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Abstract

 One of the challenges in modeling complex 
systems is the creation of quality controllers. In some 
projects, the effort to develop even a reasonable pro-
totype controller dwarfs the effort required to de-
velop a physical model. For a limited class of prob-
lems, it is possible and tractable to directly synthe-
size a controller from a mathematical statement of 
control objectives and a model of the plant. To do 
this, a system model is decomposed into a controls 
model and a plant model. The controls model is fur-
ther decomposed into an optimization problem and a 
‘zero-time’ plant model. The zero-time plant model 
in the controller is a copy or a reasonable representa-
tion of the real plant model. It is used to evaluate the 
future impact of possible control actions. This type 
of controller is referred to as a Model Embedded 
Controller (MEC) and can be used to realize control-
lers designed using Dynamic Programming (DP).  

 To illustrate this approach, an approximation 
to the problem of starting an engine is considered. In 
this problem, an electric machine with a flywheel is 
connected to crank and slider with a spring attached 
to the slider. The machine torque is constrained to a 
value which is insufficient to statically overcome the 
force of the spring. This constraint prevents the mo-
tor from achieving the desired speed from some ini-
tial conditions if it only supplies maximal torque in 
the desired direction of rotation. By using DP, a con-
trol strategy that achieves the desired speed from any 
initial condition is generated. This controller is real-
ized in the model using MEC. 

 The controller for this example is created by 
forming an optimization problem and calling an em-
bedded copy of the plant model. Furthermore, this 
controller is calibrated by conducting a large scale 
Design of Experiments (DOE). The experiments are 
processed to generate the calibrations for the control-
ler such that it achieves its design objectives when 
used for closed loop control of the plant model. 

 It is well understood that Modelica includes 
many language features that allow plant models to be 
developed quickly.  As discussed previously, the de-
velopment of quality control strategies generally re-
mains a bottleneck.  In this paper we show how ex-
isting features along with appropriate tool support 
and potential language changes can make a signifi-
cant impact on the model development process by 
supporting an automated control synthesis process. 

Keywords: Control, Dynamic Programming, Model 
Embedded Control, Model Based Control, Optimal 
Control

1 Introduction

 The use of modeling is well established in 
the development of complex products. Modern tools 
have significantly reduced the effort required to 
model and tune physical systems. Acausal or topo-
logical modeling reduces the effort required to model 
a system’s physics. The use of optimization allows 
systematic tuning of parameters to improve a design. 
The combination of parameter optimization and 
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rapid modeling allows a large set of potential designs 
to be quickly evaluated. However for systems which 
include controls, the development is, in general, a 
man-power intensive process subject to large uncer-
tainty in development time and optimality. The op-
timization of both controls and design must be 
solved in many problems [1-3]. One way to address 
this problem is to use numerical techniques to con-
struct controllers. For certain classes of problems, 
tractable numerical techniques can be used to de-
velop an approximately minimizing controller [4]. A 
minimizing controller is a controller which achieves 
the best possible performance from a system as 
measured against an objective. There may exist more 
than one controller able to achieve this minimum, 
but no controller can perform better than a minimiz-
ing controller.  For this work, the terms minimizing 
controller and optimal controller are used inter-
changeably. 

 To construct a minimizing controller, an ob-
ject cost, J , is defined. This is a function which 
maps the state and input trajectory of the system to a 
scalar:

uxCJ , . (1) 
Consider the special case of a plant described by or-
dinary differential equations with inputs that are 
piecewise constant. These piecewise constant inputs 
are updated periodically at the ‘decision instances’ 
by a controller at intervals of t . The total operating 
cost is calculated as a sum over an infinite time hori-
zon. Furthermore, the sum of costs is discounted by 
the term  which is greater than zero and less than 
or equal to one. The total cost is calculated by an 
additive function that operates on the instantaneous 
state and the control inputs. This cost may take a 
form similar to  

1

0

0 ,
k

k

t
k

cont k
k t t

J x c x u d . (2) 

The total cost in (2) is a function of the initial state 
of the system. To simplify notation, let the state at 
the decision instances be represented by  

k kx x t . (3) 

Let the discrete time samples occur at  

kt k t . (4) 
Furthermore, let the continuous-time instantaneous 
cost, contc , in (2) be represented in discrete time no-

tation as an additive cost over an interval, 
1

, ,
k

k

t

k k cont k

t t

c x u c x u d . (5) 

Using the notation developed in (2) through (5), the 
continuous-time system’s total cost is expressed in  
discrete time notation as  

0
0

,k
k k

k

J x c x u . (6) 

To simplify the continuous-time dynamics, let 

0

, , , 0
t

df x u f u d x . (7) 

Hence,

1 ,k d k kx f x u . (8) 

An optimal control choice for each time step can be 
found using the dynamic programming equations,  

* arg min , ,d
u U x

u x c x u V f x u . (9) 

The function V x  is known as the value function. 

