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Abstract 

This paper presents methods of sensitivity calcula-
tion applied to a multi-axial test rig for elastomer 
bushings. In this context, the effect of parameter 
variations on system variables is analysed by using 
different tools. Aspects like modelling, modelling 
effort, computing time and accuracy are discussed.  
This paper is based on results, which were developed 
in the Fraunhofer collaborative project “Computer 
Aided Robust Design (CAROD)”. 
 
Keywords: parameter sensitivity; Monte-Carlo simu-
lation; elastomer test rig; DAE; Dymola; DASPK; 
MATLAB 

1 Introduction 
Tolerances of material quality, manufacturing proc-
esses and assembly operations lead to scattering 
product properties. In mass production therefore 
more or less significant deviations of the desired 
“ideal” properties occur. Resulting from wear and 
degradation, also during product life cycle continu-
ous changes of component and system characteristics 
take place.  
The named uncertainties are only covered insuffi-
ciently in traditional development workflows of 
mechatronical products. In most cases, simulations 
without any parameter scatter are performed to opti-
mise mechanical and mechatronical systems and to 
analyse their durability and reliability. 
The objective of Robust Design is to analyse the ef-
fects of scattering component behaviour in early de-

velopment phases and to optimize products. This 
presentation will focus on sensitivity analysis, which 
typically is an initial task in robust design studies. 
The prior objective is to determine parameters, 
which highly affect the product behaviour. 
The paper starts with a short description of the cho-
sen technical example: A 3 DOF test rig for elas-
tomer bushings. Subsequently, two multi-body-
simulation models of the test rig using MATLAB 
and Modelica are presented, including a cross-
comparison of the particular simulation results. In 
the following, the method of “sensitivity calculation” 
is introduced, which has conceivable potentials to 
lower the effort for sensitivity analyses. To validate 
the results, the implementation of a Monte-Carlo 
(MC) analysis is treated, which is based on repeated 
calls of the Dymola simulator. The results of this MC 
analysis are again compared with an MC analysis 
performed with MATLAB. Finally, based on the 
analysis results, the application and performance of 
the methods for sensitivity evaluation are discussed. 
 

2 Technical Example: Test Rig for 
Elastomer Bushings 

2.1 Application and Technical Description 

The methods described in this paper are presented by 
example of a multi-axial test rig (figures 1 and 2), 
which is owned by Fraunhofer LBF. The test rig is 
mainly used for sign-off tests of automotive elas-
tomer bushings considering service loads. Further 
on, the bushing’s dynamic transmission behaviour 
can be characterised. 
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Fig. 1: Multi-axial test rig for characterisation and testing of elastomer 
bushings at Fraunhofer LBF and CAD model of a typical elastomer 
bushing (right) 
 

Using servo-hydraulic actuation, variable cyclic 
loading of more than 100 Hz is feasible. Based on a 
transmission design with pre-stressed cardan joints, 
the load directions “axial (x)”, “lateral (y)” and “tor-
sion (α)” at the bolt can be realised isolated or in 
combination, respectively. To minimise wear and 
friction, hydrostatic linear guides between bolt and 
bail as well as bail and base plate are used. The 
movement of the bolt – and therefore the displace-
ment of the elastomer bushing – is measured by sen-
sors, which are positioned near the bushing’s clamp-
ing device. The reaction forces are measured by a 
piezoelectric measurement platform. 

 
Fig.2: CAD model of the test rig, declaration of bodies and degrees of 
freedom (“absolute”) 
 

2.2 Multi-Body-Simulation Model of the Test 
Rig and Simulation Tools 

To analyse the dynamic behaviour of test rig me-
chanics, multi-body-simulations (MBS) are used (cp. 
[1]). In this context, the models typically include 
rigid bodies, which are linked by joints and force 
elements. 
Corresponding, the MBS model of the elastomer test 
rig includes the rigid bodies “bolt”, “bail”, “piston” 
and “shaft”, while following joints and force ele-
ments are applied between the bodies (cp. figures 2 
and 3): 

- Bolt-bail: cylindrical joint x/α, damping x/α 
(hydrostatic bearings) 

- Bail-base plate: prismatic joint y, damping y 
(hydrostatic bearing and friction of hydraulic 
cylinder) 

- Bolt-base plate: 6 DOF, stiffness x/α/y and 
damping x/α/y (elastomer bushing) 

