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Abstract

The paper presents a method of implementing an
optimization based control algorithm within the
Modelica framework. To find the optimal point
within a given objective function the golden section
search is employed. Its implementation in Modelica
is presented. The optimizer based control strategy is
applied to control a simplified electrical circuit and to
a hybrid electric vehicle.
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1 Introduction

Online optimization is increasingly being imple-
mented for better results in controlling complex sys-
tems. It is especially helpful if the control objective
depends on several input parameters which influence
the outcome in a non intuitive way. One example is
the operational strategy of a powersplit hybrid electric
vehicle.
Compared to conventional transmissions, hybrid trans-
missions allow for several additional degrees of free-
dom: The combustion engine speed can be controlled
independently from vehicle speed and battery power
can be used for propulsion or the storage of braking
energy. Although the main control objective is the fuel
economy of the vehicle, other goals like dynamic re-
sponse, driveability, acoustic impression and tailpipe
emissions have to be achieved. In many cases the defi-
nition of the control objective is given by a calibration
table or multidimensional mappings. Since a mapping
normally cannot be expressed analytically, the solution
to the optimization problem has to be computed online
for each control step.

In the development process of hybrid vehicles, simu-
lation is a key issue. It is used to study aspects like
fuel consumption and performance and to understand
complex system interactions. Since the hybrid vehi-
cle powertrain is composed of mechanical, electrical,
chemical and thermodynamical components, Model-
ica is a very useful tool for this. The control software
of the hybrid vehicle is normally implemented using
tools like Simulink or ASCET. The actual powertrain
control is only a small part of the entire controls soft-
ware. A great deal of code which is interconnected to
the actual powertrain control concerns system diagno-
sis or remedial actions, and does not need to be simu-
lated. To study the powertrain behavior only the rele-
vant parts of the control code are transferred to Mod-
elica.
In this paper, we shall present a simple optimization
algorithm and give an example on how it can be im-
plemented in Modelica. We will also take a look on a
possible employment of such an algorithm; the power-
train control of a hybrid electric vehicle. In addition,
the following points have been investigated: How will
an algorithm that requires fixed time-steps work to-
gether with an complex vehicle model? How does the
optimization influence the simulation time? How can
standard Modelica elements like tables be integrated
in the optimization algorithm, since it doesn’t allow
graphical programming?

2 Problem statement

A Plant P is controlled by its input u and disturbed by
d. y is the observed measurement. In an early control
development stage the plant can be represented by a
simulation model. The control task is to follow a given
reference yre f so that an objective function J(y,yre f ) is
minimized. For linear systems and quadratic objective
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Figure 1: Control optimization problem

functions the choice of controller is well understood.
A linear state feedback control can be directly derived
from the linear plant given by the system matrices A,
B, C, D and by the coefficients of the quadratic objec-
tive function.
For nonlinear objective functions the optimization can
be carried out by an optimization algorithm. In each
optimization step the algorithm calls the objective
function, iterating the control signal u to generate the
optimal solution u∗.
In our case the plant is a Modelica model. The control
using the optimization algorithm is also integrated in
Modelica. A tutorial example of such an optimization
is shown in section 3.2.

3 Online optimization

An optimization algorithm used for the given problem
has to be robust, i.e. it needs to come up with a solution
after a finite number of iterations. Such an algorithm
is golden section search. In this paper its integration
into the Modelica framework is shown.

