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Abstract 

The steady-state model for a solar field contains a 
large number of equations including conditional 
statements. For a yearly energy yield analysis the 
operational state (on duty, off duty) of the solar field 
may change from one time instant to the other. Due 
to the strongly varying boundary conditions a simu-
lation run without convergence problems is not 
likely. For this reason a lookup-table model is de-
signed to calculate the five output variables of the 
solar field depending on the four input variables. The 
interpolation model is based on the existing MODE-
LICA model for 2D-interpolation and can be used 
for table interpolation tasks independent of the tech-
nical application. The structure of the model and a 
method for the automatic generation of the required 
interpolation data from the complex solar field 
model is described.      
Keywords: solar power plant; look-up table; interpo-
lation 

1 Introduction 

Solar thermal power plants are one of the most inter-
esting options for renewable electricity production. 
For the calculation of the annual energy yield of 
these plants steady-state models are used. The calcu-
lation method which is based on mass and energy 
balances is called for every hour of the year with the 
corresponding weather data input and delivers an 
output of electric energy. This approach works well 
as long as transient effects in the plant can be ne-
glected. When a thermal storage has to be considered 
an additional transient model has to be implemented. 
Since the solar field and the power block can still be 
represented as a steady-state block, the final plant 
model is composed of very complex steady-state 
models for the solar field and the power block and a 
rather simple transient model of the storage system. 
For an annual calculation on an hourly basis, the 
model is called 8760 times with input data that might 

be strongly varying from hour to hour. First tests 
with the complex steady-state models show that ro-
bustness of the simulation is not satisfying. Due to 
the large changes in input parameters and model de-
pendencies it is very likely that an annual calculation 
might terminate before reaching the end time. 
The reason for the complexity of the solar field 
model is the aspect that the model has to describe the 
operation in full load, part load and stand-by mode. 
While mass and energy balances are derived for 
regular field operation this is not the case for the 
stand-by mode. In order to determine the time instant 
with irradiation conditions sufficient for a switch 
from stand-by into part-load operation the set of bal-
ance equations has to be solved with a modified set 
of input parameters even if the field is shut-down. 
Implementing the equations within the MODELICA 
language yields a number of conditional statements 
that have to be operated by the solver. Robustness of 
the resulting system is hard to check and may differ 
from one field layout to the other.  
A way to couple the complex steady-state field 
model with the simple transient thermal storage 
model is developed by replacing the equation-based 
solar field model by a table-based interpolation. 
When analyzing the system it is found that the solar 
field output is determined by just four independent 
inputs. Unfortunately, the existing interpolation 
model in MODELICA is limited to two independent 
variables. Within this paper, a MODELICA model is 
presented that allows a three dimensional interpola-
tion using the MODELICA 2D-interpolation model. 
By an additional interpolation level the capability 
can easily be extended to an interpolation in four 
dimensions.  

2 Solar field model characteristics 

The solar field is composed of a large number of 
parabolic trough collector rows arranged in parallel. 
The water fed into the field at high pressure is pre-
heated, evaporated and superheated by the solar irra-
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diation. This kind of system is called a Direct Steam 
Generation parabolic trough power plant [1]. Apart 
from general parameters of the field, the output of 
the solar field is determined by the following input 
variables: 

- Direct normal irradiation, DNI 
- Ambient temperature, T_amb  
- Feed water specific enthalpy, h_in 
- Operating pressure of the field, p_out 

All of these are a function of time with the first two 
taken from the weather data file and the last two be-
ing determined by the whole plant model. In addition 
to the generated mass flow, four more outputs have 
to be provided by the model, so the list of output 
variables reads: 

- Steam mass flow, m_out 
- Field inlet pressure, p_in 
- Field outlet temperature, T_out 
- Recirculation pump power, P_rec 
- “Field in operation”-indicator, FIO 

A MODELICA solar field model is available that 
describes the relation between input- and output pa-
rameters based on the physical equations. The model 
allows changes in the solar field configuration in an 
easy way by simply changing some parameters that 
e.g. determine the number or arrangement of collec-
tor rows. It is therefore suited for the design of a so-
lar field but is not suited for annual energy yield 
analysis. 