By using the dynamic programming (DP) equations 
to find the value function, a minimizing controller is 
obtained. The DP equations are 

min , ,du U x
V x c x u V f x u , (10) 

where

, 0U x u g x u  (11) 

defines the set of feasible actions, xU . For the 
case where the total cost is considered over an infi-

nite horizon and *
k ku u x  (see eq (9)), the value 

function is the same as the total cost function, 
xVxJ . Equation (10) can be solved through 

value iteration, policy iteration, or linear program-
ming. See [5-23]  for discussion of solution methods. 
For discussion of using DP to find value functions 
for automotive control application, see [24-29]. The 
formulation of equation (11) is chosen to simplify 
management of constraints throughout the model and 
to conform to a standard form used in the optimiza-
tion community, the negative null form [30].  

One problem with solving (10) is that when 

the state space consists of continuous states, V x

is a function from one infinite set to another. Except 
in special cases, this requires approximation to solve. 
One common approach is to use linear bases to ap-
proximate the value function. Possible linear bases 
include the bases for multi-linear interpolation, the 
bases for barycentric interpolation, b-splines, and 
polynomials. See the appendices in [25] for a discus-
sion of linear bases for dynamic programming. In the 

case where V x  is approximated by a linear basis,  
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TV x x w , (12) 

where

1 2 Nx f x f x f x . (13) 

An approximate solution to (10) is found by finding 
the weights, w , which solve 

min , ,T T
d

u U x
x w c x u f x u w . (14) 

See [5-7] for a discussion of using linear bases to 
form the value function.  

 It is important to understand that this con-
troller is an optimal controller for the discrete time 
case only, when the controller updates every t
seconds. In other uses, the controller will generally 
be suboptimal. Additionally, any development algo-
rithm based on this methodology will suffer from the 
curse of dimensionality [31]. In other words, the 
time to find an optimal controller will increase geo-
metrically with the size of the plant state space. As a 
point of reference, using a single commercially 
available PC from 2005, a five state controller was 
found in less than twenty four hours.  

2 Controller Development 

 To use equations (2) through (14) to develop 
a controller, it is necessary to have a plant model 
which includes the dynamics ( f ), cost function ( c ),

and constraints ( g ) all coupled to an integrator 
which can be invoked as a function call by a Control 
Design Algorithm (CDA). In addition, the set of 
states for the plant model and the set of controller 
actions must be specified to the CDA. For this work, 
a custom wrapper was developed that allowed 
batches of states and actions to be efficiently evalu-
ated.  Each evaluation returned the state at the next 
interval, the cost of operation for the interval, and the 
constraint activity over the interval. 

To understand the structure of the equations 
involved in this work, consider a system consisting 
of a plant and a controller. Without loss of general-
ity, assume the plant dynamics are described by or-
dinary differential equations 

,x f x u , (15) 

where f  is a function that describes the plant dy-
namics. For notational simplicity consider a continu-
ous time controller. Let the controller be a full state 
feedback controller implemented as a static mapping, 
M , from the state, x , to the action set, u :

u M x . (16) 

Assuming only a single global minimum exists, the 
dynamic programming equations in (9) can be di-
rectly used for the static mapping (16). The autono-
mous dynamics of this system are then described by 
the following equation 

,arg min , ,d
u U x

x f x c x u V f x u  (17) 

This equation is then integrated to solve for x t ,

0

,
, arg min

,

t

u U x
d

x t

c x s u
f x s ds

V f x s u

 (18) 

where

00x x  (19) 

defines the initial conditions. To evaluate df  from 

(7), a nested integrator, which is independent of the 
primary simulation integrator, is required. This 
nested integrator executes in ‘zero-time’ from the 
perspective of the primary integrator. We refer to 
this as an embedded or nested simulation. Because 
the nested integrator is used inside a numeric optimi-
zation, it will potentially be called multiple times at 
each primary integrator evaluation. If df  in (18) is 

expanded using (7), the plant dynamics function, f ,
from (15) occurs in two locations in 

0

0

,

, arg min
, , 0

t

t

u U x

x t

c x s u

f x s ds
V f u d x s

(20)

where

00x x  (21) 

The nested copy of the plant dynamics equations, f ,
is referred to as the embedded or nested model. In 
the case where the controller is modeled as updating 
periodically, rather than continuously, the solution to 
the optimization problem is held constant between 
controller updates. 

