
1

Model Embedded Control: A Method to Rapidly Synthesize Control-
lers in a Modeling Environment

 E. D. Tate Michael Sasena† Jesse Gohl† Michael Tiller†

Hybrid Powertrain Engineering, General Motors Corp.
1870 Troy Tech Park, Troy, Michigan, 48009

†Emmeskay, Inc, 47119 Five Mile Road
Plymouth, Michigan, 48170

ed.d.tate@gm.com msasena@emmeskay.com jbgohl@emmeskay.com mtiller@emmeskay.com

Abstract

 One of the challenges in modeling complex
systems is the creation of quality controllers. In some
projects, the effort to develop even a reasonable pro-
totype controller dwarfs the effort required to de-
velop a physical model. For a limited class of prob-
lems, it is possible and tractable to directly synthe-
size a controller from a mathematical statement of
control objectives and a model of the plant. To do
this, a system model is decomposed into a controls
model and a plant model. The controls model is fur-
ther decomposed into an optimization problem and a
‘zero-time’ plant model. The zero-time plant model
in the controller is a copy or a reasonable representa-
tion of the real plant model. It is used to evaluate the
future impact of possible control actions. This type
of controller is referred to as a Model Embedded
Controller (MEC) and can be used to realize control-
lers designed using Dynamic Programming (DP).

 To illustrate this approach, an approximation
to the problem of starting an engine is considered. In
this problem, an electric machine with a flywheel is
connected to crank and slider with a spring attached
to the slider. The machine torque is constrained to a
value which is insufficient to statically overcome the
force of the spring. This constraint prevents the mo-
tor from achieving the desired speed from some ini-
tial conditions if it only supplies maximal torque in
the desired direction of rotation. By using DP, a con-
trol strategy that achieves the desired speed from any
initial condition is generated. This controller is real-
ized in the model using MEC.

 The controller for this example is created by
forming an optimization problem and calling an em-
bedded copy of the plant model. Furthermore, this
controller is calibrated by conducting a large scale
Design of Experiments (DOE). The experiments are
processed to generate the calibrations for the control-
ler such that it achieves its design objectives when
used for closed loop control of the plant model.

 It is well understood that Modelica includes
many language features that allow plant models to be
developed quickly. As discussed previously, the de-
velopment of quality control strategies generally re-
mains a bottleneck. In this paper we show how ex-
isting features along with appropriate tool support
and potential language changes can make a signifi-
cant impact on the model development process by
supporting an automated control synthesis process.

Keywords: Control, Dynamic Programming, Model
Embedded Control, Model Based Control, Optimal
Control

1 Introduction

 The use of modeling is well established in
the development of complex products. Modern tools
have significantly reduced the effort required to
model and tune physical systems. Acausal or topo-
logical modeling reduces the effort required to model
a system’s physics. The use of optimization allows
systematic tuning of parameters to improve a design.
The combination of parameter optimization and

Model Embedded Control: A Method to Rapidly Synthesize Controllers in a Modeling Environment

The Modelica Association 493 Modelica 2008, March 3rd − 4th, 2008

2

rapid modeling allows a large set of potential designs
to be quickly evaluated. However for systems which
include controls, the development is, in general, a
man-power intensive process subject to large uncer-
tainty in development time and optimality. The op-
timization of both controls and design must be
solved in many problems [1-3]. One way to address
this problem is to use numerical techniques to con-
struct controllers. For certain classes of problems,
tractable numerical techniques can be used to de-
velop an approximately minimizing controller [4]. A
minimizing controller is a controller which achieves
the best possible performance from a system as
measured against an objective. There may exist more
than one controller able to achieve this minimum,
but no controller can perform better than a minimiz-
ing controller. For this work, the terms minimizing
controller and optimal controller are used inter-
changeably.