3 General approach 

The physically based solar field 
model is replaced by a table in-
terpolation model that calculates 
one output variable (e.g. m_out) 
based on a set of interpolation 
data and the three input variables 
(h_in, p_out, DNI). Extension to 
the forth input variable is done by 
linear interpolation in the ambi-
ent temperature (T_amb). For 
each of the five output variables 
the same interpolation model can 
be used with an individual set of 
interpolation data. The interpola-
tion data are automatically gener-
ated by calling the physical solar 
field model from a MATLAB 
script for all nodes of the interpo-
lation data. The outputs of the 

solar field are stored in MATLAB .mat files and can 
directly be read by the MOCELICA interpolation 
model. Within the following sections the automatic 
generation of the interpolation data and the structure 
of the interpolation model will be described.   

4 Generation of interpolation data 

Since a large number of solar field configurations, 
each described by one set of interpolation data, is to 
be analysed for the yearly output, an efficient 
method is needed to generate the interpolation data. 
For the interpolation routines in MODELICA one 
look-up table in three dimensions (variation of input 
variables p_out, h_in, DNI) has to be provided for 
each of the five output variables (m_out, p_in, T_out, 
P_rec, FIO).  
This is realized by a MATLB script file that calls the 
MODELICA executable for all combinations of in-
put variables. By use of the DYMOLA-MATLAB 
interface the output variables are then stored by the 
MATLAB script in a “.mat”-file. For each output 
variable a separate file is generated that stores the 
three vectors of parameter variations 
    p_steps =[p_start : dp_: p_end] 
    h_steps =[h_start : dh_: h_end] ; 
    I_steps =[I_start : dI_: I_end] ; 

and the three-dimensional result matrix containing 
the results at the nodes defined by the vectors above. 
The procedure is illustrated in figure 1. 
Due to the complexity of the solar field model it is 
initialized with a fixed set of parameters. The desired 
operating point for each input parameter combination 

Complex MODELICA model

compile: dymosim.exe, dsin.txt
MATLAB script file

define variation in 3 parameters

store parameter ramps as .mat file

call dymosim from MATLAB interface

store relevant output data in result files

Interpolation based MODELICA model

.mat files containing interpolation nodes

loop over all
variations

Figure 1: Procedure for generation of interpolation data 
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is then reached by a ramp in the three input vari-
ables. The final state of the ramp (values of the input 
variables for the actual combination) is stored by the 
MATLAB script in a .mat file before the executable 
is called. The data are then read by the executable to 
define ramps in the input variables that lead from the 
fixed initialization state to the desired final state. 
This approach has the advantage that no problems 
with the initialization occur during the parameter 
variations due to the stable initialization state. One 
separate call of the executable for each parameter 
variation is chosen, although the ramps might have 
been defined to generate a number of results points 
in one simulation run. The advantages for the im-
plementation chosen are: 

- only one data point is lost if the simulation 
does not converge 

- high flexibility in the definition of the pa-
rameter variations (e.g. no need for equidis-
tant grids) . 

The output variable FIO is very important for the 
following interpretation of the interpolated data since 
it determines if a data point calculated by interpola-
tion is valid. The value is set to false if the solar field 
can not be operated for the combination of input 
variables or if the simulation has not converged. In 
both cases, the data points obtained from the interpo-
lation do not represent a physical state of the solar 
field.  
In order to allow direct access to the interpolation 
data from the MODELICA 2D-interpolation model 
CombiTable2D the data a stored in the following 
way. For each value of input variable x3, e.g. 70 bar, 
80 bar, 90 bar, 100 bar, 110 bar, a set of 2D-
interpolation data are stored in one separate matrix. 
In our example, these matrices are named data1 to 
data5. The matrix contains in the first row the vector 
of nodes in variable x2 and in the first column the 
vector of nodes in variable x1. The matrix is then 
filled with the output data at the corresponding 
nodes: 
0      x2(1)    x2(2)   ...  x2(ih) 
 
x1(1)  dat(1,1) dat(1,2)...  dat(1,4) 
 
x1(2)  dat(2,1) dat(2,2)...  dat(2,4) 
 
...    ...      ...     ...  ... 
 
x1(iI) ...      ...     ...  dat(iI,ih) 
 
All data matrices together are stored in one sin-
gle .mat-file. This file holds all data necessary for the 
3D-interpolation in variables x1, x2 and x3. For each 

output variable that has to be described by 3D-
interpolation a separate file is generated. This allows, 
in principle, an arbitrary number of output variables. 
In our example, five output variables are used with 
the data stored in the files FIO.mat, m_flow.mat, 
p_in.mat, P_rec.mat, T_out.mat.  