The equation structure in (20) and the reuse 
of the plant dynamics function, f , offer the ability 
to quickly synthesize controllers using numerical 
techniques. However, existing tools make the im-
plementation of this type of model problematic. 
There are two primary issues in implementation. The 
first is execution efficiency. Few commercial tools 
have been developed with the goal of efficiently 
solving this class of equations. Secondly, several 
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commercial modeling environments make the defini-
tion and reuse of the plant model cumbersome, re-
quiring significant efforts during development and 
maintenance. Fortunately, the features of Modelica 
make the definition and reuse of a plant model man-
ageable. The examples that follow have been devel-
oped in Dymola ®, however this general approach 
has also been used with Simulink® and AMESim®.  

To systematically generate a system with an 
optimal controller, a model of the plant is generated. 
This plant model is ‘wrapped’ with an application 
programming interface (API) so a control design al-
gorithm can determine the state space, the action 
space, the state at the next time step, the constraint 
activity, and the cost for a given state and action. 
This interaction between the plant model, the API 
and the control design algorithm is illustrated in 
Figure 1. The CDA queries the API to determine the 
structure of the state and action space. Given this 
structure and the configuration of the CDA, a se-
quence of DOEs is executed. The DOE data are used 
to find a solution to (10). For this work, the value 
function was modeled using multi-linear interpola-
tion and a solution to (14) was found. To simplify 

coding, value iteration was used [5, 6] to find V x .

Control Design Algorithm
Plant
Model

ux,

uxfd ,

uxg ,

xV

API to expose functions

uxc ,
(CDA)

State Space

Action Space

Figure 1 - Plant Model API 

Once the value function is generated, the 
system model is formed by one of two methods. The 
first method is by generating a lookup table that 
maps the state variables to an action as in (16).  The 
process of generating a value function, finding a 
mapping equivalent to (9), and realizing a controller 
as a mapping (or lookup table) is referred to as Indi-
rect Model Embedded Control (IMEC). This method 
is appropriate for some systems. Another approach, 
which is more computationally expensive, is referred 
to as Direct Model Embedded Control (DMEC). For 
DMEC, the controller is realized by forming an op-
timization statement around an embedded copy of 

the plant model. This structure is illustrated in Figure 
2.

Embedded
Plant
Model

ux ˆ, uxfd ˆ, uxg ˆ,

API to expose functions

Controller

Plant
Model

Optimizer

*ux
uxc ˆ,

Figure 2 - Direct Model Embedded Controller Struc-
ture

To realize a Direct Model Embedded Con-
troller (DMEC), two pieces are added to the system 
model. The first piece is an optimizer which solves 
(9). This optimizer can be as simple as a Design of 
Experiments (DOEs) which considers a fixed set of 
actions, and selects one which minimizes (9). For 
more sophistication, if the nature of the problem 
permits it, a gradient-based optimizer can be em-
ployed [30, 32, 33]. If the nature of the problem does 
not allow solution using these types of approaches, 
global solvers can be used [34-36]. Ideally, an opti-
mization library should support both gradient and 
non-gradient methods for constrained optimization 
problems. As part of this project, libraries for per-
forming both DOEs and gradient-based optimiza-
tions were implemented entirely in Modelica. How-
ever, there are currently no comparable commercial 
or public domain libraries available. The second 
piece required to implement a DMEC is the ability to 
invoke a function which efficiently initializes and 
simulates, over a ‘short’ time horizon, a set of mod-
els which are copies of the plant model with modi-
fied parameters. Because of the structure of the prob-
lem, each time the controller executes, multiple em-
bedded simulations will execute. Depending on the 
nature of the action set, the number of embedded 
simulations may vary from as few as two embedded 
simulations to several thousand embedded simula-
tions.