 To construct a minimizing controller, an ob-
ject cost, J , is defined. This is a function which
maps the state and input trajectory of the system to a
scalar:

uxCJ , . (1)
Consider the special case of a plant described by or-
dinary differential equations with inputs that are
piecewise constant. These piecewise constant inputs
are updated periodically at the ‘decision instances’
by a controller at intervals of t . The total operating
cost is calculated as a sum over an infinite time hori-
zon. Furthermore, the sum of costs is discounted by
the term which is greater than zero and less than
or equal to one. The total cost is calculated by an
additive function that operates on the instantaneous
state and the control inputs. This cost may take a
form similar to

1

0

0 ,
k

k

t
k

cont k
k t t

J x c x u d . (2)

The total cost in (2) is a function of the initial state
of the system. To simplify notation, let the state at
the decision instances be represented by

k kx x t . (3)

Let the discrete time samples occur at

kt k t . (4)
Furthermore, let the continuous-time instantaneous
cost, contc , in (2) be represented in discrete time no-

tation as an additive cost over an interval,
1

, ,
k

k

t

k k cont k

t t

c x u c x u d . (5)

Using the notation developed in (2) through (5), the
continuous-time system’s total cost is expressed in
discrete time notation as

0
0

,k
k k

k

J x c x u . (6)

To simplify the continuous-time dynamics, let

0

, , , 0
t

df x u f u d x . (7)

Hence,

1 ,k d k kx f x u . (8)

An optimal control choice for each time step can be
found using the dynamic programming equations,

* arg min , ,d
u U x

u x c x u V f x u . (9)

The function V x is known as the value function.

By using the dynamic programming (DP) equations
to find the value function, a minimizing controller is
obtained. The DP equations are

min , ,du U x
V x c x u V f x u , (10)

where

, 0U x u g x u (11)

defines the set of feasible actions, xU . For the
case where the total cost is considered over an infi-

nite horizon and *
k ku u x (see eq (9)), the value

function is the same as the total cost function,
xVxJ . Equation (10) can be solved through

value iteration, policy iteration, or linear program-
ming. See [5-23] for discussion of solution methods.
For discussion of using DP to find value functions
for automotive control application, see [24-29]. The
formulation of equation (11) is chosen to simplify
management of constraints throughout the model and
to conform to a standard form used in the optimiza-
tion community, the negative null form [30].

One problem with solving (10) is that when

the state space consists of continuous states, V x

is a function from one infinite set to another. Except
in special cases, this requires approximation to solve.
One common approach is to use linear bases to ap-
proximate the value function. Possible linear bases
include the bases for multi-linear interpolation, the
bases for barycentric interpolation, b-splines, and
polynomials. See the appendices in [25] for a discus-
sion of linear bases for dynamic programming. In the

case where V x is approximated by a linear basis,

E. Tate, M. Sasena, J. Gohl, M. Tiller

The Modelica Association 494 Modelica 2008, March 3rd − 4th, 2008

3

TV x x w , (12)

where

1 2 Nx f x f x f x . (13)

An approximate solution to (10) is found by finding
the weights, w , which solve

min , ,T T
d

u U x
x w c x u f x u w . (14)

See [5-7] for a discussion of using linear bases to
form the value function.

 It is important to understand that this con-
troller is an optimal controller for the discrete time
case only, when the controller updates every t
seconds. In other uses, the controller will generally
be suboptimal. Additionally, any development algo-
rithm based on this methodology will suffer from the
curse of dimensionality [31]. In other words, the
time to find an optimal controller will increase geo-
metrically with the size of the plant state space. As a
point of reference, using a single commercially
available PC from 2005, a five state controller was
found in less than twenty four hours.

2 Controller Development

 To use equations (2) through (14) to develop
a controller, it is necessary to have a plant model
which includes the dynamics (f), cost function (c),

and constraints (g) all coupled to an integrator
which can be invoked as a function call by a Control
Design Algorithm (CDA). In addition, the set of
states for the plant model and the set of controller
actions must be specified to the CDA. For this work,
a custom wrapper was developed that allowed
batches of states and actions to be efficiently evalu-
ated. Each evaluation returned the state at the next
interval, the cost of operation for the interval, and the
constraint activity over the interval.

To understand the structure of the equations
involved in this work, consider a system consisting
of a plant and a controller. Without loss of general-
ity, assume the plant dynamics are described by or-
dinary differential equations

,x f x u , (15)

where f is a function that describes the plant dy-
namics. For notational simplicity consider a continu-
ous time controller. Let the controller be a full state
feedback controller implemented as a static mapping,
M , from the state, x , to the action set, u :

u M x . (16)

Assuming only a single global minimum exists, the
dynamic programming equations in (9) can be di-
rectly used for the static mapping (16). The autono-
mous dynamics of this system are then described by
the following equation

,arg min , ,d
u U x

x f x c x u V f x u (17)