3.1 Optimization algorithm - Golden section
search

The golden section search derives its name from the
fact that it narrows its search interval with the golden
ratio 1

2(1+
√

(5)) in each step. The technique is effec-
tive only for unimodal functions, where a maximum
or minimum is known to exist within a given inter-
val. As starting points the lower and upper limit of the
search interval are chosen. Using the golden section,
two new points within the interval are evaluated and
compared. The point with the highest functional value
is chosen as a new boundary point, and points outside
of this are no longer considered. The algorithm contin-
ues to search until the maximum number of iterations
is reached or the termination condition suggested in
[4]: | x4− x1 |> τ(| x2 | + | x3 |) is satisfied. τ is a
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Figure 2: Principle of Golden Section Search Algo-
rithm

tolerance parameter. Modelica code 1 describes the
golden section search algorithm:

function goldenSectionSearch
extends Modelica.Icons.Function;
parameter Real tau=0.001;
...
constant Real C=0.5*(3 - sqrt(5));
constant Real R=1-C;
...

algorithm
x1:= xLowerLimit;
x4:= xUpperLimit;
x2:= R*x1 + C*x4;
x3:= C*x1 + R*x4;
fx2:=optFunction(x2,alpha,IbatDes,
Ri,Iload,gammaI);
fx3 :=optFunction(x3,alpha,IbatDes,
Ri,Iload,gammaI);

while abs(x4-x1)>
tau*(abs(x2)+abs(x3)) loop

if (fx3<fx2) then
x1:=x2;
x2:=x3;
x3:=R*x3 + C*x4;
fx2:=fx3;
fx3:=optFunction(x3,alpha,

IbatDes,Ri,Iload,gammaI);
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else
x4:=x3;
x3:=x2;
x2:=R*x2 + C*x1;
fx3:=fx2;
fx2:=optFunction(x2,alpha,

IbatDes,Ri,Iload,gammaI);
end if;

end while; if
(fx2<fx3) then
xmin:=x2;
fxmin:=fx2;

else
xmin:=x3;
fxmin:=fx3;

end if;

end goldenSectionSearch;

Modelica Code 1: Golden Section Search Algorithm

3.2 Optimization example

The following example (see fig. 3) illustrates the con-
trol problem: A time varying electric load Iload(t) is
to be supplied with power from an energy storage de-
vice (e.g. a battery) in such a way that the power
losses are minimal and the State-of-Charge (SOC) is
kept at a fairly constant level (to optimize the lifetime
of the energy storage device). The system can be in-
fluenced from an external current source Iopt , which
can deliver power at all times but with losses that are
time-dependent. This means at times it can be effi-
cient to charge the battery and to use the stored energy
at a later time when the losses of the current source are
high. α is a control variable which we choose in order
to weigh the importance of the SOC-control.

Iopt

IloadIbat

Iopt

IloadIbat

Figure 3: Example Electric Circuit

From these control objectives we define the objective
function to be minimized as:

Cost = α | Ibat,des(SOC)− Iopt |︸ ︷︷ ︸
SOCControl

+

Ri(Iopt − Iload)2

︸ ︷︷ ︸
BatteryLoss

+

γI(t)Iopt︸ ︷︷ ︸
CurrentCost

(1)

Iopt is our control variable; the current of the external
current source. The battery losses are assumed to be
a quadratic function of the current through the battery
internal resistance. The SOC-optimal battery current
Ibat,des is a function of the battery SOC and is chosen
to the following curve:
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Figure 4: Ibat,des as a function of battery state of charge

γI(t) is a time-varying function that decides the loss
power of the external current source. In this example,
we have chosen it to be sinodial (see figure 6).

3.2.1 Results

We let the optimization algorithm defined in chapter
3.1 find the optimal solution to the objective function
(1). The variable Iopt is computed through a function
call of goldenSectionSearch.
Figure 5 shows the calculated optimal current, as well
as the load current and the resulting battery current.
We can see that high (battery discharging) peaks in the
load current have been compensated for with the cur-
rent source in order to minimize the battery losses.
In figure 6, the optimized current has been compared
to a control strategy that only considers the battery
SOC (as described in figure 4). We can conclude that
the optimization chooses to charge the battery at times
when the current is inexpensive, but at the same time
manages to keep the SOC at levels similar to the SOC-
controlled strategy, not very far from the target value
of 60%.
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Figure 5: Optimization result: Controlled current Iopt ,
load current Iload and resulting battery current Ibat
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Figure 6: Optimization result: Cost of current, SOC-
Controlled current, Optimized current and SOC