3 Example – Simple Engine Start 

 To illustrate how these concepts are used to 
build a controller, consider the problem of starting an 
internal combustion engine using an electric machine 
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with insufficient torque to guarantee the engine 
completes a revolution from all possible stationary 
starting points. If the initial position of the engine is 
in a range of angles, the electric machine will stall. 
To simplify the modeling, let us assume the engine 
can be approximated using a crank slider connected 
to a spring. The system model, shown in Figure 3, 
consists of an electrical motor connected to the crank 
which connects through the crank slider mechanism 
to a piston which is subject to damping from friction.  
Inertia is present in the motor rotor, crankshaft and 
piston.  The electric machine is subject to constraints 
on minimum and maximum torque. 

Figure 3 - Engine Starting Model 

The objective of the control system is to en-
sure the engine will overcome the initial compres-
sion torque from any initial state and minimize en-
gine start time. The total cost of operation (what is 
being minimized) is expressed mathematically as the 
total time taken to achieve a speed greater than or 
equal to five hundred RPM. Once this speed is 
achieved, the controller is deactivated and another 
scheme is used to manage the engine.  The total cost 
of operation for this system is considered over an 
infinite time horizon and is computed as 

0

0 , 500 rpm
0

1 ,otherwise

t
J x dt . (22) 

The instantaneous cost for this system is  

0 , 500 rpm

1 ,otherwise
c x . (23) 

This type of cost generates a ‘shortest-path’ control-
ler. The controller will minimize the total time to 
achieve 500 rpm. The total cost in (22) is undis-
counted. Therefore the discounting factor, , which 

is visible in (2) is assigned  a value of one and omit-
ted from the expression. 

While it is clear that the system has exactly 
two states, they can be selected somewhat arbitrarily.  
For this example, the engine angle and engine speed 
were selected. With these variables as the states, the 
controller is represented as a static map from the en-
gine angle and engine speed to the electric machine 
torque.

,u M  (24) 

The feasible action set is a single real number, the 
motor torque, bounded by the constraints on motor 
torque and power.  The set of feasible actions is de-
fined by  

100 100,

10000 10000

u
U x u

u
. (25) 

The value function was represented using multi-
linear interpolation, see equation (12).

The plant model was implemented in Mode-
lica. The Controller Design Algorithm (CDA) was 
implemented in MATLAB®. The CDA invoked 
function calls to a custom API, similar to Figure 1, 
applied to the plant model in Dymola®. The CDA 
solved for the weights, w , in the value function 
(equation (12)). This value function was used to gen-
erate an Indirect Model Embedded Controller 
(IMEC) and a Direct Model Embedded Controller 
(DMEC). The value function generated by the CDA 
is shown in Figure 4. 
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1000

0

50

100

150

200

250

300

350

0

0.2

0.4

Engine Angle [deg]

Value function

Engine Speed [rpm]

Figure 4 - Value function 

 The IMEC was realized as a two input 
lookup table with multi-linear interpolation on a 
regular grid. The grid points in the table were found 
by solving (9) using the value function generated by 
the CDA. This controller was implemented using 
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standard Modelica components. The actuator com-
mands for the IMEC controller are shown in Figure 5 
as a function of engine speed and angle. 

-1000
-500

0
500

1000

0

50

100

150

200

250

300

350

-100

0

100

Engine Angle [deg]

Best Control Choice - u*

Engine Speed [rpm]

Figure 5 - IMEC control table 

 The DMEC was realized by wrapping a copy 
of the plant model with an API similar to the one 
used for the CDA. A DOE was used to search feasi-
ble actions. The resulting code structure is identical 
to Figure 2. The optimal action was chosen to mini-
mize (9).

 For both of these controllers, the problem of 
starting the engine from any initial condition was 
solved. The solution involved the counter-intuitive 
approach of spinning the engine backwards, then 
reversing direction to allow enough energy to be 
stored in the inertia to overcome the spring force. 
From a model and a control objective, an optimal 
controller with very complex behaviors was numeri-
cally generated in less than 10 minutes on a single 
PC (3GHz, 2Gb RAM).  Furthermore, a similar 
problem with four states was solved in less than 
three hours. Of course the power of this approach 
can only be realized once a sufficient level of tool 
support is available so that the time required to set 
up the analysis is on the same order as the solution 
time.

3.1 Direct vs Indirect MEC 

 Ideally, both an IMEC and DMEC will re-
sult in identical behaviors. However, differences in 
approximation schemes and interpolation can results 
in appreciable differences. In many cases, while In-
direct MEC is simpler to realize in a model, there are 
good reasons to implement a controller with the 
complexity and computational cost of a Direct MEC.  