This equation is then integrated to solve for x t ,

0

,
, arg min

,

t

u U x
d

x t

c x s u
f x s ds

V f x s u

 (18)

where

00x x (19)

defines the initial conditions. To evaluate df from

(7), a nested integrator, which is independent of the
primary simulation integrator, is required. This
nested integrator executes in ‘zero-time’ from the
perspective of the primary integrator. We refer to
this as an embedded or nested simulation. Because
the nested integrator is used inside a numeric optimi-
zation, it will potentially be called multiple times at
each primary integrator evaluation. If df in (18) is

expanded using (7), the plant dynamics function, f ,
from (15) occurs in two locations in

0

0

,

, arg min
, , 0

t

t

u U x

x t

c x s u

f x s ds
V f u d x s

(20)

where

00x x (21)

The nested copy of the plant dynamics equations, f ,
is referred to as the embedded or nested model. In
the case where the controller is modeled as updating
periodically, rather than continuously, the solution to
the optimization problem is held constant between
controller updates.

The equation structure in (20) and the reuse
of the plant dynamics function, f , offer the ability
to quickly synthesize controllers using numerical
techniques. However, existing tools make the im-
plementation of this type of model problematic.
There are two primary issues in implementation. The
first is execution efficiency. Few commercial tools
have been developed with the goal of efficiently
solving this class of equations. Secondly, several

Model Embedded Control: A Method to Rapidly Synthesize Controllers in a Modeling Environment

The Modelica Association 495 Modelica 2008, March 3rd − 4th, 2008

4

commercial modeling environments make the defini-
tion and reuse of the plant model cumbersome, re-
quiring significant efforts during development and
maintenance. Fortunately, the features of Modelica
make the definition and reuse of a plant model man-
ageable. The examples that follow have been devel-
oped in Dymola ®, however this general approach
has also been used with Simulink® and AMESim®.

To systematically generate a system with an
optimal controller, a model of the plant is generated.
This plant model is ‘wrapped’ with an application
programming interface (API) so a control design al-
gorithm can determine the state space, the action
space, the state at the next time step, the constraint
activity, and the cost for a given state and action.
This interaction between the plant model, the API
and the control design algorithm is illustrated in
Figure 1. The CDA queries the API to determine the
structure of the state and action space. Given this
structure and the configuration of the CDA, a se-
quence of DOEs is executed. The DOE data are used
to find a solution to (10). For this work, the value
function was modeled using multi-linear interpola-
tion and a solution to (14) was found. To simplify

coding, value iteration was used [5, 6] to find V x .

Control Design Algorithm
Plant
Model

ux,

uxfd ,

uxg ,

xV

API to expose functions

uxc ,
(CDA)

State Space

Action Space

Figure 1 - Plant Model API

Once the value function is generated, the
system model is formed by one of two methods. The
first method is by generating a lookup table that
maps the state variables to an action as in (16). The
process of generating a value function, finding a
mapping equivalent to (9), and realizing a controller
as a mapping (or lookup table) is referred to as Indi-
rect Model Embedded Control (IMEC). This method
is appropriate for some systems. Another approach,
which is more computationally expensive, is referred
to as Direct Model Embedded Control (DMEC). For
DMEC, the controller is realized by forming an op-
timization statement around an embedded copy of

the plant model. This structure is illustrated in Figure
2.

Embedded
Plant
Model

ux ˆ, uxfd ˆ, uxg ˆ,

API to expose functions

Controller

Plant
Model

Optimizer

*ux
uxc ˆ,

Figure 2 - Direct Model Embedded Controller Struc-
ture

To realize a Direct Model Embedded Con-
troller (DMEC), two pieces are added to the system
model. The first piece is an optimizer which solves
(9). This optimizer can be as simple as a Design of
Experiments (DOEs) which considers a fixed set of
actions, and selects one which minimizes (9). For
more sophistication, if the nature of the problem
permits it, a gradient-based optimizer can be em-
ployed [30, 32, 33]. If the nature of the problem does
not allow solution using these types of approaches,
global solvers can be used [34-36]. Ideally, an opti-
mization library should support both gradient and
non-gradient methods for constrained optimization
problems. As part of this project, libraries for per-
forming both DOEs and gradient-based optimiza-
tions were implemented entirely in Modelica. How-
ever, there are currently no comparable commercial
or public domain libraries available. The second
piece required to implement a DMEC is the ability to
invoke a function which efficiently initializes and
simulates, over a ‘short’ time horizon, a set of mod-
els which are copies of the plant model with modi-
fied parameters. Because of the structure of the prob-
lem, each time the controller executes, multiple em-
bedded simulations will execute. Depending on the
nature of the action set, the number of embedded
simulations may vary from as few as two embedded
simulations to several thousand embedded simula-
tions.

3 Example – Simple Engine Start

 To illustrate how these concepts are used to
build a controller, consider the problem of starting an
internal combustion engine using an electric machine

E. Tate, M. Sasena, J. Gohl, M. Tiller

The Modelica Association 496 Modelica 2008, March 3rd − 4th, 2008

5

with insufficient torque to guarantee the engine
completes a revolution from all possible stationary
starting points. If the initial position of the engine is
in a range of angles, the electric machine will stall.
To simplify the modeling, let us assume the engine
can be approximated using a crank slider connected
to a spring. The system model, shown in Figure 3,
consists of an electrical motor connected to the crank
which connects through the crank slider mechanism
to a piston which is subject to damping from friction.
Inertia is present in the motor rotor, crankshaft and
piston. The electric machine is subject to constraints
on minimum and maximum torque.

Figure 3 - Engine Starting Model

The objective of the control system is to en-
sure the engine will overcome the initial compres-
sion torque from any initial state and minimize en-
gine start time. The total cost of operation (what is
being minimized) is expressed mathematically as the
total time taken to achieve a speed greater than or
equal to five hundred RPM. Once this speed is
achieved, the controller is deactivated and another
scheme is used to manage the engine. The total cost
of operation for this system is considered over an
infinite time horizon and is computed as

0

0 , 500 rpm
0

1 ,otherwise

t
J x dt . (22)

The instantaneous cost for this system is

0 , 500 rpm

1 ,otherwise
c x . (23)

This type of cost generates a ‘shortest-path’ control-
ler. The controller will minimize the total time to
achieve 500 rpm. The total cost in (22) is undis-
counted. Therefore the discounting factor, , which

is visible in (2) is assigned a value of one and omit-
ted from the expression.

While it is clear that the system has exactly
two states, they can be selected somewhat arbitrarily.
For this example, the engine angle and engine speed
were selected. With these variables as the states, the
controller is represented as a static map from the en-
gine angle and engine speed to the electric machine
torque.

,u M (24)

The feasible action set is a single real number, the
motor torque, bounded by the constraints on motor
torque and power. The set of feasible actions is de-
fined by

100 100,

10000 10000

u
U x u

u
. (25)

The value function was represented using multi-
linear interpolation, see equation (12).

The plant model was implemented in Mode-
lica. The Controller Design Algorithm (CDA) was
implemented in MATLAB®. The CDA invoked
function calls to a custom API, similar to Figure 1,
applied to the plant model in Dymola®. The CDA
solved for the weights, w , in the value function
(equation (12)). This value function was used to gen-
erate an Indirect Model Embedded Controller
(IMEC) and a Direct Model Embedded Controller
(DMEC). The value function generated by the CDA
is shown in Figure 4.

-1000

-500

0

500

1000

0

50

100

150

200

250

300

350

0

0.2

0.4

Engine Angle [deg]

Value function

Engine Speed [rpm]

Figure 4 - Value function

 The IMEC was realized as a two input
lookup table with multi-linear interpolation on a
regular grid. The grid points in the table were found
by solving (9) using the value function generated by
the CDA. This controller was implemented using

Model Embedded Control: A Method to Rapidly Synthesize Controllers in a Modeling Environment

The Modelica Association 497 Modelica 2008, March 3rd − 4th, 2008

6

standard Modelica components. The actuator com-
mands for the IMEC controller are shown in Figure 5
as a function of engine speed and angle.

-1000
-500

0
500

1000

0

50

100

150

200

250

300

350

-100

0

100

Engine Angle [deg]

Best Control Choice - u*

Engine Speed [rpm]

Figure 5 - IMEC control table

 The DMEC was realized by wrapping a copy
of the plant model with an API similar to the one
used for the CDA. A DOE was used to search feasi-
ble actions. The resulting code structure is identical
to Figure 2. The optimal action was chosen to mini-
mize (9).

 For both of these controllers, the problem of
starting the engine from any initial condition was
solved. The solution involved the counter-intuitive
approach of spinning the engine backwards, then
reversing direction to allow enough energy to be
stored in the inertia to overcome the spring force.
From a model and a control objective, an optimal
controller with very complex behaviors was numeri-
cally generated in less than 10 minutes on a single
PC (3GHz, 2Gb RAM). Furthermore, a similar
problem with four states was solved in less than
three hours. Of course the power of this approach
can only be realized once a sufficient level of tool
support is available so that the time required to set
up the analysis is on the same order as the solution
time.

3.1 Direct vs Indirect MEC

 Ideally, both an IMEC and DMEC will re-
sult in identical behaviors. However, differences in
approximation schemes and interpolation can results
in appreciable differences. In many cases, while In-
direct MEC is simpler to realize in a model, there are
good reasons to implement a controller with the
complexity and computational cost of a Direct MEC.

As an example, consider the previous prob-
lem. The value function, V(x), was found using the

Control Design Algorithm (CDA). The IMEC con-
troller was designed by solving for the best electric
machine torque for a set of engine angles and speeds
on a regular grid. For engine states which occur off
this grid, multi-linear interpolation was used to cal-
culate the control action. When the IMEC was used
in an engine start simulation, if the optimal torque
transitioned between positive and negative, the inter-
polation caused a smooth change in the torque be-
cause of the continuity imposed by interpolation.

 Alternatively, consider a Direct MEC. Be-
cause of the characteristics of the dynamic pro-
gramming equations and the value function, the op-
timal choices are either full positive or full negative
torque. This results in an instantaneous, non-
continuous change in torque. When plotted as in
Figure 6, the difference between the control inputs
and the state evolution of the system can be seen.
The interpolation due to the approximation in the
IMEC results in artifacts in the control actions and a
slight loss of performance in the system. Mathe-
matically this means that more detail is required to

resolve xu* , the function that we are ultimately

trying to formulate, than to resolve xV .

 There are cases where an IMEC is superior
to a DMEC approach (e.g. [26] illustrates just such a
case). In general, an IMEC implementation is supe-
rior when both the action set is continuous and the
optimal actions are continuous. The DMEC approach
is superior when either the action set is discrete or
the optimal actions are not continuous with respect
to the state. One example where DMEC is clearly
superior is where the motor is controlled by selecting
the state of a switch inverter. In this case, the action
set consists of a finite set of choices for switch con-
figuration and the optimal actions are not continuous
with respect to the state.

Figure 6 - Comparison of IMEC and DMEC results

E. Tate, M. Sasena, J. Gohl, M. Tiller

The Modelica Association 498 Modelica 2008, March 3rd − 4th, 2008

7

4 Implementation of optimization al-
gorithms

 One of the challenges in Direct Model Em-
bedded Control is the implementation of an opti-
mizer. While this work was performed using a De-
sign of Experiments (DOE) to select optimal actions,
this approach becomes intractable when equality
constraints and larger dimensional actions sets are
considered. Towards the goal of supporting these
classes of problems, a gradient-based optimizer was
developed. One of the goals in developing this opti-
mizer was to fully implement the optimizer in Mode-
lica. By fully implementing in Modelica, all of the
information used by the optimizer would be accessi-
ble for speed improvements by the compiler. Should
native support for model embedding become avail-
able, all equations associated with a Direct MEC
would be accessible to the compiler for speed im-
provement. Additionally, since the embedded simu-
lations in a DMEC can be completely decoupled
from each other, simulation tools could easily exploit
the coarse grained parallelism on multi-core CPUs
by running several embedded simulations concur-
rently when conducting searches in the optimizer
(e.g. line searches and numerical gradients).

 The optimizer was developed in Modelica to
solve a constrained optimization problem which is
generally stated in negative null form [30] as

min

. .

0

0

objective

inequalities

equalities

f

s t

g

h

. (26)

To implement a gradient optimizer, the optimizer
functionality was separated from the objective func-
tion (objectivef), the inequality constraint functions

(inequalitiesg), and the equality constraint functions

(equalitiesh). The optimizer was designed under the

assumption that the inequality constraint functions
are all in negative null form: feasible inequality con-
straints are less than or equal to zero. The objective
function was assumed to be a minimization objec-
tive. Since Modelica does not (yet) support the con-
cept of methods or passing of functions as argu-
ments, the optimizer was designed to use static in-
heritance. For this reason, the objective and con-
straint functions are replaceable functions within an
optimizer package.