- Bolt-shaft: cardan joint, no force element 
- Shaft-piston: cardan joint, no force element 
- Piston-base plate: cylindrical joint x/α, 

damping x/α (friction of hydraulic cylinder) 
 
The transmission characteristic of the elastomer 
bushing is modelled by using the approaches 

FE,x=cEx3⋅x³+cEx1⋅x+dEx1⋅dx/dt, 
FE,y=cEy3⋅y³+cEy1⋅y+dEy1⋅dy/dt and 
ME,α=cEα3⋅α³+cEα1⋅α+dEα1⋅dα/dt, 

which describe nonlinear stiffness and linear damp-
ing behaviour for each load component. The parame-
ter settings are based on measurement data derived 
by tests with a commercial elastomer bushing. 
Comparable to the physical test rig, the MBS model 
is actuated by axial forces Fx, torsion Mα (piston) and 
lateral forces Fy (bail). 
 

  
Fig.3: Multi-body simulation model of the test rig („top view“) 
 
The MBS model was set up in MAT-
LAB/SimMechanics as well as in Modelica (using a 
Dymola solver).  
 

2.3 Comparison of Modelica and MATLAB 
Model  

To compare the MBS models built in the MATLAB 
and Modelica environment, two test cases were de-
fined. The first test case is characterised by sinusoi-
dal forces and moments: 
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The Modelica Association 522 Modelica 2008, March 3rd − 4th, 2008



- Fx=3.0⋅106⋅sin(314⋅t) [N] 
- Fy=3.4⋅108⋅sin(t) [N] 
- Mα=104⋅sin(150⋅t) [Nm] 

 

In contrast, the second test case includes the applica-
tion of noise signals (figure 4). These signals were 
generated with a MATLAB script, which contains 
the rand command.  
 
 
 
 
 
     
 
Fig. 4: Applied noise signals in test case 2 
 
Figures 5 and 6 show the calculated displacements x 
and y [mm] as well as the torsion α [rad] of the body 
“bolt” for the two test cases. 
      
 
   
 
     
      
 
   
 
 
 

Fig. 5: Test case 1 - Solution (Dymola)                           
 
 
 
 
 
 
 
 
    

 

 

Fig. 6: Test case 2 – Solution (Dymola) 
 
To compare the MBS models created in Modelica 
and MATLAB, the displacements x and y as well as 
the torsion α of the body “bolt” were analysed in the 
time domain. Figure 7 shows the calculated dis-
placements and torsion for test case 1, exemplarily. It 
is obvious, that both models lead to nearly identical 
results. This conclusion is affirmed by the results 
concerning case 2. 

       
Fig. 7: Comparison of results from Modelica and MATLAB model  
(case 1)  
 

2.4 Treated Scenario 

The investigations target a virtual scenario, which 
describes the production of a small series of (only) 
theoretically identical test rigs. Due to manufacturing 
tolerances the test rig components will differ more or 
less, leading to scatter of the test rig’s behaviour.  
To examine the scenario, prior parameters of the 
MBS model have to be defined, which are affected 
by assumable manufacturing tolerances. In this con-
text, 13 parameters have been identified: 

- Masses of all rigid bodies 
- Inertias “α ” of bodies “piston”, “shaft” and 

“bolt” 
- Inertia “γ ” of body “shaft” 
- Damping coefficients concerning hydrostatic 

linear guides “bail-base plate (y)” and “bail-
bolt (x,α)” 

- Damping coefficients concerning friction of 
hydraulic cylinders (“piston”: x/α, “bail”: y) 

In the following, the sensitivity of the test rig dynam-
ics on variations of these parameters is examined by 
sensitivity calculation and MC analyses. 
 

3 Sensitivity Calculation 

3.1 Method of Sensitivity Calculation 

The main idea is to pre-evaluate the sensitivity of the 
test rig performance due to variations of single pa-
rameters. Beside information concerning the per-
formance scatter to be expected, promising “adjust-
ing screws” for system optimisation can be derived. 
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The performance and dynamics of the test rig are 
analysed using multi-body-simulation. To perform 
sensitivity calculation, the analytical equations of 
motion have been set up explicitly using the La-
grange approach. Thus, the system equations are 
available in symbolic form. The DAE/ODE system 
of the elastomer test rig is described by 3 equations 
of motion (1) to (3) with 3 state variables x(t), y(t) 
and α(t) as well as 23 system parameters (13 pa-
rameters to be varied, 10 fixed parameters). The sys-
tem is excitated by sinusoidal forces and moments 
(compare (1) to (3), case 1) as well as noise signals 
(case 2).  
        