As an example, consider the previous prob-
lem. The value function, V(x), was found using the 

Control Design Algorithm (CDA). The IMEC con-
troller was designed by solving for the best electric 
machine torque for a set of engine angles and speeds 
on a regular grid. For engine states which occur off 
this grid, multi-linear interpolation was used to cal-
culate the control action. When the IMEC was used 
in an engine start simulation, if the optimal torque 
transitioned between positive and negative, the inter-
polation caused a smooth change in the torque be-
cause of the continuity imposed by interpolation.  

 Alternatively, consider a Direct MEC. Be-
cause of the characteristics of the dynamic pro-
gramming equations and the value function, the op-
timal choices are either full positive or full negative 
torque. This results in an instantaneous, non-
continuous change in torque. When plotted as in 
Figure 6, the difference between the control inputs 
and the state evolution of the system can be seen. 
The interpolation due to the approximation in the 
IMEC results in artifacts in the control actions and a 
slight loss of performance in the system.  Mathe-
matically this means that more detail is required to 

resolve xu* , the function that we are ultimately 

trying to formulate, than to resolve xV .

 There are cases where an IMEC is superior 
to a DMEC approach (e.g.  [26] illustrates just such a 
case). In general, an IMEC implementation is supe-
rior when both the action set is continuous and the 
optimal actions are continuous. The DMEC approach 
is superior when either the action set is discrete or 
the optimal actions are not continuous with respect 
to the state. One example where DMEC is clearly 
superior is where the motor is controlled by selecting 
the state of a switch inverter. In this case, the action 
set consists of a finite set of choices for switch con-
figuration and the optimal actions are not continuous 
with respect to the state.  

Figure 6 - Comparison of IMEC and DMEC results 
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4 Implementation of optimization al-
gorithms

 One of the challenges in Direct Model Em-
bedded Control is the implementation of an opti-
mizer. While this work was performed using a De-
sign of Experiments (DOE) to select optimal actions, 
this approach becomes intractable when equality 
constraints and larger dimensional actions sets are 
considered. Towards the goal of supporting these 
classes of problems, a gradient-based optimizer was 
developed. One of the goals in developing this opti-
mizer was to fully implement the optimizer in Mode-
lica. By fully implementing in Modelica, all of the 
information used by the optimizer would be accessi-
ble for speed improvements by the compiler. Should 
native support for model embedding become avail-
able, all equations associated with a Direct MEC 
would be accessible to the compiler for speed im-
provement. Additionally, since the embedded simu-
lations in a DMEC can be completely decoupled 
from each other, simulation tools could easily exploit 
the coarse grained parallelism on multi-core CPUs 
by running several embedded simulations concur-
rently when conducting searches in the optimizer 
(e.g. line searches and numerical gradients). 

 The optimizer was developed in Modelica to 
solve a constrained optimization problem which is 
generally stated in negative null form [30] as  

min

. .

0

0

objective

inequalities

equalities

f

s t

g

h

. (26) 

To implement a gradient optimizer, the optimizer 
functionality was separated from the objective func-
tion ( objectivef ), the inequality constraint functions 

( inequalitiesg ), and the equality constraint functions 

( equalitiesh ). The optimizer was designed under the 

assumption that the inequality constraint functions 
are all in negative null form: feasible inequality con-
straints are less than or equal to zero. The objective 
function was assumed to be a minimization objec-
tive. Since Modelica does not (yet) support the con-
cept of methods or passing of functions as argu-
ments, the optimizer was designed to use static in-
heritance. For this reason, the objective and con-
straint functions are replaceable functions within an 
optimizer package.  

  One feature of this library, that is not com-
monly available, is the ability to handle functions 

which are undefined over some region. The domain 
of the objective and constraints may not be known a 
priori. This occurs with MEC applications because 
the objective (e.g. equation (9))  and constraint func-
tions (e.g. equation (11)) are typically evaluated us-
ing a solver. The solver may not find a solution.  
Hence, classical algorithms must be modified to re-
cover from undefined evaluations. 

 Implementation of this capability was prob-
lematic because of the lack of numeric support for a 
real value which represents the concept of an unde-
fined quantity. Either a native capability similar to 
Matlab’s ® ‘NaN’, or operator overloading with the 
ability to extend a class from real numbers would 
have simplified implementation.  

In this library, Modelica.Constants.inf was 
used to indicate that a function call was undefined. 
However, the language specification does not define 
behavior for operations (e.g. addition, subtraction, 
multiplication, division) on Modelica.Constants.inf. 
Therefore, all functions and statements which oper-
ated on variables that might be assigned a value of 
Modelica.Constants.inf required conditional expres-
sions to ensure expected behavior. 