As a measurement on how good the optimization has
worked, we compute the total system losses (battery
losses and losses of the external current source). By
integration of the loss power, as shown in figure 7, we
see that the energy lost in the optimized system is only
about half of the SOC-controlled strategy. The heat de-
veloped in the battery is proportional to the loss power,
and the operating temperature of the battery rises over
time. However, with the optimal control the battery
losses are kept down, and the temperature remains at a
lower level than the SOC-controlled strategy.

3.2.2 Implementation of tables in Modelica text

A difficulty in the implementation of the online op-
timization is the use of table look-ups for the objec-
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Figure 7: Comparison optimized system with SOC-
controlled system: System losses, battery SOC and
temperature

tive function within Modelica text algorithm sections.
In order to do this, one must initialize the table using
dymTableInit. The table/mapping can then be called
from a function using the function dymTableIpo1 or
dymTableIpo2.

...
equation

when initial() then
Data.EngineFuelFlow=dymTableInit
(2.0, smoothness, "FuelFlowAllCyl",
engineFuelFlowTable, table, 0.0);

end when;
...

Modelica Code 2: Table Interpolation in Modelica
Text

3.2.3 Comments on simulation time

In a simple example like the one given above, the sim-
ulation time of a model containing an optimization al-
gorithm is good, only somewhat slower than an equal
model using a traditional control approach. However
when combined with a complex vehicle model, gen-
erating a lot of events due to system state changes, a
fixed-step optimization algorithm can slow the simu-
lation time down considerably. In these cases, it has
been shown that time-discrete sampling of the opti-
mization algorithm increases the computation speed.
A well considered sampled optimization algorithm de-
livers virtually the same result as the non-sampled,
but without recomputing the optimal solution for each
event triggered by the plant. Using this method, we
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have achieved simulation performance comparable to
our traditional control concepts.

4 Hybrid vehicle application

This section will present a simulation model of a hy-
brid electric vehicle using a control strategy based on
online optimization. In this case, the optimization only
governs the choice of engine torque, but it could also
be employed for the choice of gear, or in EVT-mode
(Electrically Variable Transmission) the speed of the
internal combustion engine. The advantage of such an
implementation would be that the vehicle would adapt
its gear strategy depending on the current conditions.
However such a strategy also has the disadvantage that
the gear choice is not always comprehensible to the
driver.
The following control objectives are considered in our
objective function [5]:

• Combustion engine losses

• Battery losses

• Electric machine losses

• Battery SOC control

Below simulation results from an FTP721 simulation
of a hybrid electric vehicle are shown. In figure 8 the
vehicle speed is plotted with our control signal, the
optimal combustion engine torque. TICE is available
for us to choose at all times except the phases where
the vehicle is powered electrically. It has been chosen
to minimize the listed control objectives.
Figure 9 shows the resulting power and SOC of the
battery. At a given engine speed the battery power
is proportional to the combustion engine torque, and
therefore also directly connected to our control sig-
nal. We can conclude that even albeit a high portion of
pure electrical driving in this cycle, the SOC remains
around the target SOC of 60%.

5 Discussion and conclusion

This paper shows that it is possible to implement op-
timization algorithms for the control of a plant, e.g.
a hybrid electric vehicle, in Modelica. Using online
optimization, a fixed-step optimization algorithm can
find a solution to a number of complex and intercon-
nected control objectives. Although the optimization

1The Federal Test Procedure legislation fuel cycle
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Figure 8: Vehicle speed (above) and combustion en-
gine torque (below) as a function of time
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Figure 9: Battery power (above) and state of charge
(below) as a function of time

algorithm has to be called at each step of the simu-
lation, the simulation time was comparable to models
using traditional control strategies.
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