 One feature of this library, that is not com-
monly available, is the ability to handle functions

which are undefined over some region. The domain
of the objective and constraints may not be known a
priori. This occurs with MEC applications because
the objective (e.g. equation (9)) and constraint func-
tions (e.g. equation (11)) are typically evaluated us-
ing a solver. The solver may not find a solution.
Hence, classical algorithms must be modified to re-
cover from undefined evaluations.

 Implementation of this capability was prob-
lematic because of the lack of numeric support for a
real value which represents the concept of an unde-
fined quantity. Either a native capability similar to
Matlab’s ® ‘NaN’, or operator overloading with the
ability to extend a class from real numbers would
have simplified implementation.

In this library, Modelica.Constants.inf was
used to indicate that a function call was undefined.
However, the language specification does not define
behavior for operations (e.g. addition, subtraction,
multiplication, division) on Modelica.Constants.inf.
Therefore, all functions and statements which oper-
ated on variables that might be assigned a value of
Modelica.Constants.inf required conditional expres-
sions to ensure expected behavior.

 While this optimization library will not be
publicly released, it is available for further develop-
ment. Contact the lead author for a copy.

5 Recommendations

 While it is possible to realize both IMEC
and DMEC controllers using Modelica 2.2, the addi-
tion of a standard optimization library and native
support for embedded model simulation would
vastly simplify implementation and maintenance.

Towards the goal of simplifying implemen-
tation of MEC, a recommended language improve-
ment is the addition of a ‘model simulate’ function.
The function would accept arguments that specify
the model to simulate, the parameter values to use in
each simulation, the outputs to return, and any solver
specific settings. The solver should be able to be
configured to solve both initialization problems and
simulation problems. For efficiency in evaluation,
the function should support both a scalar and vector
lists of parameters. In addition to results which are
associated with the model, there should be results
associated with the solver. These results should be
sufficient to diagnose solver failures. At a mini-
mum, these should include the final time in the
evaluation and an indication of whether the simula-
tion successfully completed. A sample function defi-

Model Embedded Control: A Method to Rapidly Synthesize Controllers in a Modeling Environment

The Modelica Association 499 Modelica 2008, March 3rd − 4th, 2008

8

nition along with an example invocation are shown
in Figure 7.

function simulateModel

input String modelName;

input String paramNames[:];

input String resultNames[:];

input Real

 paramValues[:,size(paramNames,1)];

input SettingsRecord solverSettings;

output Real

 results[size(paramValues,1),

 size(resultNames,1)];

…

end simulateModel;

// example call

[angle, speed, exitCondition, exitTime] =

 simulateModel(

 modelName=“Library.PlantModel”,

 paramNames{“w0”, “theta0”,”u”},

 resultNames=

 {“w”, “theta”,

 “exitCondition”, “exitTime” },

 paramValues=

 [0, 0, -100;

 1, 0, -100;

 …;

 2, 2*pi, 100],

 solverSettings =

 SettingsRecord(

 stopTime=1.0,

 fixedStep=0.1)

);

Figure 7 - Model evaluation

 It is important to point out that the goal is to
be able to invoke such a function from within a run-
ning model and not simply as a command line analy-
sis option. As previously mentioned, the ability to
directly express such nested simulation relationships
makes posing MEC problems much easier. If the
MEC problem could also directly express the “opti-
mization problem” associated with MEC then tools
could also bring the underlying symbolic informa-
tion to bear on efficient gradient evaluation as well.

 One remaining issue for DMEC problems is
the initialization of state variables in the embedded
model. For DMEC problems we typically want the
embedded model to start at the current state of the
parent simulation. Said another way, the current val-
ues of the states in the parent simulation should be

used as initial conditions in the nested simulation.
Of course, it is possible using the function in Figure
7 to establish such a mapping but hopefully the lan-
guage design group will consider alternatives that
would be less tedious and error prone.

6 Conclusions

 It is tractable to numerically synthesize near
optimal (or approximately minimal) controllers for
many systems. While in most cases the state feed-
back required for the controllers may make them
impractical to deploy, they can certainly be used as
prototype controllers that establish performance lim-
its for a given design as well as provide insights into
control laws for production controllers. Further-
more, this approach can easily integrate into a com-
bined plant-controller optimization process. This can
be done by making the optimal controller a function
of the plant parameters. These optimal controllers
can be realized as lookup tables (IMEC) or through
the use of optimization and embedded models
(DMEC). An algorithmic approach to controls syn-
thesis was presented. For this paper, the IMEC and
DMEC approaches were applied to an engine start-
ing problem to generate an optimal controller in an
automated fashion.

As this work has shown, Modelica is a
promising technology for rapid prototyping of sub-
system designs and prototype controllers. However,
lack of support for ‘model embedding’ makes devel-
opment and long term maintenance problematic be-
cause considerable work must be done to implement
this embedding. Lacking any language standard, this
work will always be tool specific. Furthermore, im-
plementation of controllers which rely on optimiza-
tion suffer from the lack of a standard optimization
library. While an optimization library was developed
for this work, it isn’t practical for most users to make
such an investment. By adding both language sup-
port to express the essential aspects of model em-
bedding and optimization discussed in this paper,
Modelica can evolve into a powerful technology for
system development and optimization.

References

[1] H. K. Fathy,"Combined Plant and Control
Optimation: Theory, Strategies, and Appli-
cations," Mechanical Engineering, Univer-
sity of Michigan, Ann Arbor, 2003.

E. Tate, M. Sasena, J. Gohl, M. Tiller

The Modelica Association 500 Modelica 2008, March 3rd − 4th, 2008

9

[2] H. K. Fathy, P. Y. Papalambros, A. G. Ul-
soy, and D. Hrovat, "Nested Plant/Controller
Optimization with Application to Combined
Passive/Active Automotive Suspensions."

[3] H. K. Fathy, J. A. Reyer, P. Y. Papalambros,
and A. G. Ulsoy, "On the Coupling between
the Plant and Controller Optimization Prob-
lems," in American Control Conference, Ar-
lington, Va, 2001.

[4] P. R. Kumar and P. Variaya, Stochastic Sys-
tems: Estimation, Identification and Adap-
tion. Englewood Cliffs, New Jersey: Prentice
Hall, 1986.

[5] D. Bertsekas, Dynamic Programming and
Optimal Control: Vol 2. Belmont, Mass:
Athena Scientific, 1995.

[6] D. P. Bertsekas, Dynamic Programming and
Optimal Control: Vol 1. Belmont, Mass:
Athena Scientific, 1995.

[7] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-
Dynamic Programming. Belmont, Mass:
Athena Scientific, 1996.

[8] M. A. Trick and S. E. Zin, "A Linear Pro-
gramming Approach to Solving Stochastic
Dynamic Programs," Carnegie Mellon Uni-
versity 1993.

[9] M. A. Trick and S. E. Zin, "Spline Ap-
proximations to Value Functions: A Linear
Programming Approach," Macroeconomic
Dynamics, pp. 255-277, 1997.

[10] D. P. de Farias and B. Van Roy, "The Linear
Programming Approach to Approximate
Dynamic Programming," Operations Re-
search, vol. 51, pp. 850-865, November-
December 2003.

[11] V. F. Farias and B. Van Roy, "Tetris: Ex-
periments with the LP Approach to Ap-
proximate DP," 2004.

[12] D. P. de Farias,"The Linear Programming
Approach to Approximate Dynamic Pro-
gramming: Theory and Application," Ph.D.
Dissertation, Department of Management
Science and Engineering, Stanford Univer-
sity, Palo Alto, Ca, 2002.

[13] D. Dolgov and K. Laberteaux, "Efficient
Linear Approximations to Stochastic Ve-
hicular Collision-Avoidance Problems," in
Proceedings of the Second International
Conference on Informatics in Control,
Automation, and Robotics (ICINCO-05),
2005.

[14] G. J. Gordon, "Stable Function Approxima-
tion in Dynamic Programming," January
1995.

[15] R. S. Sutton and A. G. Barto, Reinforcement
Learning: An Introduction. Cambridge,
Mass: MIT Press, 1999.

[16] R. Munos and A. Moore, "Barycentric Inter-
polators for Continuous Space and Time Re-
inforcement Learning," Advances in Neural
Information Processing Systems, vol. 11, pp.
1024-1030, 1998.

[17] R. Munos and A. Moore, "Variable Resolu-
tion Discretization in Optimal Control," Ma-
chine Learning, vol. 1, pp. 1-24, 1999.

[18] J. M. Lee and J. H. Lee, "Approximate Dy-
namic Programming Strategies and Their
Applicability for Process Control: A Review
and Future Directions," International Jour-
nal of Control, Automation, and Systems,
vol. 2, pp. 263-278, September 2004.

[19] D. P. de Farias and B. Van Roy, "Approxi-
mate Value Iteration with Randomized Poli-
cies," in 39th IEEE Conference on Decision
and Control Sudney, Australia, 2000.

[20] D. P. de Farias and B. Van Roy, "Approxi-
mate Value Iteration and Temporal-
Difference Learning," in IEEE 2000 Adap-
tive Systems for Signal Processing, Commu-
nications and Control Symposium, 2000, pp.
48-51.

[21] B. Van Roy and J. N. Tsitsiklis, "Stable Lin-
ear Approximations to Dynamic Program-
ming for Stochastic Control Problems with
Local Transitions," Advances in Neural In-
formation Processing Systems, vol. 8, 1996.

[22] P. W. Keller, S. Mannor, and D. Precup,
"Automatic Basis Function Construction for
Approximate Dynamic Programming and
Reinforcement Learning."

[23] V. C. P. Chen, D. Ruppert, and C. A. Shoe-
maker, "Applying Experimental Design and
Regression Splines to High Dimensional
Continuous State Stochastic Dynamic Pro-
gramming," Operations Research, vol. 47,
pp. 38-53, January-February 1999.

[24] C.-C. Lin, H. Peng, and J. W. Grizzle, "A
Stochastic Control Strategy for Hybrid Elec-
tric Vehicles," in Proceedings of the 2004
American Control Conference, 2004, pp.
4710-4715 vol. 5.

[25] E. D. Tate,"Techniques of Hybrid Electic
Vehicle Controller Synthesis," Electrical
Engineering: Systems, University of Michi-
gan, Ann Arbor, Michigan, 2007.

[26] E. Tate, J. Grizzle, and H. Peng, "Shortest
Path Stochastic Control for Hybrid Electric
Vehicles," Internation Journal of Robust and
Nonlinear Control, 2006.

Model Embedded Control: A Method to Rapidly Synthesize Controllers in a Modeling Environment

The Modelica Association 501 Modelica 2008, March 3rd − 4th, 2008

10

[27] I. Kolmanovsky, I. Siverguina, and B. Ly-
goe, "Optimization of Powertrain Operating
Policy for Feasibility Assessment and Cali-
bration: Stochastic Dynamic Programming
Approach," in Proceedings of the American
Control Conference, Anchorage, AK, 2002,
pp. 1425-1430.

[28] J.-M. Kang, I. Kolmanovsky, and J. W.
Grizzle, "Approximate Dynamic Program-
ming Solutions for Lean Burn Engine After-
treatment," in Proceedings of the 38th Con-
ference on Decision & Control, Phoenix,
Arizona, 1999, pp. 1703-1708.

[29] C.-C. Lin, H. Peng, J. W. Grizzle, and J.-M.
Kang, "Power Management Strategy for a
Parallel Hybrid Electric Truck," IEEE
Transactions on Control Systems Technol-
ogy, vol. 11, pp. 839-849, November 2003.

[30] P. Y. Papalambros and D. J. Wilde, Princi-
ples of Optimal Design: Models and Compu-
tation, 2 ed. New York, New York: Cam-
bridge University Press, 2000.

[31] J. Rust, "Using Randomization to Break the
Curse of Dimensionality," 1996.

[32] S. Boyd and L. Vendenberghe, Convex Op-
timization. New York, N.Y.: Cambridge
University Press, 2004.

[33] P. E. Gill, W. Murray, and M. H. Wright,
Practical Optimization. New York, N.Y.:
Academic Press, 1981.

[34] D. R. Jones, C. D. Peritunen, and B. E.
Stuckman, "Lipschitzian Optimization with-
out the Lipschitz Constant," Journal of Op-
timization Theory and Applications, vol. 79,
pp. 157-181, 1993.

[35] A. J. Booker, J. Dennis, J. E. , P. D. Frank,
D. B. Serafini, V. Torczon, and M. W. Tros-
set, "A Rigorous Framework for Optimiza-
tion of Expensive Functions by Surrogates."

[36] M. J. Sasena,"Flexibility and Efficiency En-
hancements for Constrained Global Design
Optimization with Kriging Approximations,"
Mechanical Engineering, University of
Michigan, Ann Arbor, 2002.

E. Tate, M. Sasena, J. Gohl, M. Tiller

The Modelica Association 502 Modelica 2008, March 3rd − 4th, 2008