5 3D interpolation model 

The three-dimensional table interpolation used in the 
yearly analyzer is based on the two-dimensional ta-
ble interpolation model available in the MODELICA 
standard library. This model is very efficient since 
the search for the interpolation interval starts at the 
result found in the last time instant. The two dimen-
sional interpolation model is used to interpolate in 
the variables x1 (DNI) and x2 (h_in) for a fixed value 
of variable x3 (p_out). For each value of the variable 
x3 defined in the vector p_steps one value ui (i=1:n) 
for the output variable is calculated. The final output 
value is then generated by a 1-D interpolation in the 
n results ui. The procedure is illustrated in figure 2. 
The model that holds the following equations is 
named Kennlinie3D (german word for Characteris-
tic3D). In the following, the code of this model is 
described. The model contains three inputs 
Modelica.Blocks.Interfaces.RealInput x1; 
Modelica.Blocks.Interfaces.RealInput x2; 
Modelica.Blocks.Interfaces.RealInput x3; 

for variables x1, x2 and x3. In the solar field example 
these inputs correspond to h_in, DNI, p_out. The 
result is delivered via output 
Modelica.Blocks.Interfaces.RealOutput y; 

A data structure is defined to provide information on 
the upper and lower limits of x1 and x2 as well as the 
matrix name in the interpolation file that holds the 
interpolation data.  
encapsulated record interpolation_source 
      Real   x3; 
      Real   min_x1; 
      Real   max_x1; 
      Real   min_x2; 
      Real   max_x2; 
      String table_name; 
end interpolation_source; 

In the model n instances of this data structure are 
created as parameters by:  
parameter interpolation_source[:] 
      IP_source; 

In Dymola, the data can be entered via the graphical 
user interface which is shown in figure 3. In this ex-
ample, 2-D-interpolation in x1 and x2 data have been 
generated for five pressure levels from 70 bar up to 
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110 bar. The interpolation data are found in matrices 
data1 to data5 in the interpolation data file defined 
by parameter String SourceFile= "p_in".  

 The variable x1 (h_in) may vary between 500 kJ/kg 
and 1100 kJ/kg and the variable x2 (DNI) between 0 
and 1000 W/m2. The 2-dimensional interpolation is 
done in n MODELICA interpolation blocks which 
are instantiated by 
 Modelica.Blocks.Tables.CombiTable2D    
     IP_table[n]( 
         each tableOnFile=true, 
         each fileName=SourceFile, 
         tableName={IP_source[i].table_name 
                    for i in 1:n} 
                ); 

The inputs x1 and x2 and connected to the corre-
sponding inputs u1 and u2 of the n interpolation 
blocks, taking into account the variable range limita-
tions defined in IP_source. 
for i in 1:n loop 
   IP_table[i].u1= 
      max(IP_source[i].min_x1,  
          min( IP_source[i].max_x1, x1 ) 
          ); 

   IP_table[i].u2= 
      max(IP_source[i].min_x2, 
          min( IP_source[i].max_x2, x2 ) 
          ); 
end for; 

The final result is calculated by weighting the n out-
puts of the 2D-interpolation blocks 
  y = sum(  IP_table[i].y*weight[i]  
            for i in 1:n ); 

The weighting factors are calculated from a linear 
interpolation in the variable x3. For example, a value 
of x3=82e5 Pa would lead to a vector of weighting 
factors weight =[0  0.8  0.2  0  0]. The Dymola rou-
tine dymTableIpo1 is used for the interpolation. This 
routine has to be initialized by 
when initial() then 
   Weight_tableID=dymTableInit( 
           1.0,  
           smoothness,  
           "NoName", 
           "NoName", 
           Weight_matrix, 
           0.0); 
end when; 

and called with the command 
for i in 1:n loop 
   weight[i] =  
      min(1.0, 
          max(0.0,dymTableIpo1( 
                  Weight_tableID, 
                  Weight_columns[i], 
                  x3))  ); 
end for; 

with the corresponding declarations 
parameter Real[:,:]   Weight_matrix = 
    [IP_source.x3, diagonal(ones(n))]; 
 
parameter Integer     Weight_columns[:]= 
    2:size(Weight_matrix, 2); 
 
Real     Weight_tableID; 
Real[n]  weight; 
parameter  
   Modelica.Blocks.Types.Smoothness. 
   Temp   smoothness =  
   Modelica.Blocks.Types.Smoothness. 
        LinearSegments; 