 While this optimization library will not be 
publicly released, it is available for further develop-
ment. Contact the lead author for a copy. 

5 Recommendations

 While it is possible to realize both IMEC 
and DMEC controllers using Modelica 2.2, the addi-
tion of a standard optimization library and native 
support for embedded model simulation would 
vastly simplify implementation and maintenance.  

Towards the goal of simplifying implemen-
tation of MEC, a recommended language improve-
ment is the addition of a ‘model simulate’ function. 
The function would accept arguments that specify 
the model to simulate, the parameter values to use in 
each simulation, the outputs to return, and any solver 
specific settings. The solver should be able to be 
configured to solve both initialization problems and 
simulation problems. For efficiency in evaluation, 
the function should support both a scalar and vector 
lists of parameters.  In addition to results which are 
associated with the model, there should be results 
associated with the solver. These results should be 
sufficient to diagnose solver failures. At  a mini-
mum, these should include the final time in the 
evaluation and an indication of whether the simula-
tion successfully completed. A sample function defi-
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nition along with an example invocation are shown 
in Figure 7. 

function simulateModel 

input String modelName; 

input String paramNames[:]; 

input String resultNames[:]; 

input Real

        paramValues[:,size(paramNames,1)]; 

input SettingsRecord solverSettings; 

output Real

     results[size(paramValues,1),

             size(resultNames,1)];

…

end simulateModel; 

// example call 

[angle, speed, exitCondition, exitTime] =

    simulateModel(

        modelName=“Library.PlantModel”, 

       paramNames{“w0”, “theta0”,”u”},

       resultNames= 

          {“w”, “theta”,

           “exitCondition”, “exitTime” }, 

       paramValues= 

             [0, 0, -100;

              1, 0, -100;

              …;

              2, 2*pi, 100], 

       solverSettings =

           SettingsRecord( 

               stopTime=1.0,

               fixedStep=0.1) 

       ); 

Figure 7 - Model evaluation 

 It is important to point out that the goal is to 
be able to invoke such a function from within a run-
ning model and not simply as a command line analy-
sis option. As previously mentioned, the ability to 
directly express such nested simulation relationships 
makes posing MEC problems much easier. If the 
MEC problem could also directly express the “opti-
mization problem” associated with MEC then tools 
could also bring the underlying symbolic informa-
tion to bear on efficient gradient evaluation as well. 

 One remaining issue for DMEC problems is 
the initialization of state variables in the embedded 
model. For DMEC problems we typically want the 
embedded model to start at the current state of the 
parent simulation. Said another way, the current val-
ues of the states in the parent simulation should be 

used as initial conditions in the nested simulation.  
Of course, it is possible using the function in Figure 
7 to establish such a mapping but hopefully the lan-
guage design group will consider alternatives that 
would be less tedious and error prone.  

6 Conclusions

 It is tractable to numerically synthesize near 
optimal (or approximately minimal) controllers for 
many systems. While in most cases the state feed-
back required for the controllers may make them 
impractical to deploy, they can certainly be used as 
prototype controllers that establish performance lim-
its for a given design as well as provide insights into 
control laws for production controllers.  Further-
more, this approach can easily integrate into a com-
bined plant-controller optimization process. This can 
be done by  making the optimal controller a function 
of the plant parameters. These optimal controllers 
can be realized as lookup tables (IMEC) or through 
the use of optimization and embedded models 
(DMEC). An algorithmic approach to controls syn-
thesis was presented.  For this paper, the IMEC and 
DMEC approaches were applied to an engine start-
ing problem to generate an optimal controller in an 
automated fashion.

As this work has shown, Modelica is a 
promising technology for rapid prototyping of sub-
system designs and prototype controllers.  However, 
lack of support for ‘model embedding’ makes devel-
opment and long term maintenance problematic be-
cause considerable work must be done to implement 
this embedding. Lacking any language standard, this 
work will always be tool specific.  Furthermore, im-
plementation of controllers which rely on optimiza-
tion suffer from the lack of a standard optimization 
library. While an optimization library was developed 
for this work, it isn’t practical for most users to make 
such an investment.  By adding both language sup-
port to express the essential aspects of model em-
bedding and optimization discussed in this paper, 
Modelica can evolve into a powerful technology for 
system development and optimization. 
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