3 2 2

2 4 3
3 2 2

2 2 2 2

3.0e6 Sin(314 t)  = cEx1 lW + 4 cEx3 lW  + cEx1 X(t) + 6 cEx3 lW X(t) + 3 cEx3 lW X(t)  +

cEx1 lW 4 cEx3 lW 6 cEx3 lW X
      cEx3 X(t)  - 3 cEx3 lW Y(t)  - 3 cEx3 X(t) Y(t)  -  -  - 

lW -Y(t) lW -Y(t)

 

2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 4

2 2 2 2

(t)
-

lW -Y(t)

3 cEx3 lW X(t) cEx1 Y(t) 5 cEx3 lW Y(t) 6 cEx3 lW X(t) Y(t)
      +  +  +  +

lW -Y(t) lW -Y(t) lW -Y(t) lW -Y(t)

3 cEx3 X(t) Y(t) cEx3 Y(t)
       -  + (dDx+dEx1+dKx) X (

lW -Y(t) lW -Y(t)
′

( )

2 2

2 2

3 2 22 2

(dDx+dEx1) Y(t) Y (t)
t) +  +

lW -Y(t)

lW (2 mD+mW) Y (t) (2 mD+mW) Y(t) Y (t)
       + (mD+mK+mW) X (t) +    

2 lW -Y(t)2 lW -Y(t)

′

′ ′′
′′

(1)        

( )

2 2

2 2
2

22 2 2
2 2 2

2

3.4e8 Sin(t)  = (t) + 

(t)

(t
(t)

(t)
(t)

(t) (t)
(t)

cEy1 Y ... + 
mW jWzmB+mD+ + + 

4 lW -Y

             Y
4 mD+mW jWx lW  Tan(AL )Y   + 

4 lW - 4 Y -lWlW -Y   +Y
Cos(AL )

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟ ′′
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

)      

(2)   

2
2

22
2 2

2

(t) (t) (t)
1.0e4 Sin(150 t)  = (t) (t)  +    

(t) (t)
(t)

jWx lW  Tan(AL ) Y  Y  (cEa1+cEa3 AL ) AL  ... +       
-lWCos(AL )  +Y

Cos(AL )

′′

⎛ ⎞
⎜ ⎟
⎝ ⎠

(3) 

 

The performance and dynamics of the test rig are 
evaluated by analysing the resulting displacements x 
and y as well as the resulting torsion α of the body 
“bolt”, which directly loads the elastomer bushing. 
Sensitivity calculation examines the effects of minor 
parameter deviations from their nominal values for 
the behaviour of the dynamic systems.  
In this case systems are regarded, which are de-
scribed by differential-algebraic equations (DAEs) of 
the form 
         F(x, x, p, t) = 0            (4) 

, the equations of motion of the system, whereas   
x(t) n∈  are state variables and mp∈  summa-
rises parameters of all types, which mean diverse 
determining factors on developing of the variables.  
The factor of interest is the influence, which changes 
of parameters cause of developing of the variables, 

the so-called sensitivities of parameter 
( ) 

i

x t
p

∂
∂

(the 

sensitivity of variable x concerning parameter ip ). 
These sensitivities are computed for the evaluation 

of the interesting influence. Sensitivities are func-
tions of time t. Also these functions can be used as a 
basis for the determination of derived functions. 
By differentiation of the system (4) according to all 

ip  the following system can be set up for the com-
putation of first-order parameter sensitivities:              

i

F F +  = -       (i=1,...,m)    
pi i

x F x
x p x p
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

     (5) 

(4) together with (5) can currently be solved by Dy-
mola, if (5) is added explicitly. The code DASPK [2] 
can directly solve the DAE (4) and (5), where (5) is 
generated within the code automatically. 
 

3.2 Results of Sensitivity Calculations 

Dymola and DASPK were used to calculate both 
solution and sensitivities of the elastomer test rig. 
For the equations of motion the results for x, y and α 
were calculated. The solutions from Dymola and 
DASPK are in accordance. In the following, the in-
fluence of parameters on the axial displacement x 
and the torsion α of the bolt are illustrated.  
The first-order sensitivities for case 1 are computed 
using DASPK (figures 8 to 15). The solutions are 
shown in 8 and 10 (see also figure 5 using Dymola). 
The figure 9 shows first-order parameter sensitivities 
of x regarding parameters of mass. The timeline cor-
responds to figure 8. Figure 11 where the timeline 
corresponds to figure 10 shows the first-order pa-
rameter sensitivities regarding parameters of inertia.  
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Fig.8: Detail of solution (DASPK)    Fig.9: Detail of first-order parame- 
                                                            ter sensitivities of x (DASPK)              
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Fig.10: Detail of solution (DASPK)   Fig.11:  Detail of first-order           
                                                         parameter sensitivities of x (DASPK)              
                                             

By classifying the amplitudes of the time-depending 
sensitivity functions (e.g. figures, 9, 11, 12, 13, 14, 
17 and 18) it can be evaluated, which parameters 
have a  large, a marginal or no influence on the solu-
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tion of the system. Parameters with a significant in-
fluence to solution x are the parameters of mass mK, 
mW, mD and the parameters of inertia jKx, jWz and 
jDx, see as an example figure 12 and 13. Concerning 
sensitivities of y, also parameters of inertia and mass 
have an influence. Parameters with a significant in-
fluence to solution α are the inertias jKx, jWz and 
jDx. 
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Fig.12: Detail of first-order parameter sensitivities of x regarding all    
parameters (DASPK) 
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Fig.13: Detail of first-order parameter sensitivities of x regarding 13 
specified parameters) (DASPK)  
 
Again figure 14 illustrates the described results ex-
emplarily of parameter of mass mK regarding x and 
α. 
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Fig.14: Comparison of influence of parameter of mass mK on x and α 

 
Solutions of the original system using different pa-
rameter values confirm the sensitivity calculations. 
Figure 15 illustrates the range of tolerance of solu-
tion x regarding variation of all parameters (± 0,5% 
and ± 1%). The graphic shows that by increasing 

time the range of tolerance band is increasing. That 
is why parameter changing causes not only different 
amplitudes but also variations in the time behaviour. 
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all parameters (DASPK) 

 
In case 2 (figures 17 and 18), sensitivity calculations 
are carried out by means of Dymola. The resulting 
first-order parameter sensitivities are approximations 
by method of difference quotient. This method is 
explained by a scheme which is illustrated in figure 
16. The original model was parallel instantiated with 
different parameter values, which are necessary for 
difference quotient calculation. 
 
 
 
 
 
 
 
 

Fig.16: Method of difference quotient using Dymola 

 
Figure 17 shows that all considered parameters have 
nearly no influence on the solution x of the system, 
whereas parameters of mass mK, mW and mD are 
dominating parameters.  
 
 
 
 
 
 
    
 
 

 

Fig.17: First-order parameter sensitivities of x for 13 specified parame-
ters (difference quotient) 

 
Parameter with a significant influence on solution α 
are parameter of inertia jKx, jWx and jDx, see figure 
18.  Regarding case 2, first-order parameter sensitivi-
ties will also be carried out by means of DASPK.  
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Fig.18: First-order parameter sensitivities of α for 13 specified parame-
ters (difference quotient) 

 
The results show, that sensitivity calculation leads to 
comparable results for test case 1 and test case 2. 
Related to these sensitivity computations it can be 
summarised that additionally to the determination of 
the solution of a concrete DAE system also sensitiv-
ity computations are possible. As noted above, the 
results from Dymola and DASPK are in accordance. 
Concerning the results of sensitivity calculations, the 
evaluation of influence of the parameters on the tar-
geted result values is feasible. 

4 Monte-Carlo Analysis 

To evaluate the results of sensitivity calculation MC 
analyses [3] were performed by usage of both Mode-
lica and  MATLAB models. 
 

4.1 Modelica Model 

Within the Dymola simulator MC simulation is of-
fered as a tool-specific feature. In this paper, another 
possibility was used which will also be presented as 
a poster on the Modelica’2008 conference.  
In the Modelica model the parameters which are to 
be varied randomly get their values via a function 
call. This function, which can be coded as a Mode-
lica function or a C-Function, is parametrised by the 
user with parameters of the desired random distribu-
tion. Repeated Dymola calls (via the scripting lan-
guage) cause the randomly choice of the value of the 
chosen parameter. The results of each simulator run 
have to be collected. 
In this case, a uniform distribution with the nominal 
value 6.0 and the tolerance ±10% was used as an 
example, which is specified in the model in this way: 
 
 
 
 
 

Sensitivity calculation described in section 3 yielded 
an evaluation of system parameters. Then MC analy-
ses for located dominating parameters were deter-
mined. 
The results of MC analyses for case 1 are illustrated 
by figures 19 to 23.      
             

 

 

 

 

 

 

 

    

 

 

Fig.19: Tolerance band of x, y and α regarding parameters of mass    
 

        

 

 

 

 

 

 

 

 

           

Fig.20: Detail of tolerance band of x, y and α regarding parameters of 
mass    
 

Figure 21 shows that parameters of mass have only a 
marginal influence on solution α. These result veri-
fied the small tolerance band of α regarding parame-
ters of mass.  
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Fig.21: Sensitivity of α regarding parameters of mass (DASPK) 
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model elast
// parameter of the system

parameter Real mK = uniform(6,0.10) 
"mass of piston";

...
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Fig.22: Tolerance band of x, y and α regarding parameters of inertia      

 

 

 

 

 

   

 
 

Fig.23: Detail of tolerance band of x, y and α regarding parameters of 
inertia      
 

The results for case 2 are shown by figures 24 to 26. 

 

  

     

 

 

 

 
 

Fig.24: Tolerance band of x, y and α regarding parameters of mass         

       

 

 

 

 

 

 

 

 
Fig.25: Tolerance band of x, y and α regarding parameters of inertia 

 

 

 

 

 

 

 

 

 

 
 

Fig.26: Detail of tolerance band of x, y and α regarding parameters of 
inertia  

    

MC analyses verified the results of sensitivity calcu-
lation, see section 3. 
 

4.2 MATLAB Model 

The sensitivity analysis of the MATLAB model was 
performed with the Fraunhofer LBF inhouse soft-
ware MASIMO. The software creates sample sets of 
user-defined parameters based on Latin-Hypercube-
Sampling methods and automatically performs the 
needed simulations in MATLAB. MASIMO was, 
among other things, applied during the EC funded 
project “MODBOGIE” [4] to perform sensitivity 
analysis of a complex locomotive model. 
The MC analyses each contained 100 simulations for 
test case 1 and test case 2. All 13 parameters (cp. ch. 
2.2) were set to vary in a range of ±10% of their 
nominal value, while an equal distribution of pa-
rameter values was defined, respectively.  
To analyse the resulting time series of the simula-
tions, scalar evaluation quantities xm, ym and αm were 
defined, taking the arithmetic mean value of the 
amount of displacements and torsions x(t), y(t) and 
α(t). Following, the parameter xm is examined, ex-
emplarily. 
Figure 27 shows an qualitative Anthill plot of xm as a 
function of the piston mass for test case 1. Each 
point represents the (converted) result of one single 
simulation of the MC analysis. The diagram shows 
the trend, that an increasing piston mass leads to de-
creasing values of xm. In general, Anthill plots can be 
used to get a first impression of sensitivities and 
trends. 
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Figure 27: Anthill-plot of xm as a function of piston mass 

 
To derive further information, correlation coeffi-
cients between the result values xm, ym and αm and 
the varied input parameters can be applied. Figure 28 
exemplary shows the correlation between xm and the 
input parameters. In this context, negative correlation 
coefficients point out, that an increasing parameter 
value leads to decreasing result quantities. It is obvi-
ous, that the masses of piston, shaft and bolt affect xm 
dominantly. 

 

 
Figure 28: Correlation of xm with the varied parameters (1…13), case 1 

 
Similar investigations were performed for the result 
values xm and αm. The analysis of αm showed prior 
sensitivities on the inertias of piston, shaft and bolt, 
while ym is dominantly affected by the masses of all 4 
bodies. 
The analysis of test case 2 led to comparable results. 
Again, the body masses of piston, shaft and bolt af-
fect xm, while the torsion αm is dominantly influ-
enced by the inertias of these bodies. ym again is 
dominantly affected by the masses of all 4 bodies. 
 