 

x1 x3

x2

x1 x3

x2
x1 x3

x2
x1 x3

x2

x2

x1

x3

y
x3

ui

n  2D-table interpolations weighting of n signals

Figure 2: Structure of the 3D interpolation model

Figure 3: Screenshot of the Dymola graphical user interface for IP_source with five pressure levels 
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6 Solar field model with 3 inputs 

The solar field model SolarField_Characteristic 
based on the interpolation is assembled from five 
3D-interpolation blocks of type Kennlinie3D as 
shown in figure 4. The three input connectors for 
h_in (red lines), DNI (blue lines) and p_out (green 
lines) are connected to the corresponding inputs of 
the 3D-interpolation blocks. Based on the interpola-
tion data provided in files FIO.mat, m_flow.mat, 
p_in.mat, P_rec.mat, T_out.mat the outputs FIO, 
m_flow, p_in, P_rec and T_out are calculated. The 
values are only valid if the indicator FIO is 1. In case 
this value is smaller than 1, a default value, e.g. 
70 bar for p_in, is used instead of the calculated 
value.  

7 Extension to four dimensions 

As mentioned in the beginning of this text the solar 
field output depends on one more variable namely 
the ambient temperature. Since the dependence on 
this variable is nearly linear three nodes in ambient 
temperature (0 °C, 20 °C, 40 °C) are sufficient for 
the model. For each of the three temperature levels a 
separate set of interpolation data is generated. Three 
instances of the solar field model Solar-
Field_Characteristic are created with the outputs 
linearly weighted with the actual ambient tempera-
ture T_amb. The weighting is realized by the same 

approach as in the 3D-interpolation model using the 
Dymola function dymTableIpo1. For reusability a 
model called WeightedSignals is defined. Figure 5 
shows a screenshot of the final solar field model with 
the three SolarField_Characteristic models each 
representing one level of ambient temperature and 
five WeightedSignals models that are responsible 
for weighting obtained from the three interpolation 
models. 
 

 
Figure 5: Solar field model with three instances of the 
SolarField_Characteristic model representing three 
levels of ambient temperatures 

Weighting blocks 
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Figure 4: The SolarField_Characteristic model composed of five 3D-interpolation blocks of type Kennlinie3D
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8 Conclusions 

A MODELICA model Kennlinie3D for table inter-
polation in three dimensions is developed. The 
model is based on the MODELICA 2D-interpolation 
model CombiTable2D which gives access to an effi-
cient interpolation routine provided by Dymola. In-
terpolation to four dimensions is possible with an 
additional interpolation level supported by the devel-
oped model WeightedSignals. In order to allow a 
large number of parameter studies a method is de-
veloped that automatically generates the required 
interpolation data from a complex solar field model. 
Due to the universal design of the models they can 
also be used apart from the solar field application.   
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Apendix: Source code of model WeightedSignals
 

 

model WeightedSignals  

 

  Modelica.Blocks.Interfaces.RealInput  x      “actual value of x”; 

  Modelica.Blocks.Interfaces.RealInput  u[n]   “values at nodes x_param”; 

  Modelica.Blocks.Interfaces.RealOutput y      “interpolation result”; 

   

  parameter Real    x_param[:] "interpolation nodes” 

                             // (here [0°C, 20°C, 40°C] ) 

  parameter Integer n=size(x_param,1) "Dimension of signal vector"; 

  parameter Modelica.Blocks.Types.Smoothness.Temp  

      smoothness=Modelica.Blocks.Types.Smoothness.LinearSegments  

      "smoothness of table interpolation”; 

 

  parameter Real[:,:] Weight_matrix     = [x_param, diagonal(ones(n))]; 

  parameter Integer   Weight_columns[:] =  2:size(Weight_matrix, 2); 

  Real                Weight_tableID; 

  Real[n]             weight             “weights of the values u[i]”; 
   
equation  

  for i in 1:n loop 

     weight[i] = dymTableIpo1( Weight_tableID, Weight_columns[i], x); 

  end for; 

  y = sum(  u[i] * weight[i]    for i in 1:n); 

  

when initial() then 

   // Initialize Weighting functionality      

   Weight_tableID=dymTableInit(1.0,smoothness,"NoName","NoName",Weight_matrix, 0.0); 

end when; 

 
end WeightedSignals; 
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