in 1:n loop
 IP_table[i].u1=
 max(IP_source[i].min_x1,
 min(IP_source[i].max_x1, x1)
);

 IP_table[i].u2=
 max(IP_source[i].min_x2,
 min(IP_source[i].max_x2, x2)
);
end for;

The final result is calculated by weighting the n out-
puts of the 2D-interpolation blocks
 y = sum(IP_table[i].y*weight[i]
 for i in 1:n);

The weighting factors are calculated from a linear
interpolation in the variable x3. For example, a value
of x3=82e5 Pa would lead to a vector of weighting
factors weight =[0 0.8 0.2 0 0]. The Dymola rou-
tine dymTableIpo1 is used for the interpolation. This
routine has to be initialized by
when initial() then
 Weight_tableID=dymTableInit(
 1.0,
 smoothness,
 "NoName",
 "NoName",
 Weight_matrix,
 0.0);
end when;

and called with the command
for i in 1:n loop
 weight[i] =
 min(1.0,
 max(0.0,dymTableIpo1(
 Weight_tableID,
 Weight_columns[i],
 x3)));
end for;

with the corresponding declarations
parameter Real[:,:] Weight_matrix =
 [IP_source.x3, diagonal(ones(n))];

parameter Integer Weight_columns[:]=
 2:size(Weight_matrix, 2);

Real Weight_tableID;
Real[n] weight;
parameter
 Modelica.Blocks.Types.Smoothness.
 Temp smoothness =
 Modelica.Blocks.Types.Smoothness.
 LinearSegments;

x1 x3

x2

x1 x3

x2
x1 x3

x2
x1 x3

x2

x2

x1

x3

y
x3

ui

n 2D-table interpolations weighting of n signals

Figure 2: Structure of the 3D interpolation model

Figure 3: Screenshot of the Dymola graphical user interface for IP_source with five pressure levels

T. Hirsch, M. Eck

The Modelica Association 546 Modelica 2008, March 3rd − 4th, 2008

6 Solar field model with 3 inputs

The solar field model SolarField_Characteristic
based on the interpolation is assembled from five
3D-interpolation blocks of type Kennlinie3D as
shown in figure 4. The three input connectors for
h_in (red lines), DNI (blue lines) and p_out (green
lines) are connected to the corresponding inputs of
the 3D-interpolation blocks. Based on the interpola-
tion data provided in files FIO.mat, m_flow.mat,
p_in.mat, P_rec.mat, T_out.mat the outputs FIO,
m_flow, p_in, P_rec and T_out are calculated. The
values are only valid if the indicator FIO is 1. In case
this value is smaller than 1, a default value, e.g.
70 bar for p_in, is used instead of the calculated
value.

7 Extension to four dimensions

As mentioned in the beginning of this text the solar
field output depends on one more variable namely
the ambient temperature. Since the dependence on
this variable is nearly linear three nodes in ambient
temperature (0 °C, 20 °C, 40 °C) are sufficient for
the model. For each of the three temperature levels a
separate set of interpolation data is generated. Three
instances of the solar field model Solar-
Field_Characteristic are created with the outputs
linearly weighted with the actual ambient tempera-
ture T_amb. The weighting is realized by the same

approach as in the 3D-interpolation model using the
Dymola function dymTableIpo1. For reusability a
model called WeightedSignals is defined. Figure 5
shows a screenshot of the final solar field model with
the three SolarField_Characteristic models each
representing one level of ambient temperature and
five WeightedSignals models that are responsible
for weighting obtained from the three interpolation
models.

Figure 5: Solar field model with three instances of the
SolarField_Characteristic model representing three
levels of ambient temperatures

Weighting blocks

0° C

20° C

40° C

2D

2D

2D

2D

2D

0.999

>

Sw itch_p_in

70e5
Constant_p_in

400
Constant_T_...

Sw itch_T_out

0
Constant_m_...

Sw itch_m_flow

0
Constant_P_r...

Sw itch_P_rec

h_in

DNI

p_out

p_in

T_out

m_flow

P_rec

FIO

Figure 4: The SolarField_Characteristic model composed of five 3D-interpolation blocks of type Kennlinie3D

4-Dimensional Table Interpolation with Modelica

The Modelica Association 547 Modelica 2008, March 3rd − 4th, 2008

8 Conclusions

A MODELICA model Kennlinie3D for table inter-
polation in three dimensions is developed. The
model is based on the MODELICA 2D-interpolation
model CombiTable2D which gives access to an effi-
cient interpolation routine provided by Dymola. In-
terpolation to four dimensions is possible with an
additional interpolation level supported by the devel-
oped model WeightedSignals. In order to allow a
large number of parameter studies a method is de-
veloped that automatically generates the required
interpolation data from a complex solar field model.
Due to the universal design of the models they can
also be used apart from the solar field application.

Acknowledgements

The authors would like to thank the German Ministry
for the Environment, Nature Conservation and Nu-
clear Safety for the financial support given to the
ITES project under contract No. 16UM0064.

References

[1] Eck M., Zarza E., Eickhoff M., Rheinländer
J., Valenzuela L. Applied research concern-
ing the direct steam generation in parabolic
troughs. Solar Energy, Vol. 74, 2003,
pp. 341-351

Apendix: Source code of model WeightedSignals

model WeightedSignals

 Modelica.Blocks.Interfaces.RealInput x “actual value of x”;

 Modelica.Blocks.Interfaces.RealInput u[n] “values at nodes x_param”;

 Modelica.Blocks.Interfaces.RealOutput y “interpolation result”;

 parameter Real x_param[:] "interpolation nodes”

 // (here [0°C, 20°C, 40°C])

 parameter Integer n=size(x_param,1) "Dimension of signal vector";

 parameter Modelica.Blocks.Types.Smoothness.Temp

 smoothness=Modelica.Blocks.Types.Smoothness.LinearSegments

 "smoothness of table interpolation”;

 parameter Real[:,:] Weight_matrix = [x_param, diagonal(ones(n))];

 parameter Integer Weight_columns[:] = 2:size(Weight_matrix, 2);

 Real Weight_tableID;

 Real[n] weight “weights of the values u[i]”;

equation

 for i in 1:n loop

 weight[i] = dymTableIpo1(Weight_tableID, Weight_columns[i], x);

 end for;

 y = sum(u[i] * weight[i] for i in 1:n);

when initial() then

 // Initialize Weighting functionality

 Weight_tableID=dymTableInit(1.0,smoothness,"NoName","NoName",Weight_matrix, 0.0);

end when;

end WeightedSignals;

T. Hirsch, M. Eck

The Modelica Association 548 Modelica 2008, March 3rd − 4th, 2008