5 Conclusions 

In this paper, the application of sensitivity calcula-
tion was presented by example of a multi-body simu-
lation model of an elastomer test rig. The results 
show, that sensitivity calculation has the potential to 
pre-evaluate prior parameters of a model, which ex-

emplarily can be deeper analysed by a following MC 
analyses. An indispensable precondition for applying 
sensitivity calculation is the provision of the equa-
tions of motion in a symbolic representation. 
Especially for complex models with a high number 
of DOF or long periods to be computed, the preselec-
tion of parameters can lead to a significant reduction 
of computational effort. Even in case of the test rig 
example, which only comprises 4 DOF and rather 
small time series to be computed (< 2 seconds), each 
simulation of the MC analysis took approximately 2 
minutes (Pentium 4, 3 GHz). Resulting, a complete 
analysis with 100 simulations and 13 parameters 
took more than 3 hours.  
A sensitivity calculation using DASPK respectively 
13 parameters (until tend 1 s) took approximately 10 
minutes. Using Dymola a sensitivity calculation (as 
shown in figure 16) took maximal approximately 40 
minutes and a MC analysis with 50 simulations and 
4 varied parameters maximal approximately 12 min-
utes. Resulting, a complete MC analysis using Dy-
mola with 100 simulations and 13 parameters (2 sec-
onds) would take approximately 2.5 hours. These 
computation times point out, that sensitivity calcula-
tion is able to reduce effort considerably.  
Within the Dymola simulator, MC simulation is of-
fered as a tool-specific feature. In this paper a more 
common possibility was presented, which describes 
the MC method on the Modelica language totally. 
Both methods are very time consuming. Using Dy-
mola the effects of parameter tolerances can be cal-
culated by MC simulation (with a high computa-
tional effort), using the sensitivity system (5), which 
has to be added manually or using the finite differ-
ence approximation (see figure 16). 
Using the code DASPK, system (5) is generated 
within the code automatically. It would be desirable, 
if this possibility (and also regarding a similar sys-
tem for second-order parameter sensitivity) would be 
existant also in Dymola. So far, an operator of sensi-
tivities like the existing operator der (), the deriva-
tion with respect to time, is absent.  
Note, that the solver DASPK allows the computation 
of first-order parameter sensitivities. The interpreta-
tion of these results leads to a classification of the 
importance of the system parameters regarding the 
effect to the variables.    
 

6 Outlook 

The next steps will cover following topics: 
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Parameter Sensitivities of Second-Order using 
DASPK 

In this section a short description is given to deter-
mine second-order parameter sensitivities by means 
of DASPK. By means of differentiation of the sys-
tem (5) according to all ip  second-order parameter 
sensitivities are computed. As mentioned before, the 
code DASPK can solve the DAE (4) and (5). By dif-
ferentiation of the system (4) according to all ip  and 
using of this system as a new system (4) in the 
source code, the second-order parameter sensitivities 
are generated automatically. 
Another way to determine the second-order parame-
ter sensitivities is the modification of source code of 
DASPK. Therefore, an aim is to extend the source 
code of DASPK to generate the system of second-
order parameter sensitivities automatically by differ-
entiation of system (5). Then DASPK could solve 
(4), (5) and also the system of second-order, where 
(5) and the system of second-order could be gener-
ated within the code automatically. 
 

Introduction of scalar evaluation quantities 

In continuative work, analyses concerning scalar 
evaluation quantities, which are derived from the 
results in the time domain, are planned. Examples for 
these scalar evaluation result quantities are the first 
eigenfrequency or the mean value of the amplitude 
spectrum in a defined frequency range. The first ei-
genfrequency can be computed in MATLAB directly 
from the condition matrix of the elastomer test rig 
model. Using Dymola, the condition matrix can be 
generated and denoted by linearisation of the original 
model. Within Modelica there are also matrix func-
tions, which are useful for this context. The first ei-
genfrequency can be derived from simulations in the 
time domain and a following Fourier transformation. 
For each DOF x, y and α, then a scalar quantity can 
be calculated.  
Regarding sensitivity calculation, problems can oc-
cur in this context, because scalar evaluation quanti-
ties are not directly available in the DAE system. If 
the evaluation quantity can be calculated during the 
simulation, sensitivities are automatically present. 
Otherwise, derived evaluation variables have to be 
calculated by post-processing. This challenge will be 
discussed in further publications. 